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Abstract

A truly three-dimensional (3D) gas-kinetic flux solver for simulation of incompressible
and compressible viscous flows is presented in this work. By local reconstruction of
continuous Boltzmann equation, the inviscid and viscous fluxes across the cell
interface are evaluated simultaneously in the solver. Different from conventional gas-
kinetic scheme, in the present work, the distribution function at cell interface is
computed in a straightforward way. As an extension of our previous work (Sun et al.,
Journal of Computational Physics, 300 (2015) 492–519), the non-equilibrium
distribution function is calculated by the difference of equilibrium distribution
functions between the cell interface and its surrounding points. As a result, the
distribution function at cell interface can be simply calculated and the formulations
for computing the conservative flow variables and fluxes can be given explicitly. To
validate the proposed flux solver, several incompressible and compressible viscous
flows are simulated. Numerical results show that the current scheme can provide
accurate numerical results for three-dimensional incompressible and compressible
viscous flows.
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1 Introduction
In the last few decades, the gas-kinetic scheme has been developed in both continuum

[1–8] and rarefied flow regimes [9–12]. Unlike the traditional Riemann solver [13–15],

the gas-kinetic scheme reconstructs the solution for the continuous Boltzmann equa-

tion at local cell interface. As the continuum assumption is avoided in the continuous

Boltzmann equation, the gas-kinetic scheme can be applied in both continuum and

rarefied flow problems, which is one of the advantages as compared with traditional

Riemann solver. Another advantage is that the gas-kinetic scheme can compute the in-

viscid and viscous fluxes simultaneously from the solution of Boltzmann equation. In

contrast, the traditional Riemann solver can only evaluate the inviscid flux and an add-

itional step is required to compute the viscous flux by smooth function approximation.
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Currently, there are two common types of gas-kinetic schemes: the kinetic flux vector

scheme (KFVS) and gas-kinetic Bhatnagar-Gross-Krook (BGK) scheme. In KFVS, the

Boltzmann equation without collision term, which is also called the collisionless Boltz-

mann equation, is solved. Basically, there are two stages in KFVS: free transport and

collision. In the free transport stage, the collisionless Boltzmann equation is solved to

calculate the flux at the interface. In the collision stage, the artificial collisions are

added in the calculation of initial Maxwellian distribution at the beginning of next time

step. The KFVS has been demonstrated to have good positivity property for simulation

of flows with strong shock waves [2]. However, owing to the fact that the numerical

dissipation in KFVS is proportional to the mesh size, the KFVS usually gives more dif-

fusive results than the Godunov or flux difference splitting (FDS) scheme [16], and is

not able to give accurate Navier-Stokes solutions except for cases in which the physical

viscosity is much larger than the numerical viscosity. Some of representative researches

on KFVS include Pullin [17], Deshpande [18], Perthame [19], Mandal and Deshpande

[20], and Chou and Baganoff [21].

One of the significant developments in gas-kinetic schemes is the gas-kinetic BGK

scheme, which was firstly proposed by Prendergast and Xu [22], and further developed

by Chae et al. [23], Xu [24] and other researchers. In this method, the BGK collision

model is adopted in the solution process to obtain the numerical fluxes across the

interface. As a consequence, the dissipation in the transport can be controlled by a real

collision time, which is proportional to the dynamic viscosity. The gas-kinetic BGK

scheme enjoys some intrinsic advantages. Firstly, it has been shown that the gas-kinetic

BGK scheme is able to generate a stable and crisp shock transition in the discontinuous

region with a delicate dissipative mechanism [24]. At the same time, an accurate

Navier-Stokes solution can be obtained in the smooth region. What is more, it is dem-

onstrated that the entropy condition is always satisfied in the gas-kinetic BGK scheme

and the “carbuncle phenomenon” is avoided for hypersonic flow simulations [25]. How-

ever, the gas-kinetic BGK scheme is not completely free from drawbacks. It is usually

more complicated and inefficient than conventional computational fluid dynamics

(CFD) schemes. This is because in the gas-kinetic BGK scheme, a number of coeffi-

cients related to the physical space should be calculated to evaluate the distribution

function at each interface and each time step. Moreover, to the best of our knowledge,

there is still no work of the gas-kinetic BGK scheme which can give explicit formula-

tions for evaluating the conservative variables and numerical fluxes.

Recently, a straightforward way to evaluate the distribution function was proposed by

Sun et al. [1], which is named as gas-kinetic flux solver (GKFS). Different from the gas-

kinetic BGK scheme [24], the non-equilibrium distribution function at cell interface is

approximated by the difference of equilibrium distribution functions between the cell

interface and its surrounding points in GKFS. To be specific, the equilibrium distribu-

tion functions at the surrounding points of the cell interface are firstly given by

interpolation from the conservative variables at cell centers. Then, the equilibrium dis-

tribution function at cell interface can be evaluated by a streaming process from the

surrounding points. After the above steps, the non-equilibrium distribution function at

cell interface can be simply calculated and the explicit formulations for computing the

conservative flow variables and fluxes can be derived. It has been proven that GKFS

can give the same results and only requires about 60% of the computational time as
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compared with the conventional gas-kinetic BGK scheme [1]. Inspired by the previous

work of GKFS [1], a 3D GKFS is developed in this work. In the scheme, the 3D Navier-

Stokes equations are discretized by the finite volume method and the numerical flux

across the interface is evaluated by the local solution of 3D Boltzmann equation. There-

fore, the present scheme can be viewed as a truly 3D flux solver. At the same time, a

coordinate transformation is made at the local cell interface to transform the velocities

in the Cartesian coordinate system to the normal and tangential directions of interface.

In this way, all the cell interfaces can be treated using the same way for evaluation of

conservative variables and numerical fluxes. Like the two-dimensional (2D) case, the

non-equilibrium distribution function is approximated by the difference of the equilib-

rium distribution functions between the cell interface and its surrounding points. It is

indicated that the present work is the first time to give explicit formulations for evalu-

ating the conservative variables and numerical fluxes for the 3D viscous flow problems.

Like other gas-kinetic schemes, the present scheme can be applied to both incompress-

ible and compressible viscous flow problems without any modification. To validate the

developed scheme, both incompressible and compressible viscous test cases are solved,

including 3D driven cavity flow, incompressible flow past a stationary sphere, flow

around ONERA M6 wing and DLR-F6 wing-body configuration. Numerical results

show that the present solver can provide accurate results for both incompressible and

compressible flows.

2 Boltzmann equation, Maxwellian distribution function and Navier-Stokes
equations
2.1 Boltzmann equation and conservative forms of moments for Maxwellian function

With Bhatnagar-Gross-Krook (BGK) collision model [26], the continuous Boltzmann

equation in the three-dimensional Cartesian coordinate system can be written as

∂ f
∂t

þ u
∂ f
∂x

þ v
∂ f
∂y

þ w
∂ f
∂z

¼ g− f
τ

; ð1Þ

where f is the real particle distribution function and g is the equilibrium particle distri-

bution function. τ is the collision time, which is determined by the dynamic viscosity

and the pressure. The right-hand side of the equation is the collision term which alters

the distribution function from f to g within a collision time τ. Both f and g are functions

of space (x, y, z), time (t) and particle velocity (u, v,w, ξ). The internal degree of freedom

K in ξ is determined by the space dimension and the ratio of specific heat with the rela-

tion K +D = 2/(γ − 1), where D is the abbreviation of the dimension (D = 3 in three di-

mension) and γ is the specific heat ratio. The equilibrium state g of the Maxwellian

distribution is

g ¼ ρ
λ
π

� �Kþ3
2

e−λ u−Uð Þ2þ v−Vð Þ2þ w−Wð Þ2þξ2ð Þ; ð2Þ

where ρ is the density of the mean flow; U = (U,V,W) is the macroscopic velocity vec-

tor expressed in the x-, y- and z- directions; λ =m/(2kT) = 1/(2RT), where m is the mo-

lecular mass, k is the Boltzmann constant, R is the gas constant and T is the

temperature. In the equilibrium state, ξ2 is the abbreviation of ξ2 ¼ ξ21 þ ξ22 þ⋯þ ξ2K :
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With the Maxwellian distribution function in Eq. (2), the following 7 conservative

forms of moments will be satisfied, which are used to recover Navier-Stokes equations

by Eq. (1) through Chapman-Enskog expansion analysis:Z
gdΞ ¼ ρ; ð3Þ

Z
guαdΞ ¼ ρUα; ð4Þ

Z
g uαuα þ ξ2
� �

dΞ ¼ ρ UαUα þ bRTð Þ; ð5Þ
Z

guαuβdΞ ¼ ρUαUβ þ pδαβ; ð6Þ
Z

g uαuα þ ξ2
� �

uβdΞ ¼ ρ UαUα þ bþ 2ð ÞRT½ �Uβ; ð7Þ
Z

guαuβuχdΞ ¼ p Uαδβχ þ Uβδχα þ Uχδαβ
� �þ ρUαUβUχ ; ð8Þ

Z
g uαuα þ ξ2
� �

uβuχdΞ

¼ ρ UαUαUβUχ þ bþ 4ð ÞUβUχ þ UαUαδβχ
� �

RT þ bþ 2ð ÞR2T 2δβχ
� 	

;
ð9Þ

where uα, uβ, uχ and Uα, Uβ, Uχ are the particle velocities and the macroscopic flow vel-

ocities in the α-, β- and χ- directions. p is the pressure and b = K +D represents the

total degree of freedoms of molecules. dΞ = duαduβduχdξ1dξ2⋯dξK is the volume elem-

ent in the particle velocity space. The integral domain for uα, uβ, uχ, ξ1, ξ2, …, ξK is

from −∞ to +∞. Eqs. (3)–(5) are applied to recover the fluid density, momentum and

energy, respectively. Eqs. (6) and (7) are used to recover convective fluxes of the mo-

mentum equation and the energy equation. Eqs. (8) and (9) are to recover diffusive

fluxes of the momentum equation and the energy equation.

2.2 Macroscopic governing equations discretized by finite volume method

In this work, the 3D Navier-Stokes equations are solved using the finite volume

discretization with the conservative variables defined at cell centers, which can be writ-

ten as

dW
dt

þ 1
Ω

XN
i¼1

FiSi ¼ 0; ð10Þ

where W is the vector of conservative variables, Ω and N are the volume and number

of interfaces of the control volume, respectively, Fi and Si are the flux vector and the

area of interface i. It should be noted that the numerical fluxes Fi are reconstructed lo-

cally at cell interface from the conservative variables W at cell centers. In the gas-

kinetic scheme, the connection between the distribution function f and the conservative

variables is

W ¼ ρ; ρU ; ρV ; ρW ; ρEð ÞT ¼
Z

φαfdΞ; ð11Þ

where E ¼ 1
2 ðU2 þ V 2 þW 2 þ bRTÞ. φα is the moment given by
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φα ¼ 1; u; v; w;
1
2

u2 þ v2 þ w2 þ ξ2
� �� �T

: ð12Þ

With the compatibility condition,

Z
φα

g− f
τ

dΞ ¼ 0; ð13Þ

Eq. (11) is equivalent to

W ¼ ρ; ρU ; ρV ; ρW ; ρEð ÞT ¼
Z

φαgdΞ: ð14Þ

The above equation shows that the non-equilibrium distribution function has no con-

tribution to the calculation of conservative variables.

After evaluation of conservative variables, the flux vector F can also be obtained from

the distribution function

F ¼
Z

uφαfdΞ: ð15Þ

It should be noted that Eq. (15) is the flux vector of x-direction in the Cartesian co-

ordinate system. In the practical application such as curved boundary problems, we

need to calculate the numerical flux in the normal direction of interface Fn

Fn ¼ F1; F2; F3; F4; F5ð ÞT ¼
Z

u
0
φαfdΞ; ð16Þ

where u′ is the particle velocity in the normal direction of interface. Suppose that

n1 = (n1x, n1y, n1z) is the unit vector in the normal direction of interface and n2 = (n2x,

n2y, n2z), n3 = (n3x, n3y, n3z) are the unit vectors in the tangential directions. Then,

the relationship between the particle velocities in the normal and tangential directions

(u′, v′,w′) and the particle velocities in the Cartesian coordinate system (u, v, w) are

u
0 ¼ un1x þ vn1y þ wn1z; v

0 ¼ un2x þ vn2y þ wn2z; w
0

¼ un3x þ vn3y þ wn3z; ð17Þ

and similarly

u ¼ u
0
n1x þ v

0
n2x þ w

0
n3x; v ¼ u

0
n1y þ v

0
n2y þ w

0
n3y; w

¼ u
0
n1z þ v

0
n2z þ w

0
n3z: ð18Þ

Substituting Eq. (18) into Eq. (12), we have

φα ¼

1 0 0 0 0
0 n1x n2x n3x 0
0 n1y n2y n3y 0
0 n1z n2z n3z 0
0 0 0 0 1

0
BBBB@

1
CCCCA 1; u

0
; v

0
; w

0
;

1
2

u
02 þ v

02 þ w
02 þ ξ2


 �� �T

:

ð19Þ

With the definition of a new moment
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φ�
α ¼ 1; u

0
; v

0
; w

0
;

1
2

u
02 þ v

02 þ w
0 2 þ ξ2


 �� �T

; ð20Þ

and its corresponding flux vector

F�n ¼ F�
1; F�

2; F�
3; F�

4; F�
5

� �T ¼
Z

u
0
φ�
αfdΞ; ð21Þ

the real flux vector Fn can be obtained by substituting Eq. (19) into Eq. (16) and using

Eq. (21)

Fn ¼
Z

u
0
φαfdΞ ¼

1 0 0 0 0
0 n1x n2x n3x 0
0 n1y n2y n3y 0
0 n1z n2z n3z 0
0 0 0 0 1

0
BBBB@

1
CCCCAF�

n: ð22Þ

The above Eq. (22) shows that the calculation of Fn is equivalent to the evaluation of

F�
n and the key issue is to obtain the gas distribution function f. In the next subsection,

a 3D GKFS will be introduced to evaluate the gas distribution function f at cell

interface.

3 Three-dimensional gas-kinetic flux solver
As the flux vector F�

n is evaluated at the local interface, a local coordinate system is ap-

plied in the derivation of distribution function f. It is known that the distribution func-

tion f can be separated into two parts, the equilibrium part feq and the non-equilibrium

part fneq with the relationship of

f ¼ f eq þ f neq: ð23Þ

Here, the equilibrium part feq equals to

f eq ¼ g: ð24Þ
With the Chapman-Enskog expansion analysis, the non-equilibrium distribution

function can be approximated as

f neq ¼ −τ
∂
∂t

þ u � ∇
� �

f eq ¼ −τ
∂
∂t

þ u � ∇
� �

g: ð25Þ

Therefore, the gas distribution function truncated to the Navier-Stokes level becomes

f ¼ f eq þ f neq ¼ g−τ
∂g
∂t

þ u
0 ∂g
∂n1

þ v
0 ∂g
∂n2

þ w
0 ∂g
∂n3

� �
: ð26Þ

By applying the Taylor series expansion in time and physical space, the above equa-

tion can be simplified to

f 0; 0; 0; t þ δtð Þ
¼ g 0; 0; 0; t þ δtð Þ− τ

δt
g 0; 0; 0; t þ δtð Þ−g −u

0
δt;−v

0
δt;−w

0
δt; t


 �h i
;

ð27Þ

where f(0, 0, 0, t + δt) is the gas distribution function at local interface; g(0, 0, 0, t + δt)

and g(−u′δt, −v′δt, −w′δt, t) are the equilibrium distribution functions at local interface

and its surrounding points, respectively. δt is the streaming time step. From Eq. (27), it

can be seen that the non-equilibrium distribution fneq is calculated by the difference of
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equilibrium distribution functions between the interface and its surrounding points,

which makes current GKFS be much more straightforward.

In the present work, the conservative variables in Eq. (10) are defined at cell centers.

In order to solve Eq. (10) by marching in time, the numerical flux in the normal direc-

tion of each cell interface F�n should be evaluated first. Suppose that the conservative

variables at cell centers and their first order derivatives are already known, the conser-

vative variables at the left and the right sides of an interface can be easily given by

interpolation. Then, the equilibrium distribution functions at these two sides of inter-

face can be given via Eq. (2). After that, the second order approximation of g(−u′δt,

−v′δt, −w′δt, t) at the time level t can be written as

g −u
0
δt;−v

0
δt;−w

0
δt; t


 �
¼

gl−
∂gl
∂n1

u
0
δt−

∂gl
∂n2

v
0
δt−

∂gl
∂n3

w
0
δt; u

0
≥0;

gr−
∂gr
∂n1

u
0
δt−

∂gr
∂n2

v
0
δt−

∂gr
∂n3

w
0
δt; u

0
< 0:

8><
>: ð28Þ

Where gl and gr are the equilibrium distribution functions at the left and the right

sides of interface, respectively. Note that in Eq. (28), the equilibrium distribution func-

tions at two sides of interface are not necessarily the same, which means that a possible

discontinuity has been taken into account in the form. By substituting Eq. (28) into Eq.

(27), we have

f 0; 0; 0; t þ δtð Þ ¼ g 0; 0; 0; t þ δtð Þ
−
τ
δt

g 0; 0; 0; t þ δtð Þ−glH u
0


 �
−gr 1−H u

0

 �
 �h i

−τ
∂u

0
gl

∂n1
þ ∂v

0
gl

∂n2
þ ∂w

0
gl

∂n3

� �
H u

0

 �

þ ∂u
0
gr

∂n1
þ ∂v

0
gr

∂n2
þ ∂w

0
gr

∂n3

� �
1−H u

0

 �
 �� 


;

ð29Þ

where H(u′) is the Heaviside function defined as

H u
0


 �
¼ 0; u

0
< 0;

1; u
0
≥0:

�

Equation (29) shows that the full information of distribution function at the interface

can be decided once we have the equilibrium distribution function at cell interface and

its surrounding points.

3.1 Evaluation of conservative variables W∗ at cell interface

It is known that the non-equilibrium distribution has no influence on the computation

of conservative variables, and thus Eq. (14) can be adopted to calculate the conservative

variables W∗ at local interface

W� ¼ ρ; ρU
0
; ρV

0
; ρW

0
; ρE


 �T
¼

Z
gφ�

αdΞ: ð30Þ

According to the compatibility condition (see Eq. (13)), by substituting Eq. (27) and

Eq. (28) into Eq. (30), we have
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W� ¼
Z

φ�
αg 0; 0; 0; t þ δtð ÞdΞ ¼

Z
φ�
αg −u

0
δt;−v

0
δt;−w

0
δt; t


 �
dΞ

¼
Z Z

u0>0
φ�
α gl−

∂gl
∂n1

u
0
δt−

∂gl
∂n2

v
0
δt−

∂gl
∂n3

w
0
δt

� �
dΞ

þ
Z Z

u0<0
φ�
α gr−

∂gr
∂n1

u
0
δt−

∂gr
∂n2

v
0
δt−

∂gr
∂n3

w
0
δt

� �
dΞ:

ð31Þ

The above equation shows that the conservative variables at cell interface can be ob-

tained by equilibrium distribution function of the surrounding points. By taking the

limit δt→ 0 [24], the conservative variables at cell interface can be calculated by

W� ¼
Z Z

u0>0
φ�
αgldΞþ

Z Z
u0<0

φ�
αgrdΞ: ð32Þ

The above equation means that the conservative variables at cell interface are simply

computed by the reconstructed variables of left and right sides. With parameters de-

fined in the Appendix, the conservative variables W∗ at cell interface are given by

ρ ¼ ρlal þ ρrar
� �

; ð33Þ

ρU
0 ¼ ρlbl þ ρrbr

� �
; ð34Þ

ρV
0 ¼ ρlV l

0
al þ ρrV r

0
ar


 �
; ð35Þ

ρW
0 ¼ ρlW l

0
al þ ρrWr

0
ar


 �
; ð36Þ

ρE ¼ 1
2
ρl ½cl þ ðV 02

l þW
02
l þ ðb−1Þ RTlÞ al�

þ 1
2
ρr ½cr þ ðV 02

r þW
02
r þ ðb−1Þ RTrÞ ar�;

ð37Þ

where “·l” and “·r” (“·” stands for any variable) denote the variables at the left and the

right sides of interface, respectively.

3.2 Evaluation of numerical flux F�
n at cell interface

As soon as the conservative variables at local interface W∗ are obtained, the equilibrium

distribution function g(0, 0, 0, t + δt) can be known by Eq. (2). Then the numerical flux

across the cell interface can be calculated via Eq. (29)

F�n ¼
Z

u
0
φ�
α f 0; 0; 0; t þ δtð ÞdΞ

¼
Z

u
0
φ�
αg 0; 0; 0; t þ δtð ÞdΞ− τ

δt

Z
u

0
φ�
αg 0; 0; 0; t þ δtð ÞdΞ

�

−
Z Z

u0>0
u

0
φ�
αgldΞ−

Z Z
u0<0

u
0
φ�
αgrdΞ




−τ
∂
∂n1

Z Z
u0>0

u
02
φ�
αgl þ

Z
u0<0

u
02
φ�
αgr

� �
dΞ

�

þ ∂
∂n2

Z Z
u0>0

u
0
v
0
φ�
αgl þ

Z
u<0

u
0
v
0
φ�
αgr

� �
dΞ

þ ∂
∂n3

Z Z
u0>0

u
0
w

0
φ�
αgl þ

Z
u<0

u
0
w

0
φ�
αgr

� �
dΞ



:

ð38Þ
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Note that g(0, 0, 0, t + δt) is the equilibrium distribution function at the interface and

time level t + δt, and gl, gr are the distribution functions at the left and the right sides of

interface and the time level t. By taking the limit δt→ 0, we have

−
τ
δt

Z
u

0
φ�
αg 0; 0; 0; t þ δtð ÞdΞ

�
−
Z Z

u0>0
u

0
φ�
αgldΞ−

Z Z
u0<0

u
0
φ�
αgrdΞ




¼ −τ
Z

u
0
φ�
α
∂g 0; 0; 0; tð Þ

∂t
dΞ:

ð39Þ

According to the work of Xu [24], ∂g/∂t can be expanded by

∂g 0; 0; 0; tð Þ
∂t

¼ g 0; 0; 0; tð Þ A1 þ A2u
0 þ A3v

0 þ A4w
0 þ A5ε


 �
; ð40Þ

where A1, A2, A3, A4 and A5 are the derivatives of macroscopic variables with respect to

physical space, which will be determined from the compatibility condition, ε ¼ 1
2 ðu

02

þv
02 þ w

02 þ ξ2Þ. Thus, the flux expression in Eq. (38) can be written as

F�n ¼
Z

u
0
φ�
αg 0; 0; 0; tð ÞdΞ

−τ
Z

u
0
φ�
αg 0; 0; 0; tð Þ A1 þ A2u

0 þ A3v
0 þ A4w

0 þ A5ε

 �

dΞ

−τ
∂
∂n1

Z Z
u0>0

u
02
φ�
αgl þ

Z
u0<0

u
02
φ�
αgr

� �
dΞ

�

þ ∂
∂n2

Z Z
u0>0

u
0
v
0
φ�
αgl þ

Z
u<0

u
0
v
0
φ�
αgr

� �
dΞ

þ ∂
∂n3

Z Z
u0>0

u
0
w

0
φ�
αgl þ

Z
u<0

u
0
w

0
φ�
αgr

� �
dΞ



:

ð41Þ

Note that δt→ 0 has been applied in Eq. (41). In the above equation, the only un-

determined variables are the coefficients A1, A2, A3, A4 and A5.

Substituting Eq. (29) into Eq. (11) and adopting the compatibility condition, we have

1
δt

Z
φ�
αg 0; 0; 0; t þ δtð ÞdΞ−

Z Z
u0>0

φ�
αgldΞ−

Z Z
u0<0

φ�
αgrdΞ

� 


¼ −
Z Z

u0>0
φ�
α

∂gl
∂n1

u
0 þ ∂gl

∂n2
v
0 þ ∂gl

∂n3
w

0
� �

dΞ
�

þ
Z Z

u0<0
φ�
α

∂gr
∂n1

u
0 þ ∂gr

∂n2
v
0 þ ∂gr

∂n3
w

0
� �

dΞ


:

ð42Þ

Using Eqs. (39)–(40), the above equation can be written as

Z
φ�
αg 0; 0; 0; tð Þ A1 þ A2u

0 þ A3v
0 þ A4w

0 þ A5ε

 �

dΞ

¼ −
∂
∂n1

Z Z
u0>0

u
0
φ�
αgl þ

Z
u0<0

u
0
φ�
αgr

� �
dΞ

�
þ ∂
∂n2

Z Z
u0>0

v
0
φ�
αgl þ

Z
u0<0

v
0
φ�
αgr

� �
dΞ

þ ∂
∂n3

Z Z
u0>0

w
0
φ�
αgl þ

Z
u0<0

w
0
φ�
αgr

� �
dΞ



:

ð43Þ

Defining
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∂
∂n1

Z Z
u0>0

u
0
φ�
αgl þ

Z
u0<0

u
0
φ�
αgr

� �
dΞþ ∂

∂n2

Z Z
u0>0

v
0
φ�
αgl þ

Z
u0<0

v
0
φ�
αgr

� �
dΞ

þ ∂
∂n3

Z Z
u0>0

w
0
φ�
αgl þ

Z
u0<0

w
0
φ�
αgr

� �
dΞ

¼

G1

G2

G3

G4

G5

0
BBBB@

1
CCCCA:

ð44Þ

The explicit formulations of G1 to G5 are given in the Appendix. After a similar der-

ivation process to the work of Xu [24], the coefficients A1, A2, A3, A4 and A5 can be de-

termined by

A5 ¼ −
8λ2

K þ 3ð Þρ G5−U
0
G2−V

0
G3−W

0
G4− ℜ1−U

02
−V

02
−W

02

 �

G1

h i
; ð45Þ

A4 ¼ −
2λ
ρ

G4−W
0
G1


 �
−W

0
A5; ð46Þ

A3 ¼ −
2λ
ρ

G3−V
0
G1


 �
−V

0
A5; ð47Þ

A2 ¼ −
2λ
ρ

G2−U
0
G1


 �
−U

0
A5; ð48Þ

A1 ¼ −
1
ρ
G1−U

0
A2−V

0
A3−W

0
A4−ℜ1A5; ð49Þ

where

ℜ1 ¼ 1
2

U
02 þ V

02 þW
02 þ K þ 3

2λ

� �
: ð50Þ

Once the above coefficients are obtained, the numerical flux F�n across the interface

can be calculated via Eq. (41). Similar to the conservative variables W∗, the explicit ex-

pressions for numerical flux F�n can also be given as

F�
1 ¼ ρU

0
; ð51Þ

F�
2 ¼ ρU

02 þ p

 �

−τρ A1 u
02

D E
þ A2 u

03
D E

þ A3 u
02

D E
v
01

D E
þ A4 u

02
D E

w
01

D Eh
þ 1
2
A5 u

04
D E

þ u
02

D E
v
02

D E
þ u

02
D E

w
02

D E
þ u

02
D E

ξ2
� �
 �


−τ
∂ ρldl þ ρrdr
� �

∂n1
þ ∂ ρlV

0
lcl þ ρrV

0
rcr

� �
∂n2

þ ∂ ρlW
0
lcl þ ρrW

0
rcr

� �
∂n3

" #
;

ð52Þ

F�
3 ¼ ρU

0
V

0
−τρ A1 u

01
D E

v
01

D Eh
þ A2 u

02
D E

v
01

D E
þ A3 u

01
D E

v
02

D E
þ A4 u

01
D E

v
01

D E
w

01
D E

þ 1
2
A5 u

03
D E

v
01

D E
þ u

01
D E

v
03

D E
þ u

01
D E

v
01

D E
w

02
D E

þ u
01

D E
v
01

D E
ξ2
� �
 �i

−τ
∂ ρlV

0
lcl þ ρrV

0
rcr

� �
∂n1

þ
∂ ρlV

02
l þ pl


 �
bl þ ρrV

02
r þ pr


 �
br

h i
∂n2

2
4

þ ∂ ρlV l
0
Wl

0
bl þ ρrV r

0
Wr

0
br

� �
∂n3

#
;

ð53Þ
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F�
4 ¼ ρU

0
W

0
−τρ A1 u

01
D E

w
01

D Eh
þ A2 u

02
D E

w
01

D E
þ A3 u

01
D E

v
01

D E
w

01
D E

þ A4 u
01

D E
w

02
D E

þ 1
2
A5 u

03
D E

w
01

D E
þ u

01
D E

v
02

D E
w

01
D E

þ u
01

D E
w

03
D E

þ u
01

D E
w

01
D E

ξ2
� �
 �i

−τ
∂ ρlW

0
lcl þ ρrW

0
rcr

� �
∂n1

"
þ ∂ ρlV l

0
Wl

0
bl þ ρrV r

0
Wr

0
br

� �
∂n2

þ
∂ ρlW

02
l þ pl


 �
bl þ ρrW

02
r þ pr


 �
br

h i
∂n3

3
5;

ð54Þ

F�
5 ¼ ρE þ pð ÞU 0

−
1
2
τρ A1 u

03
D E

þ u
01

D E
v
02

D E
þ u

01
D E

w
02

D E
þ u

01
D E

ξ2
� �h in

þ A2 u
04

D E
þ u

02
D E

v
02

D E
þ u

02
D E

w
02

D E
þ u

02
D E

ξ2
� �h i

þ A3 u
03

D E
v
01

D E
þ u

01
D E

v
03

D E
þ u

01
D E

v
01

D E
w

02
D E

þ u
01

D E
v
01

D E
ξ2
� �h i

þ A4 u
03

D E
w

01
D E

þ u
01

D E
v
02

D E
w

01
D E

þ u
01

D E
w

03
D E

þ u
01

D E
w

01
D E

ξ2
� �h i

þ 1
2
A5 u

05
D E

þ u
01

D E
v
04

D E
þ u

01
D E

w
04

D E
þ u

01
D E

ξ4
� �þ 2 u

03
D E

v
02

D E
þ 2 u

03
D E

w
02

D Eh
þ 2 u

03
D E

ξ2
� �þ 2 u

01
D E

v
02

D E
w

02
D E

þ 2 u
01

D E
v
02

D E
ξ2
� �þ 2 u

01
D E

w
02

D E
ξ2
� �io

−
1
2
τ

∂
∂n1

ρl el þ V
02
l þW

02
l þ b−1ð ÞRTl


 �
cl

h in�
þ ρr er þ V

02
r þW

02
r þ b−1ð ÞRTr


 �
cr

h io
þ ∂
∂n2

ρlV
0
l dl þ V

02
l þW

02
l þ bþ 1ð ÞRTl


 �
bl

h in
þ ρrV

0
r dr þ V

02
r þW

02
r þ bþ 1ð ÞRTr


 �
br

h io
þ ∂
∂n3

ρlW
0
l dl þ V

02
l þW

02
l þ bþ 1ð ÞRTl


 �
bl

h in
þ ρrW

0
r dr þ V

02
r þW

02
r þ bþ 1ð ÞRTr


 �
br

h ioo
:

ð55Þ

In Eqs. (51)–(55), the definitions of 〈⋅〉 and all coefficients can be found in the Appen-

dix. They are expressed explicitly as the functions of conservative variables and their

derivatives. In addition, since the structured mesh is used in this work, the spatial de-

rivatives in Eqs. (51)–(55) can be approximated directly by the finite difference scheme.

From the above derivations, it can be seen that there are two major differences be-

tween the present solver and the gas-kinetic BGK scheme [24]. The first difference is

that the local asymptotic solution to the Boltzmann equation (see Eq. (26)) is used to

calculate the distribution function on the cell interface for the GKFS, while the local in-

tegral solution to the Boltzmann equation is utilized for the gas-kinetic BGK scheme.

Another difference is that the non-equilibrium distribution function is approximated

by the difference of equilibrium distribution functions on the cell interface and its sur-

rounding streaming nodes in GKFS (see Eq. (27)), while in the gas-kinetic BGK scheme,

the non-equilibrium distribution function is included in the initial distribution function

around the cell interface. These differences lead to the numerical flux reconstructed by

the GKFS being time-independent (see Eq. (41)), while that of the gas-kinetic BGK

scheme is time-dependent. Since δt→ 0 is adopted, the GKFS actually reconstructs the

numerical flux at the time level t, as shown in Eq. (41). In the gas-kinetic BGK scheme,

the numerical flux can be viewed as the integral average in the time interval [t, t +Δt].

From this point of view, the temporal accuracy of the flux in GKFS is O(Δt), while that

of the gas-kinetic BGK scheme is O(Δt2). But in fact, most of the conventional CFD

schemes, such as the Roe scheme, HLL scheme and AUSM, also calculate the numer-

ical flux at the time level t, which indicates that the temporal accuracy of the flux may
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not be important for solving the Euler/Navier-Stokes equations for general cases. In

terms of simplicity, fewer coefficients are involved in GKFS than the gas-kinetic BGK

scheme.

3.3 Determination of collision time τ

Theoretically, the collision time τ in Eq. (1) is proportional to the physical viscosity

τ ¼ μ=p; ð56Þ

where μ is the dynamic viscosity and p is the pressure. However, the numerical dissipa-

tion in Eq. (56) might not be sufficient to get a stable solution in cases such as strong

shock wave. Therefore, the effective viscosity should be a combination of both physical

and numerical ones. Xu [24] proposed a simple and effective treatment to incorporate

the numerical viscosity into the gas-kinetic BGK scheme, which is also adopted in the

present work:

τ ¼ μ
p
þ jpl−prj
pl þ pr

Δt; ð57Þ

where Δt is the time step in the solution of Navier-Stokes equations, pl and pr are the

pressure at the left and the right sides of interface, respectively. The additional term of

the above equation corresponds to numerical viscosity, which is applied to take the

pressure jump with a thickness in the order of cell size into account.

3.4 Prandtl number fix

It is well known that the Prandtl number in the gas-kinetic BGK scheme corresponds

to unity [24]. Several approaches are available to make the Prandtl number be consist-

ent with the real problem. BGK-Shakhov model [27] is one of these attempts, which ad-

justs the heat flux in the relaxation term. In the Shakhov model, the Shakhov

equilibrium distribution function is given by

gs ¼ g 1þ 1− Prð Þc � q c2

RT
−5

� �
= 5pRTð Þ

� 

; ð58Þ

where g is the Maxwellian distribution function in Eq. (2), Pr is the Prandtl number,

c = u −U is the peculiar velocity and q is the heat flux

q ¼ 1
2

Z
u−Uð Þ u−Uð Þ2 þ v−Vð Þ2 þ w−Wð Þ2 þ ξ2

� �
fdΞ: ð59Þ

It can be seen from Eq. (58) that the Prandtl number can be changed to any realistic

value easily. However, considerable work has to be devoted to extend the current GKFS

to the above Shakhov model.

Another alternative approach is to make correction for heat flux, which has been pre-

sented in [24].

Fnew
5 ¼ F5 þ 1

Pr
−1

� �
q � n1; ð60Þ

where F5 is the energy flux and q is the heat flux defined in Eq. (59). Since all momen-

tums in Eq. (60) have been obtained in the evaluation of energy flux F5, there will not
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be much additional work in the above Prandtl number fix. Therefore, Eq. (60) is

employed to adjust the Prandtl number in the present work.

3.5 Computational sequence

In this section, the basic solution procedure of the current 3D GKFS is summarized as

follows:

(1) Firstly, we need to calculate the derivatives of conservative variables and

reconstruct the initial conservative variables at two sides of cell interface.

(2) Compute the unit vector in the normal direction n1 and in the tangential

directions n2 and n3 of cell interface. Convert the velocities in the Cartesian

coordinate system into the local coordinate system via Eq. (17).

(3) Calculate the conservative variables at cell interface W∗ by using Eqs. (33)–(37).

(4) Calculate the vector (G1, G2, G3, G4, G5)
T by using Eqs. (A.19)-(A.23) and

further compute coefficients A1, A2, A3, A4, A5 by Eqs. (45)–(49).

(5) Calculate the numerical flux F�
n by Eqs. (51)–(55).

(6) Compute the heat flux q via Eq. (59), and make correction for energy flux by using

Eq. (60).

(7) Convert the numerical flux in the local coordinate system F�n to the global

Cartesian coordinate system Fn by using Eq. (22).

(8) Once the fluxes at all cell interfaces are obtained, solve ordinary differential

equation (Eq. (10)) by using time marching method. This step gives the

conservative variables at cell centers at new time step.

(9) Repeat steps (1) to (8) until convergence criterion is satisfied.

4 Numerical results and discussion
To validate the proposed 3D GKFS for simulation of incompressible and compressible

viscous flows, the 3D lid-driven cavity flow, incompressible flow past a stationary

sphere, flow around ONERA M6 wing and DLR-F6 wing-body configuration are con-

sidered. For temporal discretization to Eq. (10), four-stages Runge-Kutta method is ap-

plied in cases of 3D lid-driven cavity flow and flow past a stationary sphere. In

compressible cases, the Lower-upper symmetric-Gauss-Seidel (LU-SGS) scheme [28] is

adopted to accelerate the convergence and the Venkatakrishnan’s limiter [29] is used to

calculate the conservative variables at two sides of interface WL and WR in the recon-

struction process. Specifically, WL and WR are computed by

WL ¼ WL
c þΨL

c xb−x
L
c

� � � ∇WL
c ;

WR ¼ WR
c þΨR

c xb−xRc
� � � ∇WR

c ;
ð61Þ

where WL
c and WR

c are the conservative flow variables at centers of the left and the

right cells, respectively; ∇WL
c and ∇WR

c are their corresponding first-order derivatives.

xLc , x
R
c and xb are the coordinates of the left cell center, the right cell center and the

midpoint of cell interface, respectively. ΨL
c and ΨR

c are the limiter functions utilized in

the left and the right cells, respectively. In addition, all the simulations were done on a

PC with 3.10GHz CPU.
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Before applying the GKFS to various fluid flow problems, its accuracy is first validated

by the advection of density perturbation for three-dimensional flows [30]. The initial

condition of this problem is set as

ρ x; y; zð Þ ¼ 1þ 0:2 sin π xþ yþ zð Þð Þ;
u x; y; zð Þ ¼ 1; v x; y; zð Þ ¼ 1;w x; y; zð Þ ¼ 1; p x; y; zð Þ ¼ 1:

ð62Þ

The exact solutions under periodic boundary condition are

ρ x; y; z; tð Þ ¼ 1þ 0:2 sin π xþ yþ z−3tð Þð Þ;
u x; y; z; tð Þ ¼ 1; v x; y; z; tð Þ ¼ 1;w x; y; z; tð Þ ¼ 1; p x; y; z; tð Þ ¼ 1:

ð63Þ

Since this test case belongs to the inviscid flow, the collision time τ takes

τ ¼ εΔt þ jpl−prj
pl þ pr

Δt; ð64Þ

where ε = 0.01 is used. Numerical tests are conducted on the computational domain of

[0, 2] × [0, 2] × [0, 2]. The uniform meshes with Δx = Δy = Δz = 2/N and N = 20, 40, 60,

80 are used. The L1 error of the density field at t = 2 is extracted and shown in Fig. 1. It

can be seen that the GKFS is about the second order of accuracy in space.

4.1 Case 1: 3D lid-driven cavity flow

The 3D lid-driven cavity flows in a cube are simulated to test the capability of the pro-

posed explicit GKFS for simulating 3D incompressible viscous flows. The non-uniform

mesh of 81 × 81 × 81 is used for the cases of Re = 100 and 400. The mesh point in the

x-direction is generated by

xi ¼ 0:5 1−η tan−1 1−κið Þ � tan 1=ηð Þð Þ� �
; i≤ i maxþ 1ð Þ=2;

xi ¼ 1:0−xi maxþ1−i; else:
ð65Þ

Where κi = (i − 1)/((imax − 1)/2), i and imax are the mesh point index and total

number of mesh points in the x direction; η is the parameter to control the mesh

Fig. 1 L1 error of the density field for the advection of density perturbation
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stretching and is selected as 1.1 in this study. Similarly, the mesh point in the y- and z-

directions is generated in the same way.

In the current simulation, the fluid density is taken as ρ = 1.0 and the lid velocity is

chosen as U∞ = 0.1. Initially, the density inside the cavity is constant and the flow is

static. The lid on the top boundary moves along the x-direction. The no-slip wall con-

dition is imposed at all boundaries. To quantitatively examine the performance of 3D

GKFS, the velocity profiles of x-direction component u along the vertical centerline

and y-direction component v along the horizontal centerline for Re = 100 and 400 are

plotted in Fig. 2. For comparison, the results of Shu et al. [31] and Wu and Shu [32]

are also included in the figure. It can be found that all the velocity profiles by current

3D GKFS agree very well with those of Shu et al. [31] and Wu and Shu [32], which

demonstrates the capability of present solver for the simulation of 3D incompressible

flows on non-uniform grids. To further show the flow patterns of 3D lid-driven cavity

flow, the streamlines for Re = 100 and 400 at three orthogonal mid-planes located at

x = 0.5, y = 0.5 and z = 0.5 are displayed in Fig. 3. The flow patterns along the mid-plane

of z = 0.5 in Fig. 3 demonstrate that the primary vortices gradually shift toward the cen-

ter position and the second vortices gradually move to the lower bottom wall when the

Reynolds number is increased. In this process, the strength of these vortices is also en-

hanced, which can also be proven by the flow patterns along other two mid-planes. All

these observations match well with those in Shu et al. [31].

4.2 Case 2: incompressible flow past a stationary sphere

In this section, the 3D GKFS is applied to a benchmark case of incompressible flow

past a stationary sphere. In this case, the flow is characterized by the Reynolds number

defined by Re = ρU∞D/μ, where ρ and μ are the fluid density and dynamic viscosity, re-

spectively. U∞ is the free stream velocity and D is the sphere diameter. To simulate this

test case with a simple Cartesian mesh, the implicit boundary condition-enforced

immersed boundary method [33, 34] is coupled with the present 3D GKFS. The com-

putational domain is selected as a rectangular box of 30D × 20D × 20D in the x-, y- and

z- directions. The sphere is initially placed at (10D, 10D, 10D), which is discretized by

triangular elements with 1195 vertices. As shown in Fig. 4, a non-uniform Cartesian

mesh with mesh size of 137 × 122 × 122 is used, in which a uniform mesh spacing of

0.02D is applied around the sphere. The no-slip condition on the curved boundary is

imposed by correcting the velocity on the Cartesian mesh through the immersed

boundary method [33, 34]. Here, laminar flows at low Reynolds numbers of 50, 100,

150, 200 and 250 are considered.

At first, the drag coefficients at Re = 100, 200 and 250 are computed and compared

quantitatively in Table 1 to verify the accuracy of the present solver. The numerical re-

sults of Johnson and Patel [35], Wu and Shu [32], Kim et al. [36] and Wang et al. [37]

are also included in the table for comparison. It can be clearly observed that the present

results match well with those in the literature.

Then, for the steady axisymmetric flow, the streamlines of flow past a sphere at Re ≤

200 are depicted in Fig. 5. Since the flow is axisymmetric, only the streamlines on the

x- y plane of symmetry are given. From the figure, a recirculation region appears be-

hind the sphere and its length Ls increases with Reynolds number. Quantitative
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comparison between the present results of Ls and those of Johnson and Patel [35] and

Gilmanov et al. [38] is made in Fig. 6. Good agreement can be found in the figure.

When the Reynolds number is increased to 250, the phenomenon of steady non-

axisymmetric pattern shows up, which can be seen in Fig. 7. In the figure, the stream-

lines on the x- z plane remain symmetric. However, there are two asymmetric vortices

on the x- y plane, which implies that the symmetry is lost in this plane. These results

are in good agreement with previous investigations [35, 38].

4.3 Case 3: flow around ONERA M6 wing

The ONERA M6 test case is chosen to validate the present solver for the simulation of

compressible viscous flows with complex geometry. For numerical simulation, the free-

stream Mach number is taken as M∞ = 0.8395, the mean-chord based Reynolds number

is chosen as Re = 11.72 × 106 and the angle of attack is α = 3.06∘. The computational

mesh in the NASA website [39] is adopted in this work, which has 4 blocks and 316,

932 grid points. The mesh spacing of the first mesh point adjacent to the wing surface

is 4.5 × 10−5. To take turbulent effect into consideration, the Spalart-Allmaras turbulent

model [40] is applied. Figure 8 shows the pressure contours at the wing surface ob-

tained from the present solver, in which the “λ” shape shock wave on the upper surface

is clearly presented. The above phenomenon matches well with the result from sphere

Fig. 2 Comparison of velocity profiles on the plane of z = 0.5 for 3D lid-driven cavity flow. Upper: Re = 100;
Lower: Re = 400
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Fig. 3 Streamlines on three mid-planes for Re = 100 (left) and Re = 400 (right). a mid-plane of z = 0.5.
b mid-plane of y = 0.5. c mid-plane of x = 0.5
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function-based gas-kinetic scheme [41]. To further validate the present results, the

pressure coefficient distributions at selected span-wise locations obtained from the

present solver are displayed in Fig. 9. The numerical results of WIND scheme [39] and

the experimental results [42] are also included for comparison. As can be seen from

the figure, the present results are close to those of WIND scheme [39] and compare

well with the experimental data [42]. What is more, the pressure coefficient distribu-

tions at 65% and 80% spans show that the present results are much closer to the ex-

perimental results [42] as compared with the results from WIND scheme [39]. It

demonstrates that the present solver captures the shock wave more precisely and con-

trols the numerical dissipation well.

To further investigate the performance of GKFS for simulation of high speed flows,

in this test, we change the Mach number to M∞ = 5 while keep other parameters the

same as the above case. Figure 10 shows the pressure contours and the pressure

Fig. 4 Partial view of computational mesh for flow past a sphere

Table 1 Comparison of drag coefficient for flow past a stationary sphere

Re References Cd

100 Johnson and Patel [35] 1.112

Wu and Shu [32] 1.128

Present 1.116

200 Johnson and Patel [35] 0.79

Wu and Shu [32] 0.8

Present 0.791

250 Kim et al. [36] 0.706

Wang et al. [37] 0.746

Present 0.720
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coefficient distribution at 65% span. It can be seen that the GKFS captures strong shock

wave without any oscillation and the pressure coefficient distribution agrees well with

the AUSM scheme [43].

4.4 Case 4: DLR-F6 wing-body configuration

The DLR-F6 wing-body configuration is a generic transport aircraft model from the

3rd AIAA CFD drag prediction workshop (DPW III) [44]. At first, numerical simula-

tions are conducted at a free-stream Mach number of M∞ = 0.75, a mean-chord based

Fig. 5 Streamlines at four different Reynolds numbers of 50, 100, 150 and 200 in the steady
axisymmetric regime

Fig. 6 Comparison of recirculation length Ls
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Reynolds number of Re = 3 × 106 and an angle of attack α = 0.49∘. The geometry and

computational mesh from the NASA website [45] are utilized in the current work.

Owing to the limitation of the computer’s memory, only the coarse mesh with 26

blocks and 2,298,880 cells is used. Figure 11 is the pressure contour of DLR-F6 wing-

body obtained by present GKFS. The separation bubble at the intersection of wing and

body is clearly recognized in Fig. 12, which is in line with the observations of Vassberg

et al. [46]. To make a quantitative comparison, the pressure coefficient distributions at

selected span-wise locations obtained by present 3D GKFS are compared with the ex-

perimental results [47] and numerical results of Vassberg et al. [46] and Yang et al. [48]

in Fig. 13. It can be observed that the current results are close to those of Vassberg et al.

Fig. 7 Streamlines for flow past a stationary sphere at Re = 250 in the steady non-axisymmetric regime

Fig. 8 Pressure contours of flow around ONERA M6 wing
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[46] and Yang et al. [48] and all of them basically agree well with the experimental

measurement [47].

To further verify the force coefficients of current solver for the DLR-F6 wing-body,

another test case is simulated with the free stream condition of Mach number M∞ =

0.75, Reynolds number Re = 5 × 106 and angle of attach α = 0∘. Table 2 shows the

present results of force coefficients, including lift coefficient Cl, pressure drag coeffi-

cient Cd, p, friction drag coefficient Cd, f, total drag coefficient Cd and moment coeffi-

cient CM. The results of present solver are close to the results of LBFS [48] and can

essentially match well with the reference data of Vassberg et al. [46].

Fig. 9 Comparison of pressure coefficient distributions at selected positions for ONERA M6 Wing
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5 Conclusions
This paper presents a three-dimensional GKFS for simulation of incompressible and com-

pressible viscous flows. The present work is the extension of our previous work [1], where

a new gas-kinetic scheme is presented to simulate two-dimensional viscous flows. In this

work, the non-equilibrium distribution function is evaluated by the difference of equilib-

rium distribution functions at cell interface and its surrounding points. As a result, the

distribution function at the interface can be simply derived and the formulations of the

conservative variables and fluxes at cell interface can be explicitly given. Since the solution

of 3D continuous Boltzmann equation is reconstructed locally at cell interface, the present

scheme can be viewed as a truly 3D flux solver for viscous flows. To consider general 3D

cases, a local coordinate transformation is made to transform the velocities in the global

Cartesian coordinate system to the local normal and tangential directions at each cell

interface. In this way, all the interfaces can be treated using the same way. Several numer-

ical experiments are conducted to validate the proposed scheme, including 3D lid-driven

cavity flow, incompressible flow past a stationary sphere, compressible flow around

ONERA M6 wing and DLR-F6 wing-body configuration. Numerical results showed that

the proposed flux solver can provide accurate numerical results for three-dimensional in-

compressible and compressible viscous flows.

6 Appendix
6.1 Moments of Maxwellian Distribution Function

In the paper, some notations are taken to simplify the formulations. In this appendix,

the notations for the moments of Maxwellian distribution function are introduced. At

first, the Maxwellian distribution function for 3D flows is given as (Eq. (2))

g ¼ ρ
λ
π

� �Kþ3
2

e−λ u−Uð Þ2þ v−Vð Þ2þ w−Wð Þ2þξ2ð Þ:

Following the idea of [2], the notation for the moments of g is defined as

Fig. 10 Pressure contours and pressure coefficient distribution at 65% span for ONERA M6 Wing at M∞ = 5
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ρ �h i ¼
Z

�ð Þgdudvdwdξ: ðA:1Þ

Then the general moment formualtion becomes

unvmwlξp
� � ¼ unh i vmh i wl

� �
ξph i: ðA:2Þ

It should be noted that in Section 3, the conservative variables and numerical fluxes

are derived at local interface and the transformation of velocities is made at each cell

Fig. 11 Pressure contours of DLR-F6 wing/body

Fig. 12 Separation bubble on the intersection of wing and body (left: Vassberg et al. [46]; right: present)
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Fig. 13 Comparison of pressure coefficient distributions of DLR-F6 wing/body at different locations

Table 2 Comparison of force coefficients for DLR-F6 wing-body configuration

References Cl Cd, p Cd, f Cd CM

Vassberg et al. [46] 0.51600 0.01502 0.01229 0.02731 −0.15280

Yang et al. [48] 0.52312 0.01554 0.00979 0.02533 −0.14988

Present 0.52470 0.01549 0.00947 0.02496 −0.16230
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interface. Therefore, the moments of normal and tangential velocities (u′, v′, w′) are

presented to keep pace with the formulations in the paper. As the integration of three

components of the particle velocity (u′, v′,w′) are similar to each other, only the mo-

ments of u′ are presented here. When the integral of velocity is from −∞ to +∞, the

moments of u′n and ξn are

u
00

D E
¼ 1; ðA:3Þ

u
01

D E
¼ U

0
; ðA:4Þ

u
0 nð ÞD E

¼ U
0
u

0 n−1ð ÞD E
þ n−1

2λ
u

0 n‐2ð ÞD E
; ðA:5Þ

and

ξ0
� � ¼ 1; ðA:6Þ

ξ2
� � ¼ K

2λ
; ðA:7Þ

ξ4
� � ¼ K 2 þ 2K

4λ2
: ðA:8Þ

When the moments for u′n are calculated in the half space, the exponential function

and the complementary error function appear in the formulation. Take notation of the

integral from 0 to +∞ as 〈⋅〉>0 and integral from −∞ to 0 as 〈⋅〉<0, the moments become

al ¼ u
00

D E
>0

¼ 1
2

erfc −
ffiffiffiffi
λl

p
U

0
l


 �
; ðA:9Þ

bl ¼ u
01

D E
>0

¼ U
0
lal þ

1
2
e−λlU

0
l

2

ffiffiffiffiffiffiffi
πλl

p ; ðA:10Þ

cl ¼ u
02

D E
>0

¼ U
0
lbl þ

1
2λl

al; ðA:11Þ

dl ¼ u
03

D E
>0

¼ U
0
lcl þ

1
λl
bl; ðA:12Þ

el ¼ u
04

D E
>0

¼ U
0
ldl þ 3

2λl
cl; ðA:13Þ

and

ar ¼ u
0 0

D E
<0

¼ 1
2

erfc
ffiffiffiffiffi
λr

p
U

0
r


 �
; ðA:14Þ

br ¼ u
01

D E
<0

¼ U
0
rar−

1
2
e−λrU

0
r

2

ffiffiffiffiffiffiffi
πλr

p ; ðA:15Þ

cr ¼ u
02

D E
<0

¼ U
0
rbr þ

1
2λr

ar; ðA:16Þ

dr ¼ u
0 3

D E
<0

¼ U
0
rcr þ

1
λr

br; ðA:17Þ
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er ¼ u
04

D E
<0

¼ U
0
rdr þ 3

2λr
cr : ðA:18Þ

In order to compute the coefficients A1 to A5 via Eqs. (45)–(49), the values of G1 to

G5 in Eq. (44) should be calculated in advance. The explicit formulations of G1 to G5

can be given as

G1 ¼
∂ ρlbl þ ρrbr
� �

∂n1
þ ∂ ρlV

0
lal þ ρrV

0
rar

� �
∂n2

þ ∂ ρlW
0
lal þ ρrW

0
rar

� �
∂n3

; ðA:19Þ

G2 ¼
∂ ρlcl þ ρrcr
� �

∂n1
þ ∂ ρlV

0
lbl þ ρrV

0
rbr

� �
∂n2

þ ∂ ρlW
0
lbl þ ρrW

0
rbr

� �
∂n3

; ðA:20Þ

G3 ¼ ∂ðρlV l
′bl þ ρrV r

′brÞ
∂n1

þ ∂½ðρlV ′2
l þ plÞal þ ðρrV ′2

r þ prÞar�
∂n2

þ ∂ðρlV l
′Wl

′al þ ρrV r
′Wr

′arÞ
∂n3

;

ðA:21Þ

G4 ¼ ∂ðρlW l
′bl þ ρrWr

′brÞ
∂n1

þ ∂ðρlV l
′Wl

′al þ ρrV r
′Wr

′arÞ
∂n2

þ ∂½ðρlW ′2
l þ plÞal þ ðρrW ′2

r þ prÞar �
∂n3

;

ðA:22Þ

G5 ¼ ∂
∂n1

fρl½dl þ ðV ′2
l þW ′2

l þ ðb−1ÞRTlÞbl�

þρr½dr þ ðV ′2
r þW ′2

r þ ðb−1ÞRTrÞbr�g
þ ∂
∂n2

fρlV ′
l ½cl þ ðV ′2

l þW ′2
l þ ðbþ 1ÞRTlÞal�

þρrV
′
r ½cr þ ðV ′2

r þW ′2
r þ ðbþ 1ÞRTrÞar�g

þ ∂
∂n3

fρlW ′
l ½cl þ ðV ′2

l þW ′2
l þ ðbþ 1ÞRTlÞal�

þρrW
′
r½cr þ ðV ′2

r þW ′2
r þ ðbþ 1ÞRTrÞar�g:

ðA:23Þ
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