
Advances in AerodynamicsLi Advances in Aerodynamics             (2019) 1:3 
https://doi.org/10.1186/s42774-019-0004-9

REVIEW Open Access

Two-stage fourth order: temporal-spatial
coupling in computational fluid dynamics
(CFD)
Jiequan Li1,2

Correspondence:
li_jiequan@iapcm.ac.cn
1Laboratory of Computational
Physics, Institute of Applied Physics
and Computational Mathematics,
Beijing, People’s Republic of China
2Center for Applied Physics and
Technology, Peking University,
Beijing, People’s Republic of China

Abstract
With increasing engineering demands, there need high order accurate schemes
embedded with precise physical information in order to capture delicate small scale
structures and strong waves with correct “physics”. There are two families of high order
methods: One is the method of line, relying on the Runge-Kutta (R-K) time-stepping.
The building block is the Riemann solution labeled as the solution element “1”. Each
step in R-K just has first order accuracy. In order to derive a fourth order accuracy
scheme in time, one needs four stages labeled as “1 � 1 � 1 � 1 = 4”. The other is the
one-stage Lax-Wendroff (LW) type method, which is more compact but is complicated
to design numerical fluxes and hard to use when applied to highly nonlinear problems.
In recent years, the pair of solution element and dynamics element, labeled as “2”, are
taken as the building block. The direct adoption of the dynamics implies the inherent
temporal-spatial coupling. With this type of building blocks, a family of two-stage fourth
order accurate schemes, labeled as “2 � 2 = 4”, are designed for the computation of
compressible fluid flows. The resulting schemes are compact, robust and efficient. This
paper contributes to elucidate how and why high order accurate schemes should be
so designed. To some extent, the “2 � 2 = 4” algorithm extracts the advantages of the
method of line and one-stage LWmethod. As a core part, the pair “2” is expounded and
LW solver is revisited. The generalized Riemann problem (GRP) solver, as the
discontinuous and nonlinear version of LW flow solver, and the gas kinetic scheme (GKS)
solver, the microscopic LW solver, are all reviewed. The compact Hermite-type data
reconstruction and high order approximation of boundary conditions are proposed.
Besides, the computational performance and prospective discussions are presented.

Keywords: Compressible fluid dynamics, Hyperbolic balance laws, High order
methods, Temporal-spatial coupling, Multi-stage two-derivative methods,
Lax-Wendroff type flow solvers, GRP solver

1 Introduction
In the simulation of compressible fluid flows or related problems, there are two fam-
ilies of commonly-used high order accurate numerical schemes: One is the family
of methods of line, for which the fluid dynamical system is written in semi-discrete
form and the Runge-Kutta (RK) temporal iteration is employed for the temporal dis-
cretization, such as RK-WENO [1], RK-DG [2] and their variants. The building blocks
comprises of the solution element, the associated Riemann solution, which is labeled
as “1” in order to be in contrast with the Lax-Wendroff (LW) type flow solvers. The
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fourth order RK temporal iteration is labeled as “1 � 1 � 1 � 1 = 4”. This fam-
ily of schemes have very favorable properties such as simplicity in time-stepping for
complex engineering problems. The limitation is also obvious such as compactness,
efficiency and fidelity. The other is the family of one-stage LW type methods, the numer-
ical realization of Cauchy-Kowalevski (CK) approach [3] for the corresponding partial
differential equations. This family of methods have the strong temporal-spatial cou-
pling property, leading to very compact numerical schemes. However, when applied
to high nonlinear problems, the complex construction of numerical fluxes hampers to
develop high (more than two) order accurate schemes. Particularly, as strong waves
(discontinuities) are present in flows (solutions), the CK procedure loses its physical
and mathematical meanings, exhibiting the instability of the resulting schemes near
discontinuities.
Careful inspection of these two families of methods motivates to combine the mer-

its of both methods: The simplicity of multi-stage RK methods and the temporal-spatial
coupling of LW type methods. This straightforward combination immediately yields a
two-stage fourth order accurate temporal discretization for the LW type flow solvers [4],
which is labeled as “2 � 2 = 4”. Here “4” just represents “fourth” order accurate tempo-
ral discretization, but “2” has much deeper implications, some of which are enumerated
below.

(i) “2” represents a pair. Unlike the methods of line, this method adopts the pair, the
conservative variables and their dynamics, e.g., the velocity and the acceleration, as
the building block to design numerical schemes. In [4], we call this pair as the
Riemann solver and the LW type solver.

(ii) “2” implies the temporal-spatial coupling. The LW flow solver implies the
temporal-spatial coupling property of resulting schemes. This is necessary to
simulate the temporal-spatial coherent structures of fluid flows.

(iii) “2” stands for second order accuracy in time. Of course,“2” also symbolizes the
temporal accuracy of resulting schemes and requires that at each of the two stages
the above pair should be the building block.

(iv) “2” indicates the exchange of kinematics and thermodynamics. The Gibbs
relation plays a fundamental role in compressible fluid flows. In the dynamical
process, there is always the interaction of kinematics and thermodynamics. The
stronger nonlinear waves, e.g. shocks, exist in the fluid flows, the more
fundamental role the thermodynamics plays.

(v) “2” guarantees the compactness and efficiency. Since only two stages are taken
to achieve fourth order temporal accuracy, half amount of spatial discretization
treatments are saved and much smaller computational stencils are needed. Hence
the resulting schemes are more compact and efficient.

(vi) “2” reflects the consistency of mathematical and physical expressions of fluid
dynamics. The fluid dynamical systems essentially consist of balance laws, which
say the relation between the change rate of physical quantities and the associated
fluxes. The form of balance laws always makes sense no matter whether there are
discontinuities in the solution. The Lax-Wendroff type flow solvers inherently
reflects the consistency between the physical implication of fluid dynamical
systems and their mathematical formulation.
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In this paper we will elucidate the idea of this new family of schemes by interpreting
the philosophy from ordinary differential equations (ODEs) to fluid dynamical systems,
reviewing the well-used GRP and GKS solvers as the representatives of the Lax-Wendroff
type solvers, building high order temporal-spatially coupled high order accurate schemes
with favorable computational performance.
We organize this paper in the following sections. In Section 2, we propose this new

family of methods and the corresponding “2 � 2” algorithm. In Section 3, we review
the generalized Riemann problem (GRP) solver and in Section 4 continue to review a
kinetic solver, the gas kinetic scheme (GKS) solver. In Section 5, we introduce the com-
pact Hermite-type interpolation for the data reconstruction. In Section 6, we discuss
the approximation of boundary conditions to suit for the 2 � 2 algorithm. In Section 7,
we remark the computational performance of this approach in terms of computational
efficiency, robustness and fidelity.

2 What is “2 � 2 = 4”?
This section serves to elucidate the meaning of “2 � 2 = 4” for hyperbolic problems
and particularly compressible fluid flows, and review the two-stage fourth order accu-
rate schemes proposed in [4]. We remind that this strategy may not be suitable for
incompressible flows or it needs some modifications but certainly awaits for further
improvement.

2.1 Start with ODEs and philosophic thinking

Let’s recall the Runge-Kutta (RK) method for an ordinary differential equation

dy
dt

= f (t, y). (1)

The Runge-Kutta method takes the iteration procedure

yn+1 = yn + h
s∑

i=1
biki

ki = f
(

tn + cih, yn + h
i−1∑

j=1
aijkj

)

, i = 1, · · · , s,
(2)

where h is the time increment, aij, bi and ci satisfy the Butcher tableau [5]. The building
block of RK is the solution element y. In order to devise a s-th order accurate scheme, one
needs s-stage iteration, which is parameter-dependent. In this paper, we focus on fourth
order accurate schemesand therefore label the fourth order RK schemes as 1�1�1�1 = 4.
The notation “�” is an operation satisfying certain requirement such as stability.
The RK method lays the foundation of numerical approximations to ODEs. Note that

this method only uses the solution element “y”, but ignores the dynamics element dy/dt.
This sounds confusing, however, one may pay his attention to the role of the dynamics
element if he is familiar with the symplectic algorithm for Hamitonian system [6] for
which the pair of the position and momentum are together used for the computation
in order to preserve the symplectic structure. The momentum can be regarded as the
dynamics element of the position (solution element). The word “symplectic” itself has the
meaning of “pair”.
With this philosophical thinking, it is reasonable to construct multi-stage multi-

derivative algorithms for dynamical systems (ODEs). Indeed, this was achieved in [7]
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with many subsequent works [8–11]. The building block is the pair, the solution element
and the dynamics element (the derivatives). Specifically, a multi-stage two-derivative
algorithm is written as

Yi = yn + h
i−1∑

j=1
aijf

(
Yj
) + h2

i−1∑

j=1
âijg(Yj), i = 1, · · · , s,

yn+1 = yn + h
s∑

i=1
bi f (Yi) + h2

s∑

i=1
b̂ig(Yi),

(3)

where we suppress the dependence of f on t for simplicity so that f = f (y), the coefficients
aij, âij, bi, and b̂i can be displayed in an extended Butcher tableau [7]. Here the function
g(y) = f ′(y)f (y) is given using the chain rule

g(y) = d
dt

f (y) = f ′(y)dy
dt

= f ′(y)f (y). (4)

The dynamical element is implicitly used in the construction of algorithm (3). This
is why this method is of multi-stage two-derivative type with the pair (y, dy/dt) as the
building block. In particular, as s = 2, we have the two-stage fourth order accurate
time-stepping algorithm in the form

y∗ = yn + h
2 f (yn) + h2

8 f
′(yn)f (yn),

yn+1 = yn + hf (yn) + h2
6
(
f ′(yn)f (yn) + 2f ′(y∗)f (y∗)

)
,

(5)

labelled as the “2 � 2 = 4” algorithm, which was independently derived in [4] for hyper-
bolic conservation laws. See the discussion in the subsequent sections. For (5), the first “2”
represents the two-stage approach, the second “2” means the pair of the solution element
and the dynamics element, and “4” stands for the fourth order accurate approximation
to (1). Certainly, the first “2” has more implications when applied to the fluid dynamical
systems for compressible flows. Besides, the notation “�” is used here to symbolize the
mathematical operation currently. Probably in the future, this notation could be replaced
by a better one.

2.2 Lax-Wendroff flow solvers

The Lax-Wendroff method [12] plays a fundamental role in the development of high
order accurate schemes for hyperbolic equations. The corresponding scheme is unique in
the class of three-point schemes of second order both in space and time. The feature of
uniqueness implies that it is the reference of high order accurate schemes, and the three-
point stencil hints at the compactness. Here we are going to show more fundamentals
of this method, which is taken as the building block or higher order accurate schemes.
Moreover, we would like to present as many details as possible because it is unusual that
it has not been received “enough” attention since its birth. Part of the reason may be the
presence of oscillations near discontinuities when used to simulated compressible fluid
flows although it was modified, e.g., the flux limiter methods in 1980s ([13] and its succes-
sors), to be suited for the capture of discontinuities; part of the reason is, more possibly,
the seeming complexity compared to methods of line. Even more seriously, the misuse in
various contexts, such as diffusion equations and (dispersive) KdV type equations, leads
to many controversial issues.
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2.3 The revisit of Lax-Wendroff method

Let us first recall the Lax-Wendroff method [12]. Consider the advection equation

ut + aux = 0, t > 0, x ∈[ 0, 1] , (6)

where a is a constant. The boundary condition remains to be discussed in Section 6. We
approximate (6) by assuming that the solution is sufficiently regular, and take the Taylor
series expansion at any point (x, t) to obtain,

u(x, t + �t) = u(x, t) + �t
∂u
∂t

(x, t) + �t2

2
∂2u
∂t2

(x, t) + O
(
�t3

)
. (7)

A key step is the temporal-spatial coupling technique by taking use of (6) to quantify the
differentiation relation between the change rate of u and the spatial variation,

∂u
∂t

= −a
∂u
∂x

,
∂2u
∂t2

= a2
∂2u
∂x2

. (8)

Ignoring truncation errors of order more than three, the Lax-Wendroff scheme is derived
as (cf. [12]),

un+1
j = unj − λ

2

(
unj+1 − unj−1

)
+ λ2

2

(
unj+1 − 2unj + unj−1

)
, λ = a

�t
�x

, (9)

where central difference approximations are made to guarantee the spatial accuracy, unj
represents the point value u

(
xj, tn

)
at the grid point

(
xj, tn

)
, xj = j�x, tn = n�t, with the

spatial and temporal increments �x and �t. The Taylor expansion process is the same as
that in the Cauchy-Kowaleveski approach (see [3]), and therefore (9) is regarded as the
numerical realization of the CK approach. Note that this process determines the feature
of this scheme, implying its application only in the range of hyperbolic problems (local
behavior or finite propagation property). Any other extension needs serious and cautious
treatments.
The Taylor expansion also relies on the smoothness of the solution. The successive

differentiation (6) gives rise to the risk in the following sense.

(i) Once Eq. 6 admits discontinuities in the solution, the manipulation for (8) does not
make any sense. This is the main reason that (9) produces oscillations near
discontinuities [12].

(ii) As this method is applied to highly nonlinear dynamical systems, this manipulation
becomes horrible and hampers to develop higher order accurate schemes, due to
the successive differentiations.

We will comment on this manipulation appropriately at later sections. Rather now, we
reinspect (6) and (7) from another point of view (after ignoring high order truncation
errors), actually in the finite volume framework,

u(x, t + �t) = u(x, t) + �t ∂
∂t
[
u + �t

2
∂u
∂t
]

= u(x, t) − a�t ∂
∂x
[
u + �t

2
∂u
∂t
]
,

(10)

where the differentiation relation ∂
∂t = −a ∂

∂x is applied. We immediately realize that for
any (x, t)

u(x, t) + �t
2

∂u
∂t

= u
(

x, t + �t
2

)

+ O
(
�t2

)
, (11)
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as long as the solution is smooth in t (temporal direction or flow direction).
Viewing (10) in the finite volume framework, we obtain over the control volume[
xj− 1

2
, xj+ 1

2

]
×[ tn, tn+1), xj+ 1

2
= 1

2
(
xj + xj+1

)
,

u∗
j+ 1

2
:= u

(
xj+ 1

2
, tn

)
+ �t

2
∂u
∂t

(
xj+ 1

2
, tn

)
,

un+1
j = unj − λ

(

u∗
j+ 1

2
− u∗

j− 1
2

)

.
(12)

The prediction of the value u∗
j+ 1

2
depends on the approximations to u

(
xj+ 1

2
, tn

)
and

∂u
∂t

(
xj+ 1

2
, tn

)
. This is achieved by the Lax-Wendroff solver.

Lax-Wendroff solver. A Lax-Wendroff solver for (6) is the numerical algorithm approxi-
mating the values

unj+ 1
2
:= lim

t→tn+0
u
(
xj+ 1

2
, t
)
,

(
∂u
∂t

)n

j+ 1
2

:= lim
t→tn+0

∂u
∂t

(
xj+ 1

2
, t
)

(13)

for the given initial data at t = tn for (6).
This pair of values actually provide all quite detailed information along the interface

x = xj+ 1
2
of control volume and also the flux

1
�t

∫ tn+1
tn au

(
xj+ 1

2
, t
)
dt = au

(
xj+ 1

2
, tn + �t

2

)
+ O

(
�t2

)

= a
[

unj+ 1
2

+ �t
2
(

∂u
∂t
)n
j+ 1

2

]

+ O
(
�t2

)
.

(14)

The two formulae (9) and (12) are equivalent for smooth flows. However, the new
formulation (12) is fundamentally different from (9) in the following sense.

(i) The formulae (12) is actually the finite volume formulation for (6). The formulation
is more straightforward for fluid dynamical systems than other formulations
because it is just the numerical version of balance laws and allows discontinuities as
its solution.

(ii) The manipulation (11) is legal because the flow should be smooth in time (but not
in space), unlike the difference approximation for LW approach.

(iii) The temporal-spatial coupling feature again plays an important role, e.g.,

∂u
∂t

(
xj+ 1

2
, tn

)
= −a

∂u
∂x

(
xj+ 1

2
, tn

)
. (15)

This feature is crucial for a numerical scheme to preserve the fluid dynamical
properties such as the Galilean invariance.

(iv) The successive differentiation (8) can be avoided, which is extremely important for
nonlinear problems when discontinuities are involved because the manipulation
(8) makes no sense both mathematically and physically.

For (6), we label “2” for the pair
(
u, ∂u

∂t
)
in the Lax-Wendroff solver (13), which is the

building block, as we see, in the Lax-Wendorff scheme. It is interesting to observe that
(13) can be approximated in an upwind or central way. The upwind approximation can
avoid superfluous information in the scheme.
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2.4 Lax-Wendroff flow solvers for nonlinear hyperbolic balance laws

We consider hyperbolic conservation laws

ut + f(u)x = 0, (16)

where the vector u is the conservative variable. The natural formulation of (16) is in the
finite volume framework, the balance law over any interval Ij =

(
xj− 1

2
, xj+ 1

2

)
,

d
dt ūj(t) = − 1

�x

(
f
(
u
(
xj+ 1

2
, t
))

− f
(
u
(
xj− 1

2
, t
)))

,

ūj(t) = 1
�x

∫
Ij u(x, t)dx,

(17)

or the control volume
(
xj− 1

2
, xj+ 1

2

)
× (tn, tn+1),

ūn+1
j = ūnj − �t

�x

(
fj+ 1

2
(tn; tn+1) − fj− 1

2
(tn; tn+1)

)
, (18)

with

ūnj = 1
�x

∫

Ij
u (x, tn) dx, fj+ 1

2
(tn; tn+1) = 1

�t

∫ tn+1

tn
f
(
u
(
xj+ 1

2
, t
))

dt. (19)

If one would prefer to other formulations, such as the discontinuous Galerkin method [2],
the following statements still hold.
We shift (xj, tn) to (0, 0) due to the invariance of (16) with respect to the translation

of coordinates. In order to proceed in one of those frameworks, we have to solve (16)
approximately subject to the initial data

u(x, 0) = P±(x), for ± x > 0, (20)

where P±(x) are smooth functions, typically polynomials, with a jump at x = 0. The same
as in the linear case (13), a Lax-Wendroff flow solver for such a problem is an algorithm
approximating

u0 := lim
t→0+ u(0, t),

(
∂u
∂t

)

0
= lim

t→0+
∂u
∂t

(0, t). (21)

In general, we consider hyperbolic balance laws in multi-dimensions,

ut + ∇ · F(u) = h, F = (
fx, fy, fz

)
. (22)

where h is the source term resulting from physics or geometry, x = (x, y, z) is the spatial
coordinate. The initial data for (22) is set to be

u(x, y, z, 0) = P±(x, y, z), for ± μ · x > 0, (23)

where μ is the unit normal of a line or plane L : μ · x = 0 pointing from the negative
side to the positive side, corresponding to the outer normal of interfaces of computational
volume. The Lax-Wendroff solver for (22) is to find the pair of values with the same form
as in (21),

uL,0 := lim
t→0+ u(L, t),

(
∂u
∂t

)

L,0
:= lim

t→0+
∂u
∂t

(L, t), (24)

where the limit is taken along the spatial-temporal interface L × (0,�t).
We want to remark here that the pair

(
uL,0, (∂u/∂t)L,0

)
can be modulated to any

direction in order to suit for an arbitrary Lagrangian-Eulerian (ALE) method.
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2.5 Rough comments on the correlation between LW solver and temporal-spatial

coupling

The instantaneous temporal derivatives in (21) and (24) can be roughly using the Lax-
Wendroff approach

∂u
∂t

= −∇ · F(u) + h, (25)

and then −∇ · F(u) and h are approximated using certain technologies such as WENO
etc. The same as in (15), the coherent relation of spatial and temporal variations is rooted
in this formula.
The intuitive outcome of this coupling is the following.

(i) The multidimensional effect, in particular the transversal effect, is input into the
flux directly. Thinking of a single advection problem

ut + aux + buy = 0, (26)

where a, b are constants. For an interface with the normal in the x-direction, the
transversal effect, expressed in the y-direction, is ignored for the standard Riemann
solver. This is further verified for the wave system

pt + c0ux + c0vy = 0, ut + c0px = 0, vt + c0py = 0, (27)

where c0 is a constant. In Table 1, we use three methods to simulate the periodic
wave problem. It is observed that even with the same convergence rate, the RK
method produces also ten times of errors than what the second order GRP does for
which the transversal effect is included. The solution cannot even converge with
the refinement of meshes if only normal flux is used but the transversal effect is not
included. See [14].

(ii) The source effect h is also reflected through such a process. It is simple to see that

∂u
∂t

= −∂f (u)

∂x
+ h(u, x), (28)

for hyperbolic balance law

∂u
∂t

+ ∂f (u)

∂x
= h(u, x). (29)

This input is essential and indispensable for the well-balancedness, as verified for
the shallow water equations [15].

There are more fundamentals, such as the thermodynamical effect [16], resulting from
the temporal-spatial coupling.

Table 1 L1 error and convergence order of u for the periodic wave problem at final time t = 2 with
the methods GRP2D, RK2 and GRP1D

N GRP2D RK2 GRP1D

L1 error order L1 error order L1 error order

40 4.54E-2 1.38E-1 4.16E-1
80 7.32E-3 2.63 3.55E-2 1.96 2.25E-1 0.89
160 1.33E-3 2.46 8.96E-3 1.99 1.17E-1 0.94
320 2.81E-4 2.25 2.25E-3 2.00 6.66E-2 0.81
640 6.53E-5 2.10 5.62E-4 2.00 1.88E-1 −1.50
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2.6 2 � 2 = 4: Two-stage fourth order accurate schemes

In [4], the fourth order accurate method is developed for hyperbolic conservation laws.
We start with the review of the dynamical system

d
dt

w = L(w), (30)

where L is a linear or nonlinear operator of w. Then we have the following two-stage
algorithm for (30).

Stage 1. Define intermediate values

w∗ = wn + 1
2�tL (wn) + 1

8�t2 ∂
∂tL (wn) ,

∂
∂tL (w∗) = ∂

∂uL (w∗)L (w∗) ,
(31)

where the second equation follows from (30), using the chain rule.
Stage 2. Advance the solution using the formula

wn+1 = wn + �tL
(
wn) + 1

6
�t2

(
∂

∂t
L
(
wn) + 2

∂

∂t
L
(
w∗)

)

. (32)

This algorithm provides a fourth order accurate approximation tow. Originally, this algo-
rithm was proposed in [7, 17], and independently in [4] based on Lax-Wendroff flow
solvers. Along this direction, one can derive as high order accurate approximations as
what he likes [7, 18].
When applied to hyperbolic problems (16) and (22), one can formulate them in any

appropriate framework such as finite volume framework [4] or discontinuous Galerkin
(DG) framework [19]. Hence we assume that the computational domain � is meshed as
� = ∪j∈J �j and formulate the problem in the form

d
dt

wj(t) = Lj(w), wj = 1
|�j|

∫

�j
u(x, t)dx, w = {

wj; j ∈ J
}
. (33)

Thus, this problem boils down to the dynamical system in the form (30). Then we have a
two-stage fourth order time-steppingmethod, now symbolized as the “2�2 = 4”method.
The intuitive meaning is that we adopt the second order flow solvers as building blocks
and use a two-stage time-stepping to achieve fourth order accurate numerical methods
for hyperbolic problems or convection-dominated problems. We make a diagram in the
following.

“4′′: A fourth order scheme = “2′′: Second order Lax-Wendroff type flow solvers
+ “2′′: A two-stage time stepping

Careful readers may observe the validity of (33) when the above two-stage algorithm
applies to the current case, which is why we have to develop the Lax-Wendroff type
flow solvers based on hyperbolic balance laws rather than the formal partial differen-
tial equations (Ben-Artzi, M, Li, J: On the consistency and convergence of finite volume
approximations to hyperbolic balance laws, submitted). There are at least two points that
we should concern: (i) System (33) is index-dependent and therefore each equation for
fixed j is related to the neighboring equations; (ii) the continuity ofLj is crucial when apply-
ing the above two-stage algorithm. It is at these points that (30) is substantially different
from (1). Therefore, the regularity of flux is a key factor to guarantee the validity of this
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algorithm. Physically speaking, this regularity is natural by recalling the Lagrangian form
of fluid dynamical systems [20]. Hence in the computation of instantaneous values (21)
or (24), we must be aware of the regularity of the flux that will be further emphasized in
the next section about the GRP solver.

3 The GRP solver: a discontinuous and nonlinear LW flow solver
As is well-known, and also pointed out in the last section, the standard Lax-Wendroff
solver results in an algorithm that producing oscillatory solutions if discontinuities are
present. The GRP solver, the abbreviation of the generalized Riemann problem (GRP)
solver, can be regarded as the discontinuous and nonlinear version of the Lax-Wendroff
solver. This solver was originally proposed in [21] for compressible fluid flows and related
problems. See [22] for the comprehensive summary of works before 2003. Later on a
direct Eulerian version of GRP solver was derived in [23] and further extended to gen-
eral hyperbolic conservation laws [24, 25]. The presentation below will follow the direct
Eulerian GRP. The application to non-conservative systems is referred to [26].

3.1 1-D GRP solver

We first review one-dimensional GRP solver for hyperbolic balance laws

ut + f(u)x = h(x,u), (34)

subject to the initial data of form (20). An important prototype is the compressible Euler
equations with cross section,

∂(A(x)ρ)
∂t + ∂(A(x)ρu)

∂x = 0,

∂(A(x)ρu)
∂t + ∂(A(x)ρu2)

∂x + A(x) ∂p
∂x = 0,

∂(A(x)ρE)
∂t + ∂(A(x)u(ρE+p))

∂x = 0,

(35)

where the variables ρ, u, p and E are the density, velocity, pressure and the total specific
energy. The total specific energy consists of two parts E = u2

2 + e, e is the internal spe-
cific energy. The function A(x) is the area of the duct. When A(x) ≡ 1, the system (35)
represents the planar compressible Euler equations. Let T be the temperature. Then the
entropy S can be defined, as usual, by Gibbs relation of thermodynamics,

TdS = de − p
ρ2 dρ. (36)

The local sound speed c is defined as

c2 = ∂p(ρ, S)
∂ρ

. (37)

We will distinguish the linear (acoustic) and nonlinear GRP solvers. Both are related.
However, as strong waves are involved, the nonlinear GRP solver becomes crucial. Details
can be found first in [27] and later in [24, 25] for general versions.
We denote

u� = P−(0 − 0), ur = P+(0 + 0),

u′
� = P′−(0 − 0), ur = P′+(0 + 0).

(38)
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(I) Linear GRP solver. Linear hyperbolic equations describe the propagation of waves
linearly. For the single linear case (6),

ut + aux = αu, (39)

with a damping constant α, we have obviously

u0 = a + |a|
2

u� + a − |a|
2

ur ,
(

∂u
∂t

)

0
= −a + |a|

2
u′

� − a − |a|
2

u′
r + αu0. (40)

For the linear or semi-linear system case

ut + Aux = h(u, x), (41)

we need to diagonalize the system and pursue the characteristic decomposition.
Denote by λ1, · · · , λm the eigenvalues of A, 	 = diag (λ1, · · · , λm), and |	| =
diag (|λ1|, · · · , |λm|). Then we decompose A as A = R	R−1, and denote again |A| =
R|	|R−1. It turns out that the instantaneous values take

u0 = A+|A|
2 u� + A−|A|

2 ur ,
(

∂u
∂t
)
0 = −A+|A|

2 u′
� − A−|A|

2 u′
r + h (u0, 0) .

(42)

Therefore, the GRP solver for the linear system case is substantially the same as that for
the single equation case.
(II) Acoustic Approximation
For nonlinear cases, if u� = ur , but ‖u′

� − u′
r‖ �= 0, only linear waves emanate from the

singularity point (0, 0). Then we can linearize the system (34), at the value u0 = u� = ur ,
as

θt + A(u0)θx = h(x,u0), θ = u − u0, (43)

where A(u0) is the Jacobian f′(u0). Note that
(

∂u
∂t

)

0
=
(

∂θ

∂t

)

0
, and

(
yyyu
yx

)

0
=
(

∂θ

∂x

)

0
. (44)

Immediately we have
(

∂u
∂t

)

0
= −A(u0) + |A(u0)|

2
u′

� − A(u0) − |A(u0)|
2

u′
r + h(u0, 0). (45)

We can proceed to obtain any higher temporal derivatives (∂mu/∂tm)0, abbreviated as
ADER in [28]. However, in the framework of 2 � 2 = 4, we are satisfied with the first
order temporal variation in (45).
As ‖u� − ur‖ � 1, weakly nonlinear waves emanate from (0, 0). Then we can carry out

the so-called acoustic approximation. To be precise, we can use either exact or approxi-
mate Riemann solvers to obtain the intermediate state u0 and linearize the system (34) to
be in the form (43) so that the temporal derivative (∂u/∂t)0 is calculated as in (45).
For the Euler Eq. 35, the acoustic approximation is the following.

(i) As u0 − c0 > 0 or u0 + c0 < 0, the acoustic waves moves to one side of the t-axis.
Then (∂u/∂t)0 is taken upwind.
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(ii) As u0 − c0 < 0 < u0 + c0, the t-axis is located between two acoustic waves. Then
we have

(
∂u
∂t
)
0 = − 1

2

[
(u0 + c0)

(
u′

� + p′
�

ρ0c0

)
+ (u0 − c0)

(
u′
r − p′

r
ρ0c0

)]
,

(
∂p
∂t

)

0
= −ρ0c0

2

[
(u0 + c0)

(
u′

� + p′
�

ρ0c0

)
− (u0 − c0)

(
u′
r − p′

r
ρ0c0

)]

−A′(0)
A(0) ρ0c20u0.

(46)

The quantity (∂ρ/∂t)0 is solved according to the direction of the contact
discontinuity,

(
∂ρ

∂t

)

0
= 1

c20

[(
∂p
∂t

)

0
+ u0

(
p′

� − c20ρ
′
�

)
]

(47)

if u0 = u� = ur > 0; and
(

∂ρ

∂t

)

0
= 1

c20

[(
∂p
∂t

)

0
+ u0

(
p′
r − c20ρ

′
r
)
]

(48)

if u0 = u� = ur < 0.

For “cheap” engineering applications, one can use the local Riemann solution u0 to
linearize the nonlinear system and obtain a “linear” system so that the above acoustic
approximation strategy can be adopted.
(III) Nonlinear GRP solver
As ‖u� −ur‖  1, nonlinear waves emanate from the singularity point (0, 0). The larger

the difference between u� and ur is, the stronger the strength of the waves is. In Fig. 1
we use the acoustic GRP solver to simulate the big density ratio problem and observe that
the numerical solution has large disparity from the exact solution. In Fig. 2, we use the
nonlinear GRP solver that will be described below, and see that the numerical solution
is improved prominently [16]. Hence it is essential to develop the nonlinear GRP solver
as long as strong waves need resolving. We just illustrate the nonlinear GRP solver for
Euler equations with cross section (35). For general hyperbolic balance laws, readers are
referred to [24, 25].
We just need to assume a typical case, as shown in Fig. 3, that a rarefaction wave moves

to the left, a shock moves to the right and a contact discontinuity lies in the middle. When

(a) (b)
Fig. 1 The numerical solutions computed by the second order acoustic GRP scheme (with the exact
Riemann solver) are compared with the exact solution (only 66 cells are shown)a Acoustic GRP solver with
different grid points. b Zoomed solution
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(a) (b)
Fig. 2 The GRP simulation (only 100 cells are shown). a GRP with relatively small number of grid points.
b Zoomed solution

(a)

(b)
Fig. 3 Typical wave pattern for the generalized Riemann problem. aWave pattern for the GRP. The initial
data u(x, 0) = u� + xu′

� for x < 0 and u(x, 0) = ur + u′
rx for x > 0. bWave pattern for the associated

Riemann problem
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the waves move to one side of t-axis, i.e., u� − c� > 0 or ur + cr < 0, it is treated as the
acoustic case that (∂u/∂t)0 is obtained upwind.
We rewrite (35) in terms of (ρ,u, S),

∂ρ
∂t + u ∂ρ

∂x + ρ ∂u
∂x = −A′(x)

A(x) ρu,

∂u
∂t + u ∂u

∂x + 1
ρ

∂p
∂x = 0,

∂S
∂t + u ∂S

∂x = 0,

(49)

where p is regarded as a function of ρ and S. In terms of ρ, u and p, the third equation of
(49) can be replaced by,

∂p
∂t

+ u
∂p
∂x

+ ρc2
∂u
∂x

= −A′(x)
A(x)

ρc2u. (50)

In order to resolve strong rarefaction waves, it is particularly essential to introduce the
so-called generalized Riemann invariants, as in [24],

φ = u −
∫ ρ c(ω, S)

ω
dω, ψ = u +

∫ ρ c(ω, S)
ω

dω. (51)

Together with the entropy variable S, system (35) becomes

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂φ
∂t + (u − c) ∂φ

∂x = B1,

∂ψ
∂t + (u + c) ∂ψ

∂x = B2,

∂S
∂t + u ∂S

∂x = 0.

(52)

where B1 = T ∂S
∂x + A′(x)

A(x) cu, B2 = T ∂S
∂x − A′(x)

A(x) cu. Here it is easily seen that the variable
section A(x) acts on the dynamical behavior of φ and ψ , and thus on that of (ρ,u, p). The
severe change of entropy inevitably leads to the variation of other physical variables. The
GRP solver that we will derive tells precisely how the entropy and the cross section affect
the dynamics.
The most important ingredient is the application of nonlinear geometric optics for

the local expanding of rarefaction waves using local characteristic coordinates (α,β), as
shown in Fig. 3. With that, we can obtain the instantaneous temporal derivatives ∂S/∂t
and ∂ψ/∂t as (restricted to polytropic gases),

T ∂S
∂t (0,β) = −(β + c�θ)θ

2γ
γ−1T�S′

�, θ = c(0,β)/c�,
∂ψ
∂t (0,β) = G1 + A′(0)

2A(0)G2,
(53)

where T�S′
� is defined through the Gibbs relation,

T�S′
� = e′� − p�

ρ2
�

ρ′
�, (54)
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and G1, G2 are given by,

G1 = −β+c�θ
c� θ

γ+1
γ−1T�S′

� + β+2c�θ
c� θ

3−γ
2(γ−1)

[
2γ

3γ−1T�S′
� − c�ψ ′

�

]
,

G2 = β(β + c�θ) − (β + 2c�θ)

[

u�θ
3−γ

2(γ−1) + G2

]

,

G2 =

⎧
⎪⎪⎨

⎪⎪⎩

−2(γ+1)c�θ
(γ−1)(3γ−5)

(

1 − θ
5−3γ
2(γ−1)

)

− (γ+1)ψ�

γ−3

[

1 − θ
3−γ

2(γ−1)

]

, if γ �= 3, 5/3,

2c�(θ − 1) − ψ� ln θ , if γ = 3,
2 [c�θ ln θ + ψ� (1 − θ)] , if γ = 5/3.

(55)

For general cases, please refer to [29].
Several remarks are in order about the role of entropy variation and the cross section

on the dynamics.

(i) The source term reflecting geometric variation always plays an important role in
the dynamics of flows. Inherently, the critical gas indices are clearly exhibited in
(55), which cannot be illustrated in other flow solvers. This is just an evidence that
only GRP solver can distinguish different gases.

(ii) The entropy change rate is essential and acts on other flow variables as its initial
variation is severe. This tells why the GRP solver is indispensable when strong
waves are simulated. As the involved waves are weak or T ∂S

∂x is small, ∂S
∂t is

negligible and many approximations such as linearization are acceptable.

The shock is resolved by tracking its trajectory described by the Rankine-Hugoniot
relation,

σ = ρu − ρu
ρ − ρ

, u = u ± �(p; p, ρ), ρ = �(p; p, ρ), (56)

where (ρ,u, p) and (ρ,u, p) are the states ahead and behind the shock, respectively, and

�(p; p, ρ) = (p − p)

√
1 − μ2

ρ
(
p + μ2p

) , �(p; p, ρ) = ρ
p + μ2p
p + μ2p

, μ2 = γ − 1
γ + 1

, (57)

for polytropic gases.
For the contact discontinuity x = x(t), we make use of the continuity property of

pressure and velocity on both sides of the trajectory,

u(x(t) − 0, t) = u(x(t) + 0, t), p(x(t) − 0, t) = p(x(t) + 0, t). (58)

Then the differentiation along the contact discontinuity gives
Du
Dt

(x(t) − 0, t) = Du
Dt

(x(t) + 0, t),
Dp
Dt

(x(t) − 0, t) = Dp
Dt

(x(t) + 0, t), (59)

where D/Dt = ∂/∂t + u∂/∂x is the material derivative. This relation bridges the rarefac-
tion wave and the shock, just like that for the Riemann solver. We just remind that the
density and entropy undergo jump across this contact discontinuity.
Thus we come to the nonlinear GRP solver that are distinguished as nonsonic and sonic

cases.

Proposition 1 (Non-sonic case.) Assume a typical wave configuration for the generalized
Riemann problem for (35) as shown in Fig. 3 that the t-axis is located in the intermediate
region. Then (∂u/∂t)0 and (∂p/∂t)0 satisfies the following pair of linear equations,
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a�

(
∂u
∂t
)
0 + b�

(
∂p
∂t

)

0
= d�,

ar
(

∂u
∂t
)
0 + br

(
∂p
∂t

)

0
= dr ,

(60)

where a�, b�, d� and ar, br, dr are specified below. Also the computation of (∂ρ/∂t)0 are
computed by the following two cases.
(i) If u0 > 0, the contact discontinuity moves to the right and separates two states

(ρ0�,u0, p0), (ρ0r ,u0, p0). The coefficients a�, b� and d� are given as,

(a�, b�, d�) = (ã�, b̃�, d̃�). (61)

The coefficients ar, br and dr are given by

ar = c20�
c20�−u20

[
ãr
(
1 − ρ0�u20

ρ0rc20r

)
+ b̃r(ρ0r − ρ0�)u0

]
,

br = 1
c20�−u20

[

ãr
(

− 1
ρ0�

+ c20�
ρ0rc20r

)

u0 − b̃r
(
− ρ0r

ρ0�
u20 + c20�

)]

,

dr = d̃r + A′(0)
A(0)

u30
c20�−u20

[

ãr
(

1 − ρ0�c20�
ρ0rc20r

)

+ b̃r(ρ0r − ρ0�)c20�

]

.

(62)

The value (∂ρ/∂t)0 is computed from the rarefaction side,

(
∂ρ

∂t

)

0
= 1

c20�

⎡

⎣
(

∂p
∂t

)

0
+ (γ − 1)ρ0�u0

(
c0�
c�

) 1+μ2
μ2

T�S′
�

⎤

⎦ , (63)

by using the state equation p = p(ρ, S).
(ii) If u0 < 0, the contact discontinuity moves to the left. The coefficients ar, br and dr are

given as,

(ar , br , dr) =
(
ãr , b̃r , d̃r

)
. (64)

While the coefficients a�, b� and d� are computed by

a� = c20r
c20r−u20

[

ã�

(

1 − ρ0ru20
ρ0�c20�

)

+ b̃� (ρ0� − ρ0r)u0
]

,

b� = 1
c20r−u20

[

ã�

(

− 1
ρ0r

+ c20r
ρ0�c20�

)

u0 − b̃�

(
−ρ0�

ρ0r
u20 + c20r

)]

,

d� = d̃� + A′(0)
A(0)

u30
c20r−u20

[

ã�

(

1 − ρ0rc20r
ρ0�c20�

)

+ b̃� (ρ0� − ρ0r) c20r

]

.

(65)

The value (∂ρ/∂t)0 is computed from the shock side,

gRρ
(

∂ρ

∂t

)

0
+ gRp

(
Dp
Dt

)

0
+ gRu

(
Du
Dt

)

0
= u0 · fr , (66)
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where gRρ , gRp , gRu and fr are constant, explicitly given in the following,

gRρ = u0 − σ0, gRp = σ0
c20r

− u0H1, gRu = ρ2∗(σ0 − u0) · u0 · H1,

fr = (σ0 − ur) · H2 · p′
r + (σ0 − ur) · H3 · ρ′

r − ρr · (H2c2r + H3
) · u′

r

−A′(0)
A(0) · (H2c2r + H3

)
ρrur ,

(67)

and H1, H2 and H3 are expressed by

H1 = ρr(1−μ4)pr
(pr+μ2p0)2

, H2 = ρr(μ4−1)p0
(pr+μ2p0)2

, H3 = p0+μ2pr
pr+μ2p0

. (68)

The other coefficients
(
ã�, b̃�, d̃�

)
and

(
ãr , b̃r , d̃r

)
are

ã�(0,β) = 1,

b̃�(0,β) = 1
ρ(0,β)c(0,β)

,

d̃�(β) = β+2θc�
c� · θ

3−γ
2(γ−1)

(
2γ

3γ−1T�S′
� − c�ψ ′

�

)
+ A′(0)

2A(0)G2,

(69)

and

ãr = 1 − σ0u0
u20−c20r

− σ0ρ0rc20r
u20−c20r

· �1,

b̃r = 1
ρ0r

σ0
u20−c20r

−
(
1 − σ0u0

u20−c20r

)
�1,

d̃r = LRp · p′
r + LRu · u′

r + LRρ · ρ′
r + A′(0)

A(0) jr ,

(70)

where we use notations

LRp = − 1
ρr

+ (σ0 − ur) · �2,
LRu = σ0 − ur − ρr · c2r · �2 − ρr · �3,
LRρ = (σ0 − ur) · �3,
jr = − (

�2c20r + �3
)
ρrur + (1 + �1ρ0ru0)

σ0c20ru0
u20−c20r

;

σ0 = ρ0ru0−ρrur
ρ0r−ρr

,

�1 = 1
2

√
1−μ2

ρr(p0+μ2pr)
· p0+(1+2μ2)pr

p0+μ2pr
,

�2 = − 1
2

√
1−μ2

ρr(p0+μ2pr)
· (2+μ2)p0+μ2pr

p0+μ2pr
,

�3 = − p0−pr
2ρr

√
1−μ2

ρr(p0+μ2pr)
.

(71)

Proposition 2 (Sonic case). Assume that the t-axis is located inside the rarefaction wave
associated with u − c. Then we have

(
∂u
∂t
)
0 = 1

2

[

d̃� + θ
2γ

γ−1T�S′
� + A′(0)

A(0) u
2
0

]

,
(

∂p
∂t

)

0
= ρ0c0

2

[

d̃� − θ
2γ

γ−1T�S′
� − A′(0)

A(0) u
2
0

]

,
(72)

where d̃� is given in (69), with θ = c0/c�, and (u0, ρ0, c0) is the limiting value of (u, ρ, c)
along the t-axis so that u0 − c0 = 0. Then density change rate is given as in (63).
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The above formulae look complicated, but seem irreplaceable. We can go to [24] for
technical derivation of them.

3.2 Temporal-spatial coupling and thermodynamical effect

Thermodynamics distinguishes compressible fluid flows from incompressible ones, and
the Mach number can be regarded as a parameter of the compressibility. The entropy
dissipation is a necessary condition guaranteeing the stability of numerical schemes. Let’s
consider the compressible Euler equations with uniform cross section (A(x) ≡ constant
in (35)). The entropy inequality says

(ρS)t + (ρuS)x ≥ 0, inD′. (73)

However, it is a well-known open problem whether this inequality is satisfied at dis-
crete level, particularly for high order accurate schemes. There are two origins of discrete
errors: the data projection and the flux approximation. In a general setting of finite vol-
ume framework, given the initial data un(x) ∈ Pk at t = tn, we have to find the solution
un+1(x) at next time level t = tn+1, satisfying

∫ xj+ 1
2

xj− 1
2

ρS (un+1(x)) dx ≥ ∫ xj+ 1
2

xj− 1
2

ρS (un(x)) dx

−�t
[

(ρuS)approxj+ 1
2

− (ρuS)approxj− 1
2

]

+ Tol(�x,�t),

.

(74)

where (ρuS)approxj+ 1
2

is the numerical entropy flux, and Tol(�x,�t) is the entropy produc-

tion that has the maximum tolerance of order three, Tol(�x,�t) = O
(
�t3 + �x3

)
. We

comment on how to achieve this inequality at the discrete level in the following.

(i) The persistence space Pk often consists of piecewise polynomials of degree k.
Given the initial data un(x) ∈ Pk , we solve (35) and obtain the (analytic) entropy
solution u(x, t) for tn < t < tn+1, satisfying

∫ xj+ 1
2

xj− 1
2

ρS (u (x, tn+1)) dx ≥ ∫ xj+ 1
2

xj− 1
2

ρS (un(x)) dx

−
[∫ tn+1

tn ρuS
(
xj+ 1

2
, t
)
dt − ∫ tn+1

tn ρuS
(
xj− 1

2
, t
)
dt
]
.

(75)

(ii) The projection of u(x, t) onto Pk (reconstruction procedure) is required to satisfy
∫ xj+ 1

2

xj− 1
2

ρS (un+1(x)) dx ≥
∫ xj+ 1

2

xj− 1
2

ρS (u (x, tn+1)) dx + O
(
�x3

)
. (76)

This is an extremely difficult step. For scalar conservation laws, there was a nice
discussion on MUSCL-type linear reconstruction [30]. In general, the Jensen
inequality tells that

ρS
(
ūn+1
j

)
≥ 1

�x
∫ xj+ 1

2
xj− 1

2
ρS (x, tn+1) dx,

ūn+1
j = 1

�x
∫ xj+ 1

2
xj− 1

2
u (x, tn+1) dx.

(77)

Hence, there is still some room to make (76) hold, which remains an open problem.
Open problem on data projection: Find an optimal reconstruction strategy so that
(76) holds.
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(iii) Assume that (76) holds for certain data projection. As shown above, we
approximate the interface value in the following way

u(xj+ 1
2
, t) = unj+ 1

2
+
(

∂u
∂t

)n

j+ 1
2

(t − tn) + O((t − tn)2), tn < t < tn+1. (78)

In particular, we make use of the entropy information. It turns out that

(ρuS)approxj+ 1
2

:= (ρuS)(xj+ 1
2
, tn+ 1

2
) = 1

�t

∫ tn+1

tn
ρuS(xj+ 1

2
, t)dt + O(�t2). (79)

Summarizing all together yields (74).

It is observed that the precise calculation of entropy in (53) is a direct way to achieve
(79). Other ways may at most lead to

(ρuS)approxj+ 1
2

:= (ρuS)
(
xj+ 1

2
, tn+ 1

2

)
= 1

�t

∫ tn+1

tn
ρuS(xj+ 1

2
, t)dt + O

(‖u‖2) . (80)

The error of O
(‖u‖2) is not tolerated unless for scalar cases or smooth flows, since this

type of errors violate the entropy inequality in the limit.
It is no doubt that the achievement of (79) is the outcome of the direct use of the entropy

equation in (49), which is actually the Lax-Wendroff procedure, a temporal-spatial
coupling procedure.

3.3 M-D GRP solver and transversal effects

When computing multidimensional (M-D) problems, M-D GRP solver is necessary to
reflect the transversal effect, which is impossible using the exact or approximate normal
Riemann solvers. We restrict to two-dimensional hyperbolic balance laws

ut + f(u)x + g(u)y = h(x, y,u), (81)

where f and g are flux functions. 3-D GRP solver is straightforward. The initial data takes
the form

u0(x, y) =
⎧
⎨

⎩

u−(x, y), x < 0,

u+(x, y), x > 0,
(82)

where u±(x, y) are two polynomials of degree k. The x-direction is the normal and the
y-direction is the transversal. A particular case is

u0(x, y) =
⎧
⎨

⎩

u− + ∇u0,− · x, x < 0,

u+ + ∇u0,+ · x, x > 0.
(83)

The M-D GRP solver can be classified as M-D linear GRP solver, acoustic GRP solver,
nonlinear normal GRP solver with transversal perturbation, and genuinely nonlinear M-D
GRP solver.
(I) M-D linear GRP solver.We consider the linear case

ut + Aux + Buy = 0, (84)

where A and B are constant matrices, and both of them have their respective real eigen-
values and the complete sets of eigenvectors. We first assume that (84) is subject to the
initial data (83). Note that ∇u satisfies the same form of (84),

(∇u)t + A(∇u)x + B(∇u)y = 0, (85)
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but subject to the initial data

∇u0(x, y) =
⎧
⎨

⎩

∇u0,−, x < 0,

∇u0,+, x > 0.
(86)

This boils down to the standard Riemann problem for ∇u. Therefore, the gradient ∇u
has an explicit expression,

∇u(x, y, t) =
L(x,t)∑

�=1
∇v�

0,+r� +
m∑

�=L(x,t)+1
∇v�

0,−r�, (87)

where the notations L(x, t) is the maximum value of � such that x − λ�t > 0, λ� is the
eigenvalue of A and r� is the associated eigenvector, v is so defined that

u =
m∑

�=1
v�r�, v = (

v1, · · · , vm) . (88)

See [31]. In particular, we have

∇u(0, y, t) =
∑

�:λ�<0

∇v�
0,+r� +

∑

�:λ�>0

∇v�
0,−r�. (89)

Then we immediately obtain
(

∂u
∂t
)
0 := limt→0+ ∂u

∂t (0, y, t)

= −A limt→0+ ∂u
∂x (0, y, t) − B limt→0+ ∂u

∂y (0, y, t)

= −(A,B) · ∇u(0, y, 0+).

(90)

As far as the more general initial data (82) is concerned, the solution u consists of piece-
wise polynomials of the same degree as the initial data since (84) is a linear system. Here
we are satisfied with the second order GRP solver and solve (84) at any point (0, y0, 0) to
obtain

(
∂u
∂t

)

0
= −(A,B) · ∇u

(
0, y0, 0+) , (91)

where ∇u
(
0, y0, 0+) are calculated as the same procedure as above.

(II) M-D acoustic GRP solver.
For nonlinear cases (81), if the initial data (82) is continuous but discontinuous in its

derivatives, acoustic waves emanate from the interface x = 0, just as one-dimensional
case. For this case, wemight as well take the initial data (83) and assume that u− = u+ but
‖∇u0,− − ∇u0,+‖ �= 0. Then we linearize (81) around the state u0 = u− = u+ to obtain

θt + f′(u0)θx + g′(u0)θy = h(x, y,u0), θ = u − u0. (92)

Then we can exactly follow the linear case to calculate (∂u/∂t)0.
The acoustic approximation applies for the case ‖u− − u+‖ � 1. We linearize (81)

around the intermediate state u0 resulting from the associated Riemann problem. Then
the linear GRP solver applies for this case.
(III) M-D genuinely nonlinear GRP solver with transversal description.
As ‖u− − u+‖  1, we have to deal with genuinely nonlinear GRP. Thinking of the

initial value problem for (81) subject to the initial data (83), the solution is the envelope
of Riemann solution along x = 0 locally at t = 0. Hence along x = 0, the associated
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Riemann solution is known. For example, at two points (0, y1, 0) and (0, y2, 0), we solve
the Riemann problem locally for the normal conservation law, respectively,

ut + f(u)x = 0, (93)

and obtain the local intermediate values u(0, y1, 0+) and u(0, y2, 0+). Then for any point
(0, y, 0), y1 < y < y2, we can approximate ∂u

∂y (0, y, 0
+). Particularly, we approximate

uy
(
0, y0, 0+) = u

(
0, y1, 0+) − u

(
0, y2, 0+)

y1 − y2
+ O

(
(y1 − y2)2

)
. (94)

Then we regard the transversal term g(u)y and h(x, y,u) as a perturbation locally, and
solve the following problem,

ut + f(u)x = −g(u)y + h(x, y,u) =: d(x, y,u,uy). (95)

This boils down to the one-dimensional planar problem locally, for which the GRP
solver was proposed in [24]. Detailed and complete M-D GRP solver is proposed in [32].

3.4 Transversal effects for genuinely M-D schemes

For multidimensional (M-D) problems, the balance law can be always written in the form,
d
dt

∫

�

u(x, t)dx = −
∫

∂�

f(u) · ndL, (96)

where � is the control volume, ∂� is the boundary and n is the outer unit normal. We
ignore the external force just for the clarity of presentation.
Thanks to the Galilean invariance, we always assume that (1, 0) (the direction x-axis) is

the normal direction, and (0, 1) (the direction of y-axis) is the transversal direction. The
standard Riemann solver just reflects the normal effect. In contrast, the LW procedure
can describe the transversal effect precisely. Consider a linear advection problem

ut + aux + buy = 0. (97)

Then we use the temporal-spatial coupling property to obtain
(

∂u
∂t

)

∂�

= −a
(

∂u
∂x

)

∂�

− b
(

∂u
∂y

)

∂�

, (98)

where ( ∂u
∂x )∂� and ( ∂u

∂y )∂� can be obtained by solving the associated Riemann prob-
lem. Also as remarked in Section 2 for the linear wave system, the transversal effect is
substantial even though the convergence rate is formally the same.

4 The kinetic LW flow solver
The fluid dynamics can be described in various viewpoints, such as the kinetic descrip-
tion. The governing equation is the Boltzmann-type equation

ft + ξ · ∇xf = 1
ε
B(f , f ), (99)

where f = f (t, x, ξ) is the density distribution, ξ is the velocity of molecules (particle),
and B(f , f ) is the collision term, ε is the Knusner number. Ideally, for a given initial dis-
tribution, we solve (99) to obtain the solution f

(
t, xj+ 1

2
, ξ
)
and define the numerical flux

fj+ 1
2
(tn; tn+1) = 1

�t

∫ tn+1

tn

∫

�3
ξψ f (t, xj+ 1

2
, ξ)dξdt, (100)
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where ψ = (1, ξ , ξ2)� is the invariant, and the average of macroscopic variables is

un+1
j = 1

�x

∫ xj+ 1
2

xj− 1
2

∫

�3
ψ f (tn+1, x, ξ)dξdx. (101)

In general, it is difficult to solve the Eq. 99 analytically. To understand the relation of
macroscopic equations (Euler and Navier-Stokes equations) and the kinetic equation, we
first take the so-called railroad method in [33] as an example to illustrate how to devise
kinetic schemes.

4.1 Railroadmethod

Consider the linear advection equation

ut + aux = 0, u(x, 0) = u0(x). (102)

Introduce a distribution function f (t, x, ξ) and define the macroscopic variable u(x, t) as
a moment of f,

u(x, t) =
∫ ∞

−∞
f (t, x, ξ)dξ . (103)

If we choose f to take the form,

f (t, x, ξ) = u(x, t)√
π

exp
[−(ξ − a)2

]
, (104)

then f (t, x, ξ) satisfies

ft + ξ fx = Q[ f ] := (ξ − a)√
π

exp
[−(ξ − a)2

] ∂u
∂x

, (105)

subject to initial data

f (0, x, ξ) = u0(x)√
π

exp
[−(ξ − a)2

]
. (106)

The initial value problem (102) and the problem (103)-(106) are equivalent: If one
solution is known, then the other is defined. We write the solution of (105)-(106) as

f (t, x, ξ) = f (0, x − �tξ , ξ) +
∫ �t

0
Q[ f ] (τ , x − (�t − τ)ξ), τ , ξ)dτ . (107)

Then the solution u(x,�t) is given as

u(x, t) =
∫ ∞

−∞
f (0, x−�tξ , ξ)dξ +

∫ ∞

−∞

∫ �t

0
Q[ f ] (τ , x−(�t−τ)ξ), τ , ξ)dτdξ . (108)

Note that the LW approach for (107) yields

f (t, x, ξ) = f (0, x, ξ) + �tξ
∂

∂x
f (0, x, ξ) + �tQ[ f ] (0, x, ξ) + O

(
�t2

)
. (109)

Therefore we have

u(x, t) =
∫ ∞

−∞
(f (0, x, ξ) + �tξ

∂

∂x
f (0, x, ξ) + �tQ[ f ] (0, x, ξ))dξ + O

(
�t2

)
, (110)

which yields a second order approximation to the exact solution u(x, t).
The numerical solution is

uj(�t) = uj(0) − �t
�x

[
Fj+ 1

2
− Fj− 1

2

]
, (111)
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where

uj(t) = 1
�x

∫ xj+ 1
2

xj− 1
2

∫∞
−∞ f (t, x, ξ)dξdx,

Fj+ 1
2

= ∫ �t
0

∫∞
−∞ ξ f (t, xj+ 1

2
, ξ)dξdt.

We assume the initial data for (102) is piecewise smooth with possible discontinuity at
x = xj+ 1

2
. Correspondingly, the initial data (106) for (105) consists of two parts. It turns

out that the numerical flux Fj+ 1
2
in (111) becomes

Fj+ 1
2

= F+
j+ 1

2
+ F−

j+ 1
2
, (112)

where F±
j+ 1

2
consist of three parts, respectively,

F±
j+ 1

2
= ∫ �t

0
∫
±ξ>0 ξ f

(
τ , xj+ 1

2
, ξ
)
dξdτ = �tG±

j+ 1
2

− �t2
2

(

H±
j+ 1

2
− K±

j+ 1
2

)

,

G±
j+ 1

2
= ∫

±ξ>0 ξ f
(
0, xj+ 1

2
∓ 0, ξ

)
dξ ,

H±
j+ 1

2
= ∫

±ξ>0 ξ2 ∂
∂x f

(
0, xj+ 1

2
∓ 0, ξ

)
dξ ,

K±
j+ 1

2
= ∫

±ξ>0 ξQ[ f ]
(
0, xj+ 1

2
∓ 0, ξ

)
dξ .

(113)

As the solution is smooth, the scheme (111) becomes the LW approach immediately. See
[33] for details.

4.2 The LW type solver for gas kinetic schemes

Let’s now work on a simplified model, the Bhatnagar-Gross-Krook (BGK) model [34],

ft + ξ fx = g − f
ε

, (114)

where ε is the collision time, and g is the equilibrium state, approached by f as ε goes to
zero,

g = ρ

m

( m
2πkT

) 3
2 e−(m/2kT)ξ2 , (115)

where m and k are constant, ρ and T are density and temperature, respectively. Indeed,
all macroscopic variables ρ, u and E are defined as

(ρ,u,E)(x, t) =
∫

�3

(
1, ξ , ξ2

)
f (t, x, ξ)dξ . (116)

The validity of BGK-model is clearly explained in [34].
Starting with (114), Xu and his collaborators successfully developed gas kinetic scheme

(GKS) solver [35–39]. A key ingredient is that the explicit solution formula for (114) is
used for the numerical flux approximation,

f (t, xj+ 1
2
, ξ) = 1

ε

∫ �t

0
g(t′, x′, ξ)e−(t−t′)/εdt′ + e−t/ε f0

(
xj+ 1

2
− ξ t, ξ

)
, (117)

subject to the initial data f0(x, ξ), where x′ = xj+ 1
2

− ξ(t − t′). Here just the case of
one-dimension is described. The full information contained in (117) provides “exact”
expression of flux across the interface x = xj+ 1

2
, which is of course consistent with the

LW flow solver. We can go to [38] for comprehensive description of the GKS solver.
For the gas-kinetic scheme, the gas evolution is a relaxation process from kinetic to
hydrodynamic scale through the exponential function, and the corresponding flux is a
complicated function of time.
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In order to obtain the time derivatives of the flux function at tn and t∗ = tn +�t/2 with
the correct physics, the flux function should be approximated as a linear function of time
within a time interval. Let’s first introduce the following notation,

Fi+1/2(Wn, δ) =
∫ tn+δ

tn
Fi+1/2(Wn, t)dt =

∫ tn+δ

tn

∫

ξ f , tmxi+1/2, ξ)dξdt.

In the time interval [ tn, tn + �t], the flux is expanded as the following linear form

Fi+1/2(Wn, t) = Fn
i+1/2 + ∂tFn

j+1/2(t − tn). (118)

The coefficients Fn
j+1/2 and ∂tFn

j+1/2 can be determined as follows,

Fi+1/2(Wn, tn)�t + 1
2
∂tFi+1/2(Wn, tn)�t2 = Fi+1/2(Wn,�t),

1
2
Fi+1/2(Wn, tn)�t + 1

8
∂tFi+1/2(Wn, tn)�t2 = Fi+1/2(Wn,�t/2).

By solving the linear system, we have

Fi+1/2(Wn, tn) = (4Fi+1/2(Wn,�t/2) − Fi+1/2(Wn,�t))/�t,

∂tFi+1/2(Wn, tn) = 4(Fi+1/2(Wn,�t) − 2Fi+1/2(Wn,�t/2))/�t2. (119)

Similarly, Fi+1/2(W ∗, t∗), ∂tFi+1/2(W ∗, t∗) for the intermediate state can be constructed.
For the two-dimensional computation, the corresponding fluxes in the y-direction can be
obtained as well. Readers are referred to [18].
There are huge numbers of references about kinetic solvers, which are beyond the scope

of the current paper. We stop to discuss further.

5 Compact reconstruction using the Hermite interpolation
The compactness is a key factor in the design of high order schemes, determining the
dissipation of the schemes near discontinuities and the numerical treatment of boundary
conditions. With the increase of time-stepping, the width of computational stencils is
inevitably expanded for multi-stage methods. Hence it is very important to construct the
data in a compact way.
UnlikeWENO using the Lagrangian interpolation, we adopt the Hermite-type interpo-

lation using both the average values of physical (conservative or primitive) variables, and
the approximate gradient of the solution. Going back to the original GRP, we construct
the data over the computation cell

(
xj− 1

2
, xj+ 1

2

)
as

un(x) = ūnj + σ n
j (x − xj), x ∈

(
xj− 1

2
, xj+ 1

2

)
, (120)

where the gradient is chosen through the procedure,

σ n
j = 1

�x
minmod

(

α
(
unj − unj−1

)
,un,−j+ 1

2
− un,−j− 1

2
,α

(
unj+1 − unj

))

, α ∈[ 0, 2). (121)

Usually, α is chosen to be as large as possible. As α ∈ (1, 2), un(x) behaves as sawtooth
and implies that σ n

j take mostly

σ n
j = 1

�x

(

un,−j+ 1
2

− un,−j− 1
2

)

= 1
�x

∫ xj+ 1
2

xj− 1
2

∂u
∂x

(x, tn − 0)dx ≈
(

∂u
∂x

)n

j
. (122)
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This is a natural approximation to the gradient. The boundary value un,−j+ 1
2
, as a strong

solution along the cell interface x = xj+ 1
2
, is calculated from the history,

un,−j+ 1
2

= un−1
j+ 1

2
+ �t

(
∂u
∂t

)n−1

j+ 1
2

, (123)

where un−1
j+ 1

2
and

(
∂u
∂t
)n−1
j+ 1

2
are obtained already from the GRP solver, and no extra efforts

need making.
Some remarks on (121) are made here, and they can be applied for later high order data

interpolations.

(i) Compared to the classical limiter algorithm, (121) takes (122) in smooth regions,
and limit the gradient near discontinuities in order to suppress possible oscillations.
This sawtooth-type reconstruction can produce sharper profiles of discontinuities.

(ii) The piecewise linear data (120) is the embryonic form of Hermite polynomials for
high order schemes. Since all values are already given using the GRP solver, no
extra effort is made on the calculation of the gradient, unlike in DG methods or
other Hermite interpolation [40]. If one might argue the freedom of solution
elements, he could regard the current treatment as the Lagrangian interpolation
using five points values.

(iii) For the data (120), five points values are used for the data reconstruction.
Essentially, these values are defined in three computational cells, rather than in five
cell, so that computational stencils are almost half saved. This is one of key factors
achieving compactness.

Now we extend this to the two-stage fourth order method, by reviewing the result in
[41]. Given the average ūj and the derivative �uj of the function u(x) over the cell Ij,

ūj = 1
h

∫

Ij
u(x, t)dx, �uj = 1

h

∫

Ij

∂u
∂x

(x, t)dx, (124)

we want to construct a polynomial p(x) such that uj+ 1
2 ,− is its left limiting values at x =

xj+ 1
2
. Choose three stencils

S(−1) = Ij−1 ∪ Ij, S(0) = Ij−1 ∪ Ij ∪ Ij+1, S(1) = Ij ∪ Ij+1. (125)

On stencil S(0), ūj−1, ūj and ūj+1 are used to construct a polynomial p(0) for the
interpolation. Hence at xj+ 1

2
, we have

u(0)
j+ 1

2 ,−
:= p(0)

(
xj+ 1

2

)
= −1

6
ūj−1 + 5

6
ūj + 1

3
ūj+1. (126)

Similarly, p(−1) and p(1) are constructed by using ūj, ūj−1, �uj−1 on S(−1) and by using ūj,
ūj+1, �uj+1 on S(1), respectively,

u(−1)
j+ 1

2 ,−
:= p(−1)

(
xj+ 1

2

)
= − 7

6 ūj−1 + 13
6 ūj − 2h

3 �uj−1,

u(1)
j+ 1

2 ,−
:= p(1)

(
xj+ 1

2

)
= 1

6 ūj + 5
6 ūj+1 − h

3�uj+1.
(127)

If the solution is smooth on the large stencil I−1 ∪ I0 ∪ I1, we have

ũj+ 1
2 ,− = 1

120
(−23ūj−1 + 76ūj + 67ūj+1 − 9h�uj−1 − 21h�uj+1

)
. (128)



Li Advances in Aerodynamics             (2019) 1:3 Page 26 of 36

Thus the linear weights of the three stencils are

γ (−1) = 9
80

, γ (0) = 29
80

, γ (1) = 21
40

, (129)

which ensure

ũj+ 1
2 ,− =

1∑

r=−1
γ (r)u(r)

j+ 1
2 ,−

.

The smoothness indicators are defined by

β(r) =
2∑

l=1

∫

Ij
h2l−1

(
dl

dxl
p(r)(x)

)2

dx, r = −1, 0, 1, (130)

in the same way as in the WENO reconstructions where p(r)(x) is the interpolation
polynomial on stencil S(r). Their explicit expressions are

β(−1) = (−2ūj−1 + 2ūj − h�uj−1
)2 + 13

3
(−ūj−1 + ūj − h�uj−1

)2 ,

β(0) = 1
4
(−ūj−1 + ūj+1

)2 + 13
12
(−ūj−1 + 2ūj − ūj+1

)2 ,

β(1) = (
2ūj+1 − 2ūj − h�uj+1

)2 + 13
3
(
ūj+1 − ūj − h�uj+1

)2 .

(131)

Then we compute the nonlinear weights in the same way as the WENO-Z method does

ωz
r = αz

r∑
l αl

, αz
r = γ (r)

(

1 + τ z

β(r) + ε

)

, r = −1, 0, 1, (132)

where τ z = |β(1) −β(−1)| and ε is a small parameter in order to avoid a zero denominator.
Finally we have

uj+ 1
2 ,− =

1∑

r=−1
ωz
ru

(r)
j+ 1

2 ,−
. (133)

The right interface value uj− 1
2 ,+ can be reconstructed in a similar way by mirroring the

above procedure with respect to xj = 1
2

(
xj− 1

2
+ xj+ 1

2

)
.

Since the GRP solver has to use the spatial derivative (∂u/∂x)j+ 1
2 ,±, we approximate

them using the interpolation,

(∂u
∂x

)

j+ 1
2 ,±

:= 1
12h

(
ūj−1 − 15ūj + 15ūj+1 − ūj+2

)
. (134)

It is observed in this interpolation does not need the WENO-type stencil selection
procedure.
We define this procedure as HWENO , terming a Hermite type interpolation using

the WENO interpolation strategy. GRP4-HWENO5 refers to the two-stage fourth order
scheme based on this Hermite type interpolation using the GRP solver.
For two-dimensional cases, we can develop the similar approach over rectangular

meshes. See [41, 42]. As far as unstructured meshes are concerned, there still remains
space to explore.
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Here we give an example to demonstrate how important the compactness is.We provide
an example of two-dimensional Riemann problem taken from [43] involving the interac-
tions of vortex sheets with rarefaction waves. The computation is implemented over the
domain [ 0, 1]×[ 0, 1].

(ρ,u, v, p)(x, y, 0) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1, 0.1, 0.1, 1), 0.5 < x < 1, 0.5 < y < 1,
(0.5197,−0.6259, 0.1, 0.4), 0 < x < 0.5, 0.5 < y < 1,
(0.8, 0.1, 0.1, 0.4), 0 < x < 0.5, 0 < y < 0.5,
(0.5197, 0.1,−0.6259, 0.4), 0.5 < x < 1, 0 < y < 0.5.

(135)

The output time is 0.3. The contours of the density and their local enlargements are shown
in Fig. 4. We can see that the scheme with the Hermite type reconstruction can resolve
more small structures along the vortex sheet.

6 High order boundary conditions
Approximation to boundary conditions may be one of the most challenging issues in
CFD. On one hand, mathematical modelings of fluid flows near physical boundaries are
diverse. On the other hand, highly nonlinear behaviors and complex boundaries make the
approximation notoriously involved.
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Fig. 4 The density contours of three 2-D Riemann problem in Example 5 computed with the schemes
GRP4-WENO5 (upper) and GRP4-HWENO5 (lower), respectively. 700 × 700 cells are used
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We briefly illustrate their idea in the finite difference framework by considering the
initial boundary value problem (IBVP) for a scalar conservation law

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u
∂t + ∂ f (u)

∂x = 0, x ∈ (0, 1), t > 0,

u(x, 0) = u0(x), x ∈ (0, 1),

u(0, t) = g(t), t > 0.

(136)

Assume that f ′(u) > 0 for all u ∈ � so that x = 0 is an inflow boundary and
x = 1 is an outflow boundary. We equally distribute M + 1 points {xj = (j + 1/2)h :
j = 0, 1, . . . ,M} in the computational domain (0, 1), as shown in Fig. 5. We use uj to
denote the value of u at x = xj and suppress the index for the time levels. Obviously
at the inflow boundary, the solution value at the ghost point x−1 is required in order
to perform a second-order finite difference at x0. For this purpose, a polynomial is con-
structed in the region around the inflow boundary by using point-wise values u−1, u0
and u1,

L(x) = g−1(x)u−1 + g0(x)u0 + g1(x)u1, (137)

from which we want to find the value u−1. The Lagrangian interpolation tells that

g−1(x) = (x−x0)(x−x1)
2h2 ,

g0(x) = (x−x−1)(x−x1)
−h2 ,

g1(x) = (x−x−1)(x−x0)
2h2 .

(138)

Then u−1 can be obtained by solving the linear equation u(0, t) = L(0) where u(0, t) =
g(t). At the outflow boundary x = 1, we simply use the extrapolation

uM+1 = 2uM − uM−1 (139)

to obtain the value uM+1 since the signal goes out of the computational domain at this
end.
The extension to high order is highly nontrivial. Let’s review the approach developed

in [44]. The same as other multi-stage methods (e.g. in [45]), the current two-stage
fourth order method needs careful treatment at the intermediate stage for the approxi-
mation in order to preserve the accuracy. There are two key points: The construction at
ghosts points and the approximation of boundary conditions. The inverse LW approach is
applied here [46], but the current treatment is much simpler and easier to be implemented
since no higher derivatives need calculating.

Fig. 5 The computational domain (0, 1). Set x0 = h/2 and xM = 1 − h/2. Then x−1 = −h/2 and
xM+1 = 1 + h/2 are ghost points
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6.1 Ghost values

We still consider IBVP (136). Then the values ū−1, ū−2, �u−1 and �u−2, defined over
I−1 = (−h, 0) and I−2 = (−2h,−h), ghost cells, are needed in the reconstruction proce-
dure for the values indexed by j = 0 and j = 1. To obtain the values mentioned above, a
cubic polynomial,

p(x) = α3x3 + α2x2 + α1x + α0, (140)

is constructed over I−2 ∪ I−1 ∪ I0 ∪ I1 = (−2h, 2h) to interpolate the solution u(x, tn) such
that

1
h

∫

Ii
p(x)dx = ūi, i = −2,−1, 0, 1. (141)

With the constraints (141) into (140), we determine the coefficients α0, α1, α2 and α3 as

α3 = ū1−3ū0+3ū−1−ū−2
6h3 , α2 = ū1−ū0−ū−1+ū−2

4h2 ,

α1 = −ū1+15ū0−15ū−1+ū−2
12h , α0 = −ū1+7ū0+7ū−1−ū−2

12 ,
(142)

in which ū−1 and ū−2 are yet to be determined and they are obtained by evaluating p(0)
and p′(0) at the boundary x = 0,

p(0) = 1
12 (−ū1 + 7ū0 + 7ū−1 − ū−2) = g(t) + O

(
h4
)
,

p′(0) = 1
12h (−ū1 + 15ū0 − 15ū−1 + ū−2) = −f ′(g(t))−1 g′(t) + O

(
h3
)
.

(143)

Solving (143) in terms of ū−1 and ū−2 yields (by ignoring high order terms)

ū−1 = 1
4
(−6g + 6 h f ′(g)−1 g′ + 11ū0 − ū1

)
,

ū−2 = 1
4
(−90g + 42 h f ′(g)−1 g′ + 105ū0 − 11ū1

)
.

(144)

Substituting (144) into (142), in turn, gives us the explicit expressions of αi, i = 0, . . . , 3,
and then the expression of p(x). Therefore we have (by ignoring high order terms)

�u−1 = p(0)−p(−h)
h

= 1
8h
(
66g − 34 h f ′(g)−1 g′ − 73ū0 + 7ū1

)
,

�u−2 = p(−h)−p(−2h)
h

= 1
8h
(
294g − 118 h f ′(g)−1 g′ − 331ū0 + 37ū1

)
.

(145)

Thus (144) and (145) together provide the values in the ghost cells I−1 and I−2. Not that
in (143) the inverse LW approach is used,

As there are discontinuities close to the inflow boundary, a WENO-type stencil select-
ing procedure can be applied. Assume that there is a discontinuity in either I0 or I1, we
shorten the stencil cell by cell. Denote the stencils by

S(2) = {I−2, I−1, I0, I1}, S(1) = {I−2, I−1, I0}, S(0) = {I−2, I−1}. (146)

Denote by p(r)(x) the interpolation polynomial on S(r), r = 0, 1, 2, just as the polynomial
p(x) constructed before. Then define

ū(r)
−1 = 1

h
∫
I−1

p(r)(x)dx, ū(r)
−2 = 1

h
∫
I−2

p(r)(x)dx,

�u(r)
−1 = 1

h
(
p(r)(0) − p(r)(−h)

)
, �u(r)

−2 = 1
h
(
p(r)(−h) − p(r)(−2h)

)
.

(147)

The expressions of ū(r)
−1, ū

(r)
−2, �u(r)

−1 and �u(r)
−2 for r = 0, 1, 2 will be listed in 9.1.
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The smoothness indicators are defined in the same way as for the classical WENO
interpolation, and the values are given

ū−1 = ∑2
r=0 ω(r)ū(r)

−1, ū−2 = ∑2
r=0 ω(r)ū(r)

−2,
�u−1 = ∑2

r=0 ω(r)�u(r)
−1, �u−2 = ∑2

r=0 ω(r)�u(r)
−2,

(148)

where the linear weights of each stencil are
α(r) = d(r)

(ε+β(r))2
, ω(r) = α(r)

∑2
l=0 α(l)

d(0) = h2, d(1) = h, d(2) = 1 − d(0) − d(1).
(149)

6.2 Inflow boundary condition treatment at intermediate stages

The same as in other multi-stage temporal discretization [47, 48], the direct use of exact
boundary conditions at intermediate stages in the process of multi-stage approaches will
cause the lose of the numerical accuracy. In order to offset such a defect, our strategy
is made as follows. We first focus on the leftmost control volume I0 and write out the
solution advancing formula,

ūn+1
0 = ūn0 − k

h

[

f 4th1
2

− f 4th− 1
2

]

= ūn0 − 1
h

{
k
[

f
(

un1
2

)

− f
(

un− 1
2

)]

+ k2
6

[

f ′
(

un1
2

)
(

∂u
∂t
)n
1
2

− f ′
(

un− 1
2

)
(

∂u
∂t
)n
− 1

2

]

+ k2
3

[

f ′
(

un+ 1
2

1
2

)
(

∂u
∂t
)n+ 1

2
1
2

− f ′
(

un+ 1
2

− 1
2

)
(

∂u
∂t
)n+ 1

2
− 1

2

]}

.

(150)

Using the governing Eq. 136 to replace the temporal derivatives by the corresponding
spatial ones, we obtain

ūn+1
0 = ūn0 − 1

h

{
k
[

f
(

un1
2

)

− f
(

un− 1
2

)]

− k2
6

[(

f ′
(

un1
2

))2 (
∂u
∂x
)n
1
2

−
(

f ′
(

un− 1
2

))2 (
∂u
∂x
)n
− 1

2

]

− k2
3

[(

f ′
(

un+ 1
2

1
2

))2 (
∂u
∂x
)n+ 1

2
1
2

−
(

f ′
(

un+ 1
2

− 1
2

))2 (
∂u
∂x
)n+ 1

2
− 1

2

]
}
.

(151)

The difficulty results from the presence of (∂u/∂x)n+ 1
2

1
2

and (∂u/∂x)n+ 1
2

− 1
2

evaluated at the

intermediate stage t = tn+ 1
2 . In order to restore the fourth-order accuracy of the two-

stage fourth-order scheme, we use
(

∂u
∂x
)n+ 1

2
− 1

2
= −

(
f ′
(
g
(
tn+ 1

2
)))−1

(g′)n+ 1
2 ,

(
∂u
∂x
)n+ 1

2
1
2

= 1
48h

[

−49ūn+ 1
2

0 + 59ūn+ 1
2

1 − 4ūn+ 1
2

2

−6gn+ 1
2 + 6h

(
f ′
(
g
(
tn+ 1

2
)))−1

(g′)n+ 1
2

]

,

(152)

where the exact boundary values g
(
tn+ 1

2
)
and g′

(
tn+ 1

2
)
are replaced by

gn+ 1
2 = g

(
tn+ 1

2
)

− k3
48g

′′′
(
tn+ 1

2
)
,

(g′)n+ 1
2 = g′

(
tn+ 1

2
)
.

(153)

The detailed analysis is given in [44].
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6.3 Outflow boundary condition

We set xM+ 1
2

= 1 as an outflow boundary, at which no boundary condition is pre-
scribed theoretically. Numerically, we have to set required values ūM+1, ūM+2, �uM+1
and �uM+2 in ghost cells. Since the signal propagates out of the computational domain
through the boundary x = 1, the extrapolation can be used to construct the data in the
ghost cells IM+1 and IM+2. A cubic polynomial is constructed in order to achieve the
fourth-order accuracy,

q(x) = ūM−3ūM−1+3ūM−2−ūM−3
6h3 (x − 1)3

+ 5ūM−13ūM−1+11ūM−2−3ūM−3
4h2 (x − 1)2

+ 35ūM−69ūM−1+45ūM−2−11ūM−3
12h (x − 1)

+ 25ūM−23ūM−1+13ūM−2−3ūM−3
12 .

(154)

This gives the values

ūM+1 = 4ūM − 6ūM−1 + 4ūM−2 − ūM−3,

ūM+2 = 10ūM − 20ūM−1 + 15ūM−2 − 4ūM−3,

�uM+1 = 26ūM−57ūM−1+42ūM−2−11ūM−3
6 ,

�uM+2 = 47ūM−114ūM−1+93ūM−2−26ūM−3
6 .

(155)

If there is a discontinuity in either IM−3, IM−2, IM−1 or IM, aWENO-type stencil selection
can be applied.

6.4 Hyperbolic systems

At moment, the boundary treatment for systems of hyperbolic balance laws is basically
achieved through the diagonalization process. Then we distinguish various cases such
as the solid boundary condition, inflow and outflow boundary conditions for practical
applications. Details can be found in [44].

7 Computational performance
In our series of papers, we have demonstrated the performance of current temporal-
spatially coupled algorithms throughmany challenging benchmark problems, particularly
in [49] using the GKS solver. Here I would like to give some remarks in terms of
computational efficiency, robustness and fidelity.

7.1 Computational efficiency

Computational efficiency is always an important issue for practical engineering problems.
We have tested and compared the efficiency with the popular WENO algorithm in [18]
and with DG in [19].
Specifically, in [18] we evaluate the computational costs of theWENO-type reconstruc-

tion and the flux evaluation quantitatively. The time for each reconstruction is denoted
by TR, the time for second-order gas-kinetic solver is T2nd, and the time for third-order
flux solver is T3rd. According to the data provided in ([18], Table 1, Page 203) we can esti-
mate the time used for the computations of flux and reconstruction with the following
relations,
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TR + 2T2nd = 0.84287s,

TR + 2T3rd = 1.38178s,

2TR + 12T2nd = 2.20566s,

where the estimation is based on the characteristic variable reconstruction and each flux
is shared by two cells. Thus, the time for reconstruction is TR = 0.71289s, the time for
second-order gas-kinetic flux solver is T2nd = 0.06499s and the time for third-order gas-
kinetic flux solver is T3rd = 0.33445s. For classical fourth-order Runge-Kutta schemes,
the computational time for four spatial reconstruction alone will become much higher
than the fourth-order gas-kinetic scheme for the update of each cell averaged values

4TR = 2.85156s > 2TR + 12T2nd = 2.20566s.

Similar estimation can be done for the conservative variables reconstruction. Even
without counting on the cost of the flux evaluation in the traditional fourth-order Runge-
Kutta method, such as those commonly used with the Lax-Friedrichs flux, the current
fourth-order time stepping method is still more efficient than the classical methods.
The efficiency is mainly attributed to the half of reconstruction steps compared to that

for the same order of other line methods. This is further verified in the framework of DG
methods [19]. In Table 2 and Fig. 6 through simulating shock-vortex interaction problem,
demonstrating that nearly 55% CPU time can be saved using the GRP-DG(s2p3) method
compared to the same order SSP RKDG(s5p3) method. This result meets the expectation
well as compared to the RKDG(s5p3) method which needs five stages of evaluating DoFs
and performing reconstruction to achieve fourth order, while the GRP-DG(s2p3) method
only takes two stages to provide totally comparable results.

7.2 Robustness

The robustness is always an important indicator for a practical numerical method. In the
framework of multistage multi-derivative algorithm, the strong stability preserving (SSP)
property was taken over to show the stability [9]. However, SSP seems not work when the
Lax-Wendorff type flow solvers are taken as the building block. Therefore new stability
framework is worth exploring in the future.
Nevertheless, in practice, the current two-stage fourth order accurate algorithm has the

same stability as the second order version: the Courant number is taken above 0.5 except
extreme cases such as the large density ration problem. Empirically, the current “2 � 2”
algorithm is more robust than other multi-stage methods.

7.3 Fidelity

In the community of CFD, the fidelity is termed for a numerical simulation of very com-
plex problems using a specific algorithm. Since there is no reliable mathematical theory
in general supporting the current CFD simulation, the verification of high fidelity appears
very valuable. We pursue such studies in the whole process of the current algorithm.

Table 2 Comparison of CPU time(s) between RKDG and GRP-DG methods for shock vortex
interaction problem

Methods 50 × 25 100 × 50 200 × 100 400 × 200

GRP-DG(s2p3) 39.3 301.6 2339.4 18443.4

RKDG(s5p3) 81.2 640.7 5109.3 40999.6
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Fig. 6 Comparison of CPU time(s) between RKDG(s5p3) method and GRP-DG(s2p3) method for the shock
vortex interaction problem

For example, we resolve the associated GRP analytically and use the GRP solution for
Hermite-type data reconstruction. In [16] we elaborate the so-called large density ratio
problem [50] using the GRP solver. When the current “2 � 2” algorithm is adopted, quite
few grids are needed to obtain satisfactory results, as shown in Fig. 7.
Also readers are recommended to test the benchmark problems in [49], for which all

simulations are made in the “2 � 2′′ framework using the GKS solver.

8 Conclusion with prospective discussions
It is natural to require the temporal-spatial coupling of a numerical method when simu-
lating compressible fluid flows, for which the GRP solver and the GKS solver are reviewed
briefly as the representatives of Lax-Wendroff type flow solvers. The direct embed-
ding into any numerical frameworks, such as the finite volume/DG framework, already
results in favorable second order numerical schemes. Interested readers can refer to
papers by Jiequan Li and his collaborators for GRP methods (www.ams.org/mathscinet,
scholar.google.com or researchgate.net).
As to the “2 � 2” algorithm itself, it is just at the beginning stage, and many issues are

awaiting for our study. Below are some immediate doable problems.

P1 What is a good framework for stability analysis?
P2 It is valuable to compare and develop multi-stage two-derivative algorithms with

arbitrary order of accuracy.
P3 Develop implicit “2 � 2” algorithm with various applications such as detonation

simulation.
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Fig. 7 The comparison of the density profile for the large pressure ratio problem in Example 6. The schemes
are GRP4-HWENO5 (squares) and RK4-WENO5 (dots) withm cells.The solid lines are the exact solution

P4 Apply this algorithm for the simulation of turbulence flows and other engineering
problems.

You are welcome to join this new branch of high order numerical methods for CFD.

9 The interpolation results in subsection 5
This appendix is dedicated to list the interpolation results in Section 5. Recall that we
assume x = 0 and x = 1 are the inflow and outflow boundaries for the IBVP (136) of the
one-dimensional scalar conservation laws, respectively. The stencils are denoted in (146).

9.1 Cell averages and cell differences

The reconstructed average of u in I−1 and I−2 on those stencils are:

ū(2)
−1 = 1

4
(−6g + 6 h f ′(g)−1 g′ + 11ū0 − ū1

)
,

ū(1)
−1 = h f ′(g)−1 g′ + ū0,

ū(0)
−1 = g + 1

2 h f ′(g)−1 g′,

ū(2)
−2 = 1

4
(−90g + 42 h f ′(g)−1 g′ + 105ū0 − 11ū1

)
,

ū(1)
−2 = −6gh + 5 f ′(g)−1 g′ + 7ū0,

ū(0)
−2 = g + 3

2 h f ′(g)−1 g′.

(156)

The reconstructed x-difference of u in I−1 and I−2 on those stencils are:
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�u(2)
−1 = 1

8h
(
66g − 34 h f ′(g)−1 g′ − 73ū0 + 7ū1

)
,

�u(1)
−1 = 1

2h
(
6g − 5 h f ′(g)−1 g′ − 6ū0

)
,

�u(0)
−1 = −f ′(g)−1 g′,

�u(2)
−2 = 1

8h
(
294g − 118 h f ′(g)−1 g′ − 331ū0 + 37ū1

)
,

�u(1)
−2 = 1

2h
(
18g − 11 h f ′(g)−1 g′ − 18ū0

)
,

�u(0)
−2 = −f ′(g)−1 g′.

(157)

9.2 Smoothness indicators

The smoothness indicators on these stencils are listed as follows,

β(2) = 1
80

[
66516g2 + 9444(hf ′(g)−1g′)2 − 56348f ′(g)−1g′hū0

+85929ū20 + 6644f ′(g)−1g′hū1 − 20694ū0ū1 + 1281ū21

+12g(4142f ′(g)−1g′h − 12597ū0 + 1511ū1)
]
,

β(1) = 48g2 + 54ghf ′(g)−1g′ + 16(hf ′(g)−1g′)2

−96gū0 + 48ū20 − 54hf ′(g)−1g′ū0,

β(0) = (hf ′(g)−1g′)2.

(158)
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