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Abstract

The accuracy of gradient reconstruction methods on unstructured meshes is
analyzed both mathematically and numerically. Mathematical derivations reveal that,
for gradient reconstruction based on the Green-Gauss theorem (the GG methods), if
the summation of first-and-lower-order terms does not counterbalance in the
discretized integral process, which rarely occurs, second-order accurate
approximation of face midpoint value is necessary to produce at least first-order
accurate gradient. However, gradient reconstruction based on the least-squares
approach (the LSQ methods) is at least first-order on arbitrary unstructured grids.
Verifications are performed on typical isotropic grid stencils by analyzing the
relationship between the discretization error of gradient reconstruction and the
discretization error of the face midpoint value approximation of a given analytic
function. Meanwhile, the numerical accuracy of gradient reconstruction methods is
examined with grid convergence study on typical isotropic grids. Results verify the
phenomenon of accuracy degradation for the GG methods when the face midpoint
value condition is not satisfied. The LSQ methods are proved to be at least first-order
on all tested isotropic grids. To study gradient accuracy effects on inviscid flow
simulation, solution errors are quantified using the Method of Manufactured
Solutions (MMS) which was validated before adoption by comparing with an exact
solution case, i.e., the 2-dimensional (2D) inviscid isentropic vortex. Numerical results
demonstrate that the order of accuracy (OOA) of gradient reconstruction is crucial in
determining the OOA of numerical solutions. Solution accuracy deteriorates seriously
if gradient reconstruction does not reach first-order.

Keywords: Finite volume discretization, Unstructured grids, Gradient reconstruction,
Accuracy analysis, The method of manufactured solutions, Grid convergence study

1 Introduction
In the last several decades, research and applications of unstructured grids in Compu-

tational Fluid Dynamics (CFD) numerical simulations had drawn much attention.

Unstructured grids offer great flexibility in the treatment of complex geometries, and

solution dependent grid adaptivity on unstructured grids can be easily implemented.

Despite its advantages, unstructured grids also meet some challenges in improving

computational efficiency and obtaining accurate unstructured finite-volume (FV)
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discretization schemes. Nowadays, nominally second-order accurate unstructured FV

schemes are widely applied in industrial CFD applications. However, the actual

numerical accuracy of unstructured FV schemes had long been a hot topic for CFD

researchers.

Pioneering work had been done on mathematical and numerical accuracy study of

cell-vertex schemes due to Jameson et al. [1] and Ni [2]. Relationship between the con-

vergence of truncation error and convergence of discretization error had been studied

and clarified that the solution error could be second-order even though the local trun-

cation error is first order [3, 4]. Preliminary investigation on the influence of mesh

types on solution accuracy had also been conducted [5] which proved that triangular

schemes can perform as well as quadrilateral schemes under appropriate conditions.

Ever since Barth and Jespersen [6] proposed the limited form of piecewise linear

reconstruction, the upwind schemes based on gradient reconstruction became perhaps

the most popular unstructured second-order FV schemes. For these upwind schemes,

the first-order accurate gradient is necessary to achieve second-order accurate

discretization. The accuracy of gradient reconstruction and gradient accuracy effects on

the accuracy of FV schemes became key factors in analyzing the accuracy of FV

numerical solution.

Generally, there are mainly two types of gradient reconstruction methods which can

be readily implemented on unstructured second-order FV discretization of inviscid and

viscous fluxes. One is the gradient reconstruction based on the Green-Gauss theorem

(the GG methods); the other is based on the least-squares approach (the LSQ

methods). Performances of these two types of reconstruction techniques on unstruc-

tured meshes are affected by a number of factors, such as mesh type, mesh quality,

mesh regularity, formulation, etc.

On one hand, the comparison of these two types of gradient reconstruction methods

was illustrated in earlier papers [7–10]. Valuable experiences were acquired such as

these two types of methods produce similar results on regular quadrilateral and tri-

angular meshes [7]; the GG method with either simple averaging or inverse distance

weighted face averaging is inconsistent on irregular grids and fails to achieve the first-

order accuracy and thus should not be preferred [8]; the LSQ methods are at least first-

order accurate on arbitrary meshes [9], but accuracy deterioration occurs on highly

stretched grids in the presence of surface curvature [10]. However, despite former

analyses and comparisons, no definitive “best” gradient reconstruction method has

emerged [8] and the fundamental reason for the accuracy degradation was not revealed

comprehensively.

On the other hand, the relationship between mesh characteristics and gradient or so-

lution accuracy were investigated [11–16]. Through studying gradient reconstruction

methods on grids with a high aspect ratio, it was found that accuracy degradation

occurs for solutions that vary predominately in the direction of large mesh spacing

[11]. Apart from aspect ratio effects, other grid effects such as mesh stretching, curva-

ture, skewness, and non-planar faces in 3D grids are also important parameters affect-

ing gradient or solution accuracy. Previous studies had tried to identify schemes that

yield the lowest level of solution error while maintaining stability over a wide range of

mesh characteristics [14, 15]. Unfortunately, however, the relationship between mesh

characteristics and solution accuracy are complicated [16] and are far from clear.
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Meanwhile, preliminary but successful attempts in creating accurate and robust re-

construction of the gradient and eventually improving solution accuracy had been

made [8, 17].

The focus of this study is analyzing gradient reconstruction methods both mathemat-

ically and numerically for cell-centered FV schemes, evaluating the gradient effects on

solution accuracy of inviscid flow simulations. Cell-vertex schemes, while differing from

cell-centered schemes in formulation details, can be analyzed in the same fashion; and

they have been considered in previous works [12, 13, 15]. In this paper, the conditions

to ensure at least first-order accurate gradient reconstruction are derived mathematic-

ally. Then, verifications are performed on typical isotropic grid stencils by analyzing the

relationship between discretization error of gradient reconstruction and discretization

error of the face midpoint value approximation of a given analytic function. Numerical

accuracy of gradient reconstruction is examined with grid convergence study on typical

isotropic grids such as quadrilateral grids, triangular grids, perturbed grids, skewed

grids and grids over a cylinder with curve boundary. Since previous studies reported

that poor gradient reconstruction accuracy does not necessarily imply large

discretization error [13], solution errors have to be quantified to determine the impact

of gradient accuracy. Quantification of solution errors require an exact solution and

will be accomplished using the Method of Manufactured Solutions (MMS) [18]. Before

the MMS method was adopted, validation of the method was performed by comparing

results with an exact solution case, the 2D inviscid isentropic vortex. Grid convergence

studies are carried out to determine the order of accuracy and the absolute magnitude

of solution errors. Traditional mesh refinement instead of downscaling tests [19–22] is

employed for grid convergence study since consistent refinement is easily carried out

on currently considered isotropic grids. All the schemes are implemented within a

second-order cell-centered finite volume CFD solver, HyperFLOW [23, 24].

This paper is organized as follows: in section II, we briefly introduce the second-

order FV discretization schemes. A comprehensive description and mathematical

analysis of gradient reconstruction methods are followed in section III. Mathematical

gradient accuracy analyses are confirmed numerically in section IV. Next, we present

principles of the method of manufactured solutions in section V and validate this

method with an exact solution case. Finally, in section VI, gradient accuracy effects on

solution accuracy of inviscid flows are investigated with a Euler manufactured solution.

2 Finite volume discretization schemes
In this paper, the discretization of the conservation law is implemented in an integral

form [25]:

∂
∂t

Z
Ω

WdΩþ ∮
∂Ω

Fc−Fvð ÞdS ¼
Z
Ω

QdΩ ð1Þ

where W, Fc, Fv, Q are the conservative variables, the convective flux vector, the vis-

cous flux vector, and the source term respectively. Eq. (1) is simplified to the Euler

equations where no viscous term and source term exists (Fv = 0, Q = 0) for inviscid

problems considered in this paper.
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2.1 Spatial discretization

The convective flux is discretized with the well-known Roe’s flux-difference splitting

scheme [26] as follows:

Fcð Þij ¼
1
2

Fc WRð Þ þ Fc WLð Þ− ΑRoe

�� �� WR−WLð Þ� � ð2Þ

where (Fc)ij is the convective flux through the interface of the neighboring control vol-

ume i and j, Fc(WL) and Fc(WR) are convective fluxes evaluated with the face left state

WL and the face right state WR, respectively. The way to obtain face left and right

states is called ‘solution reconstruction’ which will be discussed below. jΑRoej denotes
the so-called Roe’s averaged matrix which is identical to the convective flux Jacobian.

Anyway, other Riemann solvers for the convective flux can be adopted here, such as

Lax-Friedrichs, Steger-Warming, van Leer, HLLC, AUSM series schemes, and so on.

No matter which Riemann solver is adopted to calculate the convective flux, the face

states on the left and right sides of an interface, the primitive variables UL and UR in

most cases (as shown in Fig. 1), should be reconstructed firstly. For simplicity, we will

denote any one of the primitive variables as U in the following context.

2.2 Solution reconstruction

Roe’s flux-difference splitting scheme, as well as other Riemann solvers, requires flow

states to be reconstructed on the left and the right sides of an interface of neighboring

control volumes, as sketched in Fig. 1.

If we assume that the solution is constant in each cell, a constant reconstruction is

obtained which leads to first-order spatial discretization.

UL ¼ Ui

UR ¼ U j
ð3Þ

where UL and UR are primitive variables at the left and right sides of a control volume

interface. A second-order spatial discretization can be obtained by assuming a linear

distribution of flow variables in each cell. With this assumption, the left and the right

states are reconstructed through a piecewise linear interpolation as Eq. (4) [6]. Since

low speed flows without discontinuity (such as shock wave) are currently studied, no

limiter function is considered here.

Fig. 1 Solution reconstruction of a control volume face
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UL ¼ Ui þ ∇Uð Þi � rL
UR ¼ U j þ ∇Uð Þ j � rR ð4Þ

where (∇U)i is the gradient at cell center i, and rL represents the vector from the left

cell center of i to the face midpoint, and rR represents the vector from the right cell

center of j to the face midpoint.

At least first-order accurate gradient reconstruction is often required in Eq. (4) to

achieve second-order accurate spatial discretization. Generally, there are mainly two

types of gradient reconstruction methods which can be readily implemented in un-

structured second-order finite volume discretization. One is the gradient reconstruction

based on the Green-Gauss theorem (the GG methods); the other is based on the least-

squares approach (the LSQ methods). These two types of methods are introduced and

analyzed in the following section.

3 Gradient reconstruction methods
3.1 Green-gauss theorem based gradient reconstruction

The first type of gradient reconstruction methods is based on the Green-Gauss

theorem expressed in Eq. (5).
Z
V

∇UdV ¼ ∮
∂V

UndS ð5Þ

where U stands for any one of the primitive variables or any scalar variable, n is

the surface unit normal vector. Firstly, we would like to derive the discretized form

of Eq. (5).

With the linear distribution assumption of flow variables in each cell, the gradient

will be constant within cells; we simplify the left-hand side of Eq. (5) as follows:

Z
V

∇UdV

0
@

1
A

i

¼ ∇Uð ÞiV i ð6Þ

where Vi is the volume of the control volume, (∇U)i is the gradient at cell center i.

Combining Eq. (5) with Eq. (6), and introducing the Taylor-series expansion, we derive

the discretized gradient of cell i as follows:

∇Uð Þi ¼
1
V i

∮
∂V

UndS

� �
i

¼ 1
V i

XN F

j¼1

Z
∂V j

Uij þ ∂U
∂x ij

�� x−xij
� �þ ∂U

∂y ij

�� y−yij
	 


þ ∂U
∂z ij

�� z−zij
� �� �

nijdS

0
B@

1
CA

¼ 1
V i

XN F

j¼1

UijnijΔSij þ 1
V i

XN F

j¼1

Z
∂V j

∂U
∂x ij

�� x−xij
� �þ ∂U

∂y ij

�� y−yij
	 


þ ∂U
∂z ij

�� z−zij
� �� �

nijdS

0
B@

1
CA

ð7Þ

in which NF is the number of faces of the control volume, nijΔSij is the area vector of

face j of cell i.

In Eq. (7), we once again use the assumption that U varies linearly within each cell so

that the second and higher-order derivatives in the Taylor expansion can be neglected.
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Besides, Uij is the value at any point on face j up to now, if we introduce the midpoint

quadrature which requires Uij to be the value at the midpoint (centroid) of face j, we

obtain:

∇Uð Þi ¼
1
V i

XN F

j¼1

UijnijΔSij ð8Þ

Here, we would like to emphasize in Eq. (8) that Uij is the value at the midpoint of

face j, and at the current stage, the gradient of cell i is represented exactly by Eq. (8)

under the linear distribution assumption. Examining Eq. (8) more carefully, we found

that potential errors of gradient reconstruction by Eq. (8) can only be introduced by

the approximation of face midpoint value Uij.

How does the face midpoint value approximation influence the gradient accuracy?

This question is answered by the following mathematical analysis. These derivations

focus on the order of magnitude of gradient reconstruction error and face midpoint

approximation error.

To find the necessary condition to obtain first-order gradient reconstruction of cell i,

we need:

∇Uð Þi numerical ¼
1
V i

XN F

j¼1

UijnijΔSij ¼ ∇Uð Þi exact þ O hð Þ ð9Þ

where O(h) is the order of magnitude of the mesh size. As mentioned earlier, the only

contributor to gradient error is the approximation of face midpoint value. Here we as-

sume the face midpoint value approximation to be expressed as follows:

Uij ¼ Ûij þ aij þ bijO hð Þ þ cijO h2
� � ð10Þ

where Ûij is the exact value at the face midpoint, aij, bij, cij are constant coefficients.

Substituting Eq. (10) into Eq. (9), we obtain:

∇Uð Þi numerical ¼
1
V i

XN F

j¼1

Û ij þ aij þ bijO hð Þ þ cijO h2
� �� �

nijΔSij

¼ 1
V i

XN F

j¼1

Û ijnijΔSij þ 1
V i

XN F

j¼1

aij þ bijO hð Þ� �
nijΔSij þ 1

V i

XN F

j¼1

cijO h2
� �� �

nijΔSij

ð11Þ
if
PN F

j¼1ðaij þ bijOðhÞÞnijΔSij≠0, and
PN F

j¼1ðcijOðh2ÞÞnijΔSij≠0, we have:

∇Uð Þi numerical ¼ ∇Uð Þi exact þ
aijO 1ð Þ þ bijO hð Þ� �

O h2
� �

O h3
� � þ cij

O h2
� �

O h2
� �

O h3
� �

¼ ∇Uð Þi exact þ aijO h−1
� �þ bijO 1ð Þ þ cijO hð Þ

ð12Þ

On one hand, we notice that when
PN F

j¼1ðaij þ bijOðhÞÞnijΔSij ¼ 0 , in other words,

the summation (integral) of first-and-lower-order terms in the approximation of face

midpoint value counterbalances each other, gradient reconstruction achieves at least

first-order accuracy.

On the other hand, we can see from Eq. (12) that in order to achieve at least first-

order accurate gradient, constant coefficients aij, bij must be zero, which means the

approximation of face midpoint value, i.e. Eq. (10), must be second-order accurate.
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Consequently, if no counterbalance occurs for the first-and-lower-order terms,

second-order accurate approximation of face midpoint value is necessary to achieve at

least first-order gradient reconstruction.

As a supplement, we also prove that second-order accurate approximation of face

midpoint value is sufficient to produce first-order accurate gradient.

Assuming that the second-order accurate approximation of the face midpoint value

can be written as:

Uij ¼ Ûij þ O h2
� � ð13Þ

Substituting Eq. (13) into Eq. (8), we get:

∇Uð Þi numerical ¼
1
V i

XN F

j¼1

Û ij þ O h2
� �� �

nijΔSij

¼ 1
V i

XN F

j¼1

ÛijnijΔSij þ 1
V i

XN F

j¼1

O h2
� �� �

nijΔSij

¼ ∇Uð Þi exact þ
O h2
� �

O h2
� �

O h3
� �

¼ ∇Uð Þi exact þ O hð Þ

ð14Þ

Therefore, in terms of GG gradient reconstruction methods, we conclude that when

the summation of first-and-lower-order terms in the integral process does not counter-

balance each other, second-order accurate approximation of face midpoint value is the

necessary and sufficient condition for at least first-order accurate gradient

reconstruction.

According to the approach for face midpoint value approximation, the GG methods

can be categorized into:

(a) cell-based GG methods (GG-Cell), using the simple average value of face

neighboring cells as face midpoint value;

(b) nodal-based GG methods (GG-Node), using the simple average value of node

surrounding cells as face nodal value;

(c) GG methods based on least-squares face interpolation (GG-LSQ), using LSQ

interpolation to calculate face midpoint value;

(d) GG methods based on weighted tri-linear face interpolation (GG-WTLI), using

weighted tri-linear interpolation to calculate face midpoint value.

Readers may refer to Appendix 1 for details. Of course, other approaches [11–13, 27]

can be adopted which are not included in this paper.

Whether these methods guarantee second-order face midpoint value approximation

on arbitrary grids is essential in determining the order of accuracy of gradient recon-

struction. Here we tabulate the properties in Table 1 and their verifications are left in

later sections.

3.2 Least-squares approach based gradient reconstruction

The second type of gradient reconstruction methods is based on the least-squares

(LSQ) approach. Applying the Taylor series expansion, we have:
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U j ¼ Ui þ ∇Uð Þi � rij þ h:o:t: ð15Þ

where Ui is the variable at the center of cell i, and rij is the vector from cell center i to

cell center j. If second-and-higher-order terms are neglected, Eq. (15) becomes

∇Uð Þi � rij ¼ U j−Ui ð16Þ

Applying Eq. (16) to certain stencil cells, for instance, basic stencils consisting of im-

mediate neighboring cells of cell i as shown in Fig. 2, or extended stencils consisting of

all neighboring cells sharing cell vertexes, as shown in Fig. 3, or other augment stencils

[28], we obtain:

θ1Δxi1 θ1Δyi1 θ1Δzi1
θ2Δxi2 θ2Δyi2 θ2Δzi2

⋮ ⋮ ⋮
θ jΔxij θ jΔyij θ jΔzij

⋮ ⋮ ⋮
θNΔxiN θNΔyiN θNΔziN

2
6666664

3
7777775

∂U
∂x
∂U
∂y
∂U
∂z

2
666664

3
777775
¼

θ1 U1−Uið Þ
θ2 U2−Uið Þ
⋮
θ j U j−Ui
� �

⋮
θN UN−Uið Þ

2
6666664

3
7777775

ð17Þ

where Δxij, Δyij, Δzij are the components of vector rij, N denotes the number of stencil

cells, and θj is weight coefficient for each component equation, which is usually defined

Table 1 Properties of the order of accuracy of gradient reconstruction and face midpoint value
approximation on arbitrary grids

Approach second-order face midpoint value approximation
guaranteed

at least first-order gradient accuracy
guaranteed

GG-Cell no no

GG-Node no no

GG-LSQ yes yes

GG-WTLI yes yes

Fig. 2 LSQ basic stencils [8] (cell 0–6)
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as the reciprocal of the distance between cell center i and cell center j. Eq. (17) has less

number of unknowns than the number of equations and could be solved with a least-

squares approach.

The accuracy order of the least-squares approach can be easily determined. Since the

numerical gradient is reconstructed by retaining only the linear terms as Eq. (18).

U j ¼ Ui þ ∇Uð Þi numerical � rij ð18Þ

The exact expression is the Taylor series expansion as follows:

U j ¼ Ui þ ∇Uð Þi exact � rij þ O rij
�� ��2	 


ð19Þ

Combining Eq. (18) and Eq. (19), we have:

∇Uð Þi numerical ¼ ∇Uð Þi exact þ O rij
�� ��� � ð20Þ

Therefore, Eq. (16) achieves first-order gradient reconstruction on arbitrary unstruc-

tured meshes regardless of mesh type and quality.

In the current study, both weighted and un-weighted LSQ with basic and extended

stencils are considered. These methods will be denoted as LSQ-basic, WLSQ-basic, and

WLSQ-extended in the following context.

4 Gradient accuracy analysis
4.1 Discretization error analysis

In this section, we will confirm the aforementioned relationship between the face mid-

point value approximation and the gradient accuracy, and present a relatively fast and

easy approach to determine the actual order of accuracy of gradient reconstruction

methods.

Fig. 3 LSQ extended stencils [8] (cell 0–10)
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All the analyses in this section are to determine the discretization errors of both

gradient reconstruction and the face midpoint value approximation of the analytic

function f(x, y) = sin x + sin y + cos xy by GG-Cell and LSQ method with basic stencils

(LSQ-basic). More details about these two methods are supplemented in Appendix 1.

4.1.1 Flat mesh

First, we consider an isotropic regular quadrilateral grid (quads.) stencils with aspect

ratio AR = 1 as shown in Fig. 4. The stencil only involves 5 points, i.e., point 0 – point

4; the coordinates of those points are readily determined and will not be listed below.

Exact face midpoint value and exact gradient at cell center 0 can be obtained by

substituting the coordinates into the function f(x, y) and gradient ∇f respectively. The

discretized face midpoint values are approximated as the average value of neighboring

cell values for the GG-Cell method. The discretized gradients are reconstructed by the

GG-Cell method and the LSQ method with basic stencils. Discretization errors are

quantified by the difference between the discretized value and the exact value. Here, we

directly present the discretization errors of both face midpoint value approximation

and gradient reconstruction as follows.

In Table 2, both GG-Cell and LSQ-basic reconstructed gradients achieve second-

order accuracy and the absolute values of discretization error are identical. Special

attention should be focused on the second-order accurate GG-Cell method; it is obvi-

ous in this case that the second-order terms in the face midpoint value approximation

will counterbalance each other in the discretized integral process which results in

higher-than-first-order accurate GG gradient reconstruction. And the LSQ-basic

method achieves second-order accuracy because it is equivalent to the central

difference on Cartesian grids [29].

Following the analysis on regular quadrilateral grids, regular triangular grids (reg. tri.)

and regular double-split triangular grids (reg. double-split tri.) can be considered in a

Fig. 4 Flat mesh stencils

Wang et al. Advances in Aerodynamics            (2019) 1:18 Page 10 of 31



similar way. Grid stencils are sketched in Figs. 5 and 6. Brief results on discretization

errors of gradient reconstruction and face midpoint value approximation are shown in

Table 3. Detailed results on discretization errors are provided in Appendix 2.

With reference to Table 3 and Table 8 in Appendix 2, it can be noted that on regular

triangular grids, both GG-Cell and LSQ-basic reconstructed gradients achieve the first-

order accuracy. However, on regular double split triangular grids, the GG-Cell method

degrades to 0th order (O(1)) because the accuracy of face midpoint value approxima-

tion on two faces (face BC and face AC) degrades to first-order and no counterbalance

occurs under this circumstance. This conclusion is different from those reported in

previous works, for example, in Ref. [7], Green-Gauss method and least-squares gradi-

ent reconstruction were considered to produce similar results on regular meshes, and

in Ref. [16], Green-Gauss methods were recognized insensitive to mesh regularity [16].

Further study on this problem shows that the accuracy degradation of GG-Cell

method closely relates to mesh topology. If the face midpoint does not bisect the

Table 2 Discretization errors of gradient reconstruction and face midpoint value approximation
(quads.)

Discretization errors GG-Cell LSQ-basic

Face midpoint value
approximation

face AB 1
8 ð−x2 cosxy− sinyÞdx2 þ Oðdx3Þ –

face BC 1
8 ð−y2 cosxy− sinxÞdx2 þ Oðdx3Þ

face CD 1
8 ð−x2 cosxy− sinyÞdx2 þ Oðdx3Þ

face AD 1
8 ð−y2 cosxy− sinxÞdx2 þ Oðdx3Þ

Gradient reconstruction error of
∂ f
∂x

1
6 ð cosx−y3 sinxyÞdx2 þ Oðdx3Þ 1

6 ð cosx−y3 sinxyÞdx2 þ Oðdx3Þ

error of
∂ f
∂y

1
6 ð cosy−x3 sinxyÞdx2 þ Oðdx3Þ 1

6 ð cosy−x3 sinxyÞdx2 þ Oðdx3Þ

note:dx in the equations is the grid spacing (side length of the quadrilateral) in the x-direction

Fig. 5 Regular triangular grid stencils (AR = 1; reg. tri.)
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segment connecting the centers of two neighboring cells (as shown in Fig. 6), second-

order accurate approximation of face midpoint value will be not achieved, and thus

first-order gradient accuracy will not be maintained, as listed in Table 3.

Accuracy degradation was also predicted by Mavriplis [10] when the segments con-

necting neighboring cell centers do not bisect the shared mesh edge. Sozer et.al [8]

confirmed that the Green-Gauss approach with either simple or IDW face averaging is

0th order accurate by numerical gradient accuracy tests. In this paper, a similar

phenomenon of accuracy degradation is observed, and furthermore, the fundamental

reason is located on the accuracy of face midpoint value approximation. However, we

will show next on curved meshes that the conclusion by Mavriplis is not complete

enough and there exists at least one special case that does not comply with his

statement but can still be explained by the theory proposed in this paper.

4.1.2 Meshes on the curved surface (curved mesh)

For typical isotropic grids on curved surfaces, the accuracy of face midpoint value

approximation and gradient reconstruction methods are analyzed with the stencil

sketched in Fig. 7.

Fig. 6 Regular double-split triangular grid stencils (AR = 1; reg. double-split tri.)

Table 3 Discretization errors of gradient reconstruction and face midpoint value approximation

Discretization errors GG-Cell
(reg. tri.)

GG-Cell
(reg. double-split tri.)

LSQ-basic
(reg. tri.)

LSQ-basic (reg.
double-split tri.)

Face midpoint value approximation face AB O(dx2) O(dx2) – –

face BC O(dx2) O(dx)

face AC O(dx2) O(dx)

Gradient reconstruction error of ∂ f∂x O(dx) O(1) O(dx) O(dx)

error of ∂ f∂y O(dx) O(1) O(dx) O(dx)
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Firstly, following the definition of Diskin et al. [11], curvature induced mesh deform-

ation is characterized by parameter Γ:

Γ ¼ y1−y0j j
y3−y0j j ¼

R−R coshθ
2hr

≈
Rh2θ
2hr

¼ AR
hθ
2

ð21Þ

where yi is the y coordinate of point i in the Cartesian coordinate system, R is the

radius at cell center 0, hθ and hr are mesh size in the circumferential direction and the

radial direction. AR = Rhθ/hr is the grid aspect ratio, for isotropic grids considered in

this paper, AR~O(1). We can see that when Γ→ 0, point 0 and point 1 lie on the hori-

zontal line, thus no curvature exists. On the contrary, when Γ increases, the curvature

induced mesh deformation increases as well. Particularly, when we refine the grids at a

specified AR, Γ decreases with hθ diminishing, and the curvature induced mesh deform-

ation can be ignored when the mesh is refined to a certain scale.

Coordinates of the stencil points are determined as follows in Table 4:

in which r is the stretching ratio of the grids, for the isotropic grids considered in the

paper, r = 1.

The gradient of function f(x, y) = sin x + sin y + cos xy at cell 0 is reconstructed by

GG-Cell and LSQ-basic gradient reconstruction methods with AR = 1. The

discretization errors are shown in Table 5.

From Table 5, face midpoint value approximations of face AB and face CD are first-

order accurate which is not sufficient to produce first-order accurate gradient, however,

Fig. 7 Quadrilateral grids on a curved surface

Table 4 Coordinates of stencil points in Fig. 8

point x y

0 x0 y0

1 x0 − R sin hθ y0−Γ
hr
2 ðr þ r2Þ

2 x0 + R sin hθ y0−Γ
hr
2 ðr þ r2Þ

3 x0 y0 þ hr
2 ðr þ r2Þ

4 x0 y0−
hr
2 ð1þ rÞ

f1 x0−R tan hθ
2

y0

f2 x0 þ R tan hθ
2

y0

Wang et al. Advances in Aerodynamics            (2019) 1:18 Page 13 of 31



Ta
b
le

5
D
is
cr
et
iz
at
io
n
er
ro
rs
of

gr
ad
ie
nt

re
co
ns
tr
uc
tio

n
an
d
fa
ce

m
id
po

in
t
va
lu
e
ap
pr
ox
im

at
io
n

D
is
cr
et
iz
at
io
n
er
ro
rs

G
G
-C
el
l(
cu
rv
ed

qu
ad
s.)

LS
Q
(c
ur
ve
d
qu

ad
s.)

Fa
ce

m
id
po

in
t
va
lu
e
ap
pr
ox
im

at
io
n

fa
ce

A
B

−
1 2
RΓ
ðc

os
y−

x
si
nx
yÞh

θ
þ
O
ðh

2 θÞ
–

fa
ce

BC
O
ðh

2 θÞ
fa
ce

C
D

−
1 2
RΓ
ðc

os
y−

x
si
nx
yÞh

θ
þ
O
ðh

2 θÞ
fa
ce

D
A

O
ðh

2 θÞ
G
ra
di
en

t
re
co
ns
tr
uc
tio

n
er
ro
r
of

∂
f

∂x
−
RΓ
ðxy

co
sx
y
þ

si
nx
yÞh

θ
þ
O
ðh

2 θÞ
−
RΓ
ðxy

co
sx
y
þ

si
nx
yÞh

θ
þ
O
ðh

2 θÞ
er
ro
r
of

∂
f

∂y
−

Γ 2
ðc

os
y−

x
si
nx
yÞh

θ
þ
O
ðh

2 θÞ
−

RΓ
2ð1

þΓ
2
Þðð

y2
þ
x2
Γ2
Þc

os
xy

þ
si
nx

þ
Γ2

si
ny
Þh

θ
þ
O
ðh

2 θÞ

Wang et al. Advances in Aerodynamics            (2019) 1:18 Page 14 of 31



we can still obtain the first-order gradient on isotropic quadrilateral grids on a curved

surface. The reason is that the first-order terms counterbalance each other under this

condition which can be seen from the discretization errors of face AB and face CD.

Besides, Γ becomes a significant parameter in determining the true order of accuracy of

gradient reconstruction methods. Second-order accurate gradient reconstruction can

be obtained if Γ is so small that the first-order term O(Γhθ) is even smaller than the

second-order term Oðh2θÞ and thus it can be ignored during the evaluation of the order

of accuracy. This conclusion will be validated in the next sub-section via numerical

tests on curved quadrilateral meshes.

4.2 Numerical tests of gradient reconstruction

In order to verify the accuracy analysis of the gradient reconstruction methods, numer-

ical tests on typical 2D isotropic grids are performed.

4.2.1 Grids and the approach of grid convergence study

Sketches of 9 typical grids are listed below in Fig. 8.

(a) regular quadrilateral grids (quads.);

Fig. 8 Typical 2D isotropic grids. a Regular quadrilateral grids. b Regular triangular grids. c Skewed
quadrilateral grids. d Skewed regular triangular grids. e Perturbed quadrilateral grids. f Random triangular
grids. g Regular double-split triangular grids. h Isotropic quadrilateral grids on curved surface. i Isotropic
regular triangular grids on curved surface
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Fig. 9 Convergence of x-direction gradient of different grids and different reconstruction methods. a Regular
quadrilateral grids. b Regular triangular grids. c skewed quadrilateral grids. d skewed regular triangular grids. e
Perturbed quadrilateral grids. f Random triangular grids. g Regular double-split triangular grids
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(b) regular triangular grids (reg. tri.) derived from the regular quadrilateral grids by

splitting the diagonal of each quadrangle in the same direction;

(c) skewed regular quadrilateral grids (skewed quads.);

(d) skewed regular triangular grids (skewed reg. tri.);

(e) perturbed quadrilateral grids (perturbed quads.) with grid nodes shifting from their

initial location by a random but limited fraction of local mesh size. Specifically,

grid node perturbation in this paper is defined as rh/4, where r∈ [−1, 1] is a

random number and h is the local mesh size [11–13];

(f) random triangular grids (rand. tri.) derived from randomly splitting the diagonal of

the regular quadrilateral grids (left diagonal and right diagonal appear with equal

probability);

(g) regular double-split triangular grids (reg. double-split tri.) derived from regular

quadrilateral grids by double splitting the diagonal of each quadrangle in the same

direction, i.e., splitting in the left and right diagonal respectively;

(h) isotropic quadrilateral grids on a curved surface (curved quads.);

(i) isotropic regular triangular grids on a curved surface (curved tri.);

Grid convergence studies are carried out on a series of consistently refined grids. In-

stead of shrinking the domain [19], mesh size is halved in a fixed domain by doubling

the number of grid points on the boundary edges. The order of accuracy of gradient re-

construction is obtained asymptotically with the decrease of the mesh size. Here the

mesh size is defined as [15]

h ¼ V total

ndof

� �1
d

ð22Þ

where Vtotal is the total volume of all cells in the domain, ndof is the number of degrees

of freedom in the mesh, for cell-centered schemes, ndof is set to the number of cells,

and d denotes the spatial dimension.

The flow function for gradient numerical tests is chosen to be a scalar manufactured

solution [15] with 8 constant coefficients ϕ0, ϕx, ϕy, ϕxy, αϕx, αϕy, αϕxy, L:

Fig. 10 Convergence of x-direction gradient of different grids and different reconstruction methods. h
Isotropic quadrilateral grids on a curved surface. i Isotropic regular triangular grids on a curved surface
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ϕ x; yð Þ ¼ ϕ0 þ ϕx sin
αϕxπx
L

	 

þ ϕy sin

αϕyπy
L

	 

þ ϕxy cos

αϕxyπxy

L2

� �
ð23Þ

Discretization errors are quantified by the difference between the exact gradient and

the discretized one. The L1 norms, as shown in Eq. (24), of discretization error are

calculated and plotted as a function of mesh size to study the convergence of

discretization error. Here, the L2 and L∞ norms, as shown in Eqs. (25) and (26), can also

be adopted since they have the same performance on self-similar grids and will not lead

to essentially different results on currently considered grids which are generally self-

similar. So only L1 norms are listed in the following context.

L1 ¼

XN
i¼1

f i− f i;exact

��� ���
N

ð24Þ

L2 ¼

XN
i¼1

f i− f i;exact

��� ���2

N

0
BBBB@

1
CCCCA

1=2

ð25Þ

L∞ ¼ max f i− f i;exact

��� ��� ð26Þ

The order of accuracy (OOA) p can be determined by comparing discretization er-

rors between two consistently refined grids (E1 and E2) as:

p ¼
ln

E2

E1

� �

ln
h2
h1

� � ð27Þ

4.2.2 Numerical results

Figure 9 illustrates the grid convergence performance of x-direction gradient

discretization error (L1 norm) for different meshes with different gradient reconstruc-

tion methods. Overall agreement is observed between mathematical analyses and

numerical tests.

Numerical results in Fig. 9a-d show that all gradient reconstruction methods produce

at least first-order gradient on regular quadrilateral grids and regular triangular grids

and their skewed counterparts. Mesh skewness does not cause degradation of the order

of accuracy since skewness alone does not lead to violation of the face midpoint value

condition. However, it doesn’t necessarily imply that mesh skewness does not influence

gradient or solution accuracy. Skewness, in fact, was demonstrated a key factor deteri-

orating the solution accuracy of inviscid flow simulation by the authors [30].

Figure 9e-g show that the GG-Cell gradient reconstruction method degrades to 0th

order on perturbed quadrilateral grids, random triangular grids, and regular double

split triangular grids. This confirms the analysis for the GG-Cell method in the

previous section that accuracy degradation occurs when the face midpoint does not

bisect the segment connecting the neighboring cells which are the cases on these three

types of grids.
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Besides, GG-Node gradient reconstruction method also suffers from accuracy degrad-

ation on random triangular grids and perturbed quadrilateral grids as shown in Fig. 9e

and f. However, other GG methods that ensure second-order accurate face midpoint

value approximation, such as GG-LSQ, GG-WTLI, maintain at least first-order gradient

accuracy on all tested isotropic grids.

Meanwhile, as shown in Fig. 10h, gradient accuracy of GG-Cell method reaches

second order on isotropic quadrilateral grids on a curved surface which is consist-

ent with previous analysis on the curved mesh. And all methods produce at least

first-order gradient on curved quadrilateral grids and curved triangular grids. This

confirms that other parameters such as curvature induced mesh deformation also

play an important role in determining the actual order of accuracy of gradient re-

construction. And the condition whether the face midpoint bisects the segment

connecting the neighboring cells, as bisection fails on the curved mesh, is not ne-

cessary for GG-Cell methods to be at least first-order accurate.

Fig. 11 Density contour of Euler manufactured solutions on different geometries. a Euler manufactured
solution on flat geometry. b Euler manufactured solution on curved geometry. c Euler manufactured
solution on skewed geometry

Fig. 12 Density contour of a 2D inviscid isentropic vortex
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These results verify the previous conclusion that the fundamental reason of accuracy

degradation of GG methods is not achieving second-order accurate face midpoint value

approximation.

Numerical tests of gradient reconstruction methods based on least-squares approach

indicate that these methods are at least first-order accurate on all tested isotropic grids

regardless of mesh type, mesh perturbation, surface curvature, and skewness.

In terms of absolute magnitude of gradient discretization error and comparison

of these gradient reconstruction methods, WLSQ method with extended stencil ex-

hibits the lowest level of error on all tested grids except isotropic quadrilateral

grids on curved surface, while other methods exhibit erratic behaviors and it is

hard to identify the best method for all grids which, in fact, is not the goal of the

current study.

5 Method of manufactured solutions
In order to quantify solution errors, we need an exact solution for the governing

equations. Common exact solutions for real physical flows are either too difficult to ob-

tain, or if exist, they are often solutions of the simplified equations and do not exercise

all terms in the complete equations.

Therefore, except for simple exact solutions, a more powerful tool, the Method of

Manufactured Solutions (MMS) [18, 31], is adopted in this paper. In a general proced-

ure of MMS, non-trivial but analytic solutions are manufactured without being

concerned about its physical realism since accuracy analysis is a purely mathematical

exercise, and the analytic solutions should be complex enough to exercise all terms in

the governing equations being tested.

Instead of solving the original partial differential equation (PDE), we solve the

equations added with an analytic source term. Considering an analytic solution Qm,

and substituting the solution into the governing PDE, then we can obtain an analytic

source term Sm. It is obvious that the analytic solution Qm is the exact solution of the

modified equation, i.e., the original equation added with an analytic source term, as

Table 6 Validation of the MMS procedure

Grid (a) grid cells Inviscid vortex Euler MMS Grid (b) grid cells Inviscid vortex Euler MMS

L1 Error OOA L1 Error OOA L1 Error OOA L1 Error OOA

20 × 20 1.45e-02 – 1.22e-03 – 800 1.38e-02 – 6.14e-04 –

40 × 40 3.11e-03 2.22 2.15e-04 2.50 3200 3.14e-03 2.14 1.60e-04 1.94

80 × 80 6.80e-04 2.19 4.78e-05 2.17 12,800 7.02e-04 2.16 4.00e-05 2.00

160 × 160 1.57e-04 2.11 1.16e-05 2.04 51,200 1.66e-04 2.08 9.94e-06 2.01

320 × 320 3.85e-05 2.03 2.86e-06 2.02 204,800 4.05e-05 2.04 2.47e-06 2.01

Grid (e) grid cells Inviscid vortex Euler MMS Grid (f) grid cells Inviscid vortex Euler MMS

L1 Error OOA L1 Error OOA L1 Error OOA L1 Error OOA

20 × 20 1.41e-02 – 1.89e-03 – 800 1.60e-02 – 2.62e-03 –

40 × 40 5.61e-03 1.33 8.79e-04 1.10 3200 5.04e-03 1.67 1.03e-03 1.35

80 × 80 1.74e-03 1.69 4.05e-04 1.12 12,800 1.76e-03 1.52 5.60e-04 0.88

160 × 160 7.53e-04 1.21 2.18e-04 0.89 51,200 7.06e-04 1.32 2.48e-04 1.18

320 × 320 3.60e-04 1.06 1.08e-04 1.01 204,800 3.76e-04 0.91 1.35e-04 0.88
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shown in Eq. (28). Solving the modified equation, we can get the discretized numerical

solution. Thus the solution errors can be quantified by comparing the exact manufac-

tured solution and the numerical solution.

∂Q
∂t

þ ∇ � Fc−∇ � Fv ¼ Sm ð28Þ

In dealing with the analytic source term, two major approaches were presented in

previous work. Katz [15] reported second-order accurate source term discretization,

while Roache [18] suggested symbolic manipulation of the source term. In this paper,

we adopt the symbolic manipulation to obtain the exact expression of the source term.

Dirichlet boundary conditions are implemented.

5.1 Euler manufactured solution

Quantification of discretization error is accomplished by a vector Euler manufactured

solution [15] for two-dimensional (2D) cases, and the manufactured solution Qm has

the following components:

Fig. 13 Convergence of density discretization error on different grids with different reconstruction methods. a
Regular quadrilateral grids. b Regular triangular grids. c Skewed quadrilateral grids. d Skewed regular triangular
grids. e Perturbed quadrilateral grids. f Random triangular grids. g Regular double-split triangular grids. h
Isotropic quadrilateral grids on a curved surface. i Isotropic regular triangular grids on a curved surface
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ρ x; yð Þ ¼ ρ0 þ ρx sin
αρxπx
L

	 

þ ρy sin

αρyπy
L

	 

þ ρxy cos

αρxyπxy

L2

� �

u x; yð Þ ¼ u0 þ ux sin
αuxπx
L

	 

þ uy sin

αuyπy
L

	 

þ uxy cos

αuxyπxy

L2

� �

v x; yð Þ ¼ v0 þ vx sin
αvxπx
L

	 

þ vy sin

αvyπy
L

	 

þ vxy cos

αvxyπxy

L2

� �

P x; yð Þ ¼ P0 þ Px sin
αPxπx
L

	 

þ Py sin

αPyπy
L

	 

þ Pxy cos

αPxyπxy

L2

� �
ð29Þ

in which ρ0, ρx, ρy, ρxy, αρx, αρy, αρxy, L and corresponding parameters in other compo-

nent equations are constant coefficients. Analytic source terms are derived by Mathe-

matica symbol manipulation. Modified Euler equation (added with an analytic source

term) is solved to determine the discretized solutions. Initial density contours are

plotted in Fig. 11.

5.2 Validation of MMS procedures

Validation of MMS procedures is performed by comparing the order of accuracy

(OOA) obtained by the MMS procedure and an exact solution case. The exact solution

adopted in this paper is a 2D inviscid isentropic vortex. Exact initial conditions are

specified according to Ref. [8, 32] as

u ¼ −
ε
2π

y−y0ð Þe0:5 1−r2ð Þ

v ¼ ε
2π

x−x0ð Þe0:5 1−r2ð Þ

T ¼ 1−
γ−1ð Þε2
8γπ2

e 1−r2ð Þ

ρ ¼ T
1

γ−1; p ¼ ργ ; S ¼ p=ργ ¼ 1

ð30Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx−x0Þ2 þ ðy−y0Þ2

q
, the vortex strength is taken as ε = 5.0, and the vortex

core is located at (x0, y0) = (0, 0). Eq. (30) is an exact solution for Euler equations thus

can be adopted to verify and validate the MMS procedures. Initial density contour of a

2D inviscid vortex is plotted in Fig. 12.

Grid convergence studies on 4 types of grids, i.e., grids (a), (b), (e) and (f) in Fig. 8,

are performed with same discretization scheme, and the OOA of the numerical solu-

tion is determined. Table 6 shows the L1 error and the OOA obtained by the inviscid

vortex and by the MMS procedure with a Euler manufactured solution. It demonstrates

that the Euler MMS procedure obtains the same OOA as the exact solution case.

6 Effects on the accuracy of inviscid flow simulation
Previous sections examined the accuracy of various gradient reconstruction methods,

identified accuracy degradation for certain methods and verified former mathematical

conclusions. However, poor gradient reconstruction accuracy does not necessarily

imply large discretization error for the governing equations [10, 13]. The gradient ac-

curacy and the FV discretization accuracy was thought to be unrelated. In this section,

the effects of gradient accuracy on simulation of inviscid flows are considered. Solution

errors are quantified by the validated Euler MMS procedure.

Results of grid convergence studies on grids (a)-(i) as shown in Fig. 8 are listed re-

spectively in Fig. 13. It shows the convergence of L1 norm of density discretization
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error of the Euler MMS tests with different gradient reconstruction methods, in which

‘1st order’ implies the numerical schemes adopting a constant reconstruction (i.e., Eq.

(3)), and ‘1st order ref.’ and ‘2nd order ref.’ are 1st order and 2nd order reference lines.

Figure 13a-d show that FV schemes on grids (a)-(d) are second-order for all gradient

reconstruction methods and the solution accuracy (absolute value of density

discretization error) are nearly the same even though the gradient reconstructions have

different accuracy as shown in Fig. 9a-d.

Figure 13e-g indicate that the schemes employing GG-Cell gradient reconstruction

method degrade to first-order on grids (e)-(g) (perturbed quadrilateral grids, random tri-

angular grids, and regular double-split triangular grids). The schemes employing GG-Node

method also suffer from accuracy deterioration on these grids except regular double-split

triangular grids. It proves that first-order accurate gradient reconstruction is necessary to

maintain second-order FV schemes. These results clearly show that 0th order GG methods

will lead to first-order FV schemes and generate a much higher level of absolute error.

In Fig. 13e-g, we also notice that even though gradient reconstruction of GG methods

degrades to 0th order and the corresponding FV schemes degrade to 1st order, these

schemes still yield a lower level of absolute error than the pure first-order FV scheme

with a constant reconstruction. In other words, 0th order gradient reconstruction is still

better than constant reconstruction.

Figure 13h-i show that all FV schemes on curved quadrilateral grids and curved tri-

angular grids are second-order which confirms again the conclusion that first-order

gradient reconstruction is necessary to yield second-order FV discretization.

Besides, FV discretization employing LSQ methods (LSQ-basic, WLSQ-basic, and

WLSQ-extended) is always second-order accurate since LSQ gradient reconstruction is

always at least first-order on arbitrary unstructured grids. Meanwhile, we also notice

again that when gradient reconstruction achieves the first-order accuracy as shown in

Fig. 9, the absolute error of gradient reconstruction does not directly imply the

absolute error of numerical solution accuracy.

Although not considered in this paper, the computational efficiency of these schemes

differs very much from each other. Preliminary studies on the complexity and efficiency

Fig. 14 Stencils for GG-Cell and LSQ-basic method
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of FV schemes were reported in previous studies [12, 13], and we will further study

these issues in future work.

7 Conclusions and future work
Gradient reconstruction based on the Green-Gauss theorem (the GG methods) and the

least-squares approaches (the LSQ methods) are analyzed both mathematically and nu-

merically. Mathematical derivations reveal that, for gradient reconstruction based on

the Green-Gauss theorem (the GG methods), if the summation of first-and-lower-order

terms does not counterbalance in the discretized integral process, which rarely occurs,

second-order accurate approximation of face midpoint value is necessary to produce at

least first-order accurate gradient. However, gradient reconstruction methods based on

the least-squares approach (LSQ methods) are at least first-order on arbitrary unstruc-

tured grids. These conclusions are verified by discretization error analysis on typical

grid stencils and numerical accuracy tests on various types of isotropic grids.

Fig. 15 Stencils for GG-Node method

Fig. 16 Stencils for GG-IDW method and GG-LSQ method [8]
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If the face midpoint value condition is not satisfied, GG methods, such as GG-Cell

and GG-Node method on irregular or perturbed mesh, will degrade to 0th order. Nu-

merical tests indicated that on all tested isotropic grids, LSQ methods maintain at least

first-order accurate gradient reconstruction.

In terms of gradient accuracy effects on the accuracy of inviscid flow simulation, it

demonstrates that first-order accurate gradient is necessary to yield second-order FV

discretization. The GG methods that produce the 0th order gradient should not be pre-

ferred in terms of simulation accuracy for practical flow simulations since they yield

first-order FV discretization and generate much higher solution error. While second-

order FV discretizations are ensured for all LSQ methods on all types of grids.

For gradient methods that yield the first-order gradient, which is sufficient for

second-order FV schemes, it demonstrates that the gradient accuracy does not directly

imply the numerical solution accuracy.

Previous work reported that GG methods may be more robust than LSQ methods on

anisotropic grids on the curved surface [10, 11, 26, 27]. Future work will focus on the

performance of gradient reconstruction methods on anisotropic and stretched grids

with high aspect ratio and surface curvature for viscous flow simulations. Attempts on

possible modifications of GG methods according to the face midpoint value condition

will be carried out to improve the gradient and solution accuracy. While for the LSQ

methods, improving robustness on high aspect ratio grids with surface curvature is

worthful work.

8 Appendix 1
According to the approach for face midpoint value approximation, the GG methods

can be categorized (but not limited) into the following types:

(a) cell-based GG methods (GG-Cell), using a simple average value of face

neighboring cells as face midpoint value;

(b) nodal-based GG methods (GG-Node), using a simple average value of node

surrounding cells as face nodal value;

(c) inverse distance weighted GG methods (GG-IDW); (not considered in this paper)

Fig. 17 Stencils for GG-WTLI method [8] (a) single triangle (b) triangle combination
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(d) GG methods based on least-squares face interpolation (GG-LSQ), using LSQ

interpolation to calculate face midpoint value;

(e) GG methods based on weighted tri-linear face interpolation (GG-WTLI), using

weighted tri-linear interpolation to calculate face midpoint value.

Descriptions of these methods for cell-centered data structure are reviewed in the

following text.

(1) GG-Cell

As shown in Fig. 14, GG-Cell method approximates face midpoint value by simply

averaging cell values of direct neighbors.

Uij ¼ Ui þ U j

2
ð31Þ

Simple algebraic average in Eq. (31) can be replaced by distance or volume-weighted

interpolation as

Uij ¼ wiUi þ wjU j ð32Þ

where wi and wj are distance or volume weights. Neither weighted interpolation nor

simple algebraic averaged interpolation guarantees second-order face midpoint approxi-

mation. GG-Cell method with a simple algebraic average is considered only in this

paper.

(2) GG-Node

As shown in Fig. 15, GG-Node methods approximate face midpoint value by a simply

algebraic average of nodal values, as shown in Eq. (33). Nodal values are obtained by

weighted interpolation of surrounding cells, either equal-weighted, as Eq. (34) shows,

or distance/volume-weighted.

Uij ¼ UA þ UB

2
ð33Þ

UA ¼ 1
N

U1 þ U2 þ⋯þ UNð Þ ¼ 1
N

XN
j¼1

U j ð34Þ

where UA and UB are nodal values of the computed face, in this 2D case, a face/edge

consists of two nodes. Similar to GG-Cell methods, neither weighted interpolation nor

simple averaging interpolation guarantees second-order face midpoint value approxima-

tion. The GG-Node method with equal-weighted interpolation is considered in this paper.

(3) GG-IDW [8]

As shown in Fig. 16, GG-IDW method approximates face midpoint value by inverse

distance weighted interpolation.

ϕ f ¼

XN
i¼1

ϕi= ri
*
��� ���2

XN
j¼1

1= r j
*
��� ���2

ð35Þ

where jri*j represents the distance between the current face midpoint f and the stencil
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cell point i. This method is similar to GG-Node with distance weighted nodal value

interpolation where nodal values are obtained by inverse distance weighted

interpolation. So this method is only introduced and no further consideration will be

taken in this paper.

(4) GG-LSQ [8]

Also as shown in Fig. 16, GG-LSQ method approximates face midpoint value by

weighted least square approach. Value at stencil point i can be obtained by value at face

midpoint f with a gradient interpolation, as shown in Eq. (36).

ϕi ¼ ϕ f þ
∂ϕ
∂x f

�� Δxi þ ∂ϕ
∂y f

�� Δyi þ
∂ϕ
∂z f

�� Δzi þ h:o:t: ð36Þ

where Δxi, Δyi, Δzi are the components of the distance vector. With Eq. (36), interpolat-

ing all stencil points from face midpoint and neglecting the high order terms, we obtain

an over-determined system, as shown in Eq. (37). Solving the over-determined system, we

can get the face midpoint value with a minimum-error interpolation of each stencil point.

θ1 θ1Δx1 θ1Δy1 θ1Δz1
θ2 θ2Δx2 θ2Δy2 θ2Δz2
⋮ ⋮ ⋮ ⋮
θ j θ jΔx j θ jΔy j θ jΔz j
⋮ ⋮ ⋮ ⋮
θN θNΔxN θNΔyN θNΔzN

2
6666664

3
7777775

ϕ f
∂ϕ
∂x f

��
∂ϕ
∂y f

��
∂ϕ
∂z f

��

2
66666664

3
77777775
¼

θ1ϕ1
θ2ϕ2
⋮
θ jϕ j
⋮
θNϕN

2
6666664

3
7777775

ð37Þ

(5) GG-WTLI [8]

As shown in Fig. 17, GG-WTLI method approximates face midpoint value by

weighted tri-linear interpolation. Specifically, face midpoint value at f is interpolated

from three surrounding non-collinear stencil points with linear regression.

x1 x2 x3
y1 y2 y3
1 1 1

2
4

3
5 C1

C2

C3

2
4

3
5 ¼

x f

y f
1

2
4

3
5 ð38Þ

ϕ f ¼ C1ϕ1 þ C2ϕ2 þ C3ϕ3 ð39Þ

Monotone interpolation can be obtained if face midpoint f locates within the triangle

composed by the three non-collinear stencil points. Some other possible triangles for

tri-linear interpolation are shown Fig. 17b. The final approximation of face midpoint

value can be obtained by weighting each triangle’s stencil coefficients with the inverse

distance from the triangle center to the face midpoint.

9 Appendix 2
The detailed expressions of discretization errors of gradient reconstruction and face

midpoint value approximation are given below.

Table 7 shows the discretization properties of regular triangular grids (reg. tri. as

shown in Fig. 8b). For the GG-Cell method, the face value approximations for all faces

are second-order accurate and thus the gradient reconstructions of both directions are

first-order accurate. For the LSQ method with basic stencils, it produces the same error

as the GG-Cell method.
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Table 8 shows the discretization properties of regular double-split triangular grids

(reg. double-split tri. as shown in Fig. 8g). It indicates that for the GG-Cell method, face

midpoint value approximations on two faces (face BC and face AC) degrade to first-

order which is not sufficient to yield first-order gradient reconstruction as the errors of

gradient reconstruction in the table are 0th order. However, the LSQ method with basic

stencils still achieves first-order gradient reconstruction.
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