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Abstract

The unified stochastic particle method based on the Bhatnagar-Gross-Krook model
(USP-BGK) has been proposed recently to overcome the low accuracy and efficiency
of the traditional stochastic particle methods, such as the direct simulation Monte
Carlo (DSMC) method, for the simulation of multi-scale gas flows. However, running
with extra virtual particles and space interpolation, the previous USP-BGK method
cannot be directly transplanted into the existing DSMC codes. In this work, the
implementation of USP-BGK is simplified using new temporal evolution and spatial
reconstruction schemes. As a result, the present algorithm of the USP-BGK method is
similar to the DSMC method and can be implemented efficiently based on any
existing DSMC codes just by modifying the collision module.
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1 Introduction
Multi-scale gas flows widely exist in aerospace engineering [1] and micro-electro-

mechanical systems (MEMS) [2]. Due to the invalidity of the continuous methods in

the rarefied regime and the inefficiency of the kinetic methods in the continuum re-

gime, it is challenging for the traditional numerical methods to simulate multi-scale

gas flows accurately and efficiently. One of the strategies to overcome this difficulty is

combining the continuous and kinetic methods. For example, the CFD-DSMC hybrid

method [3–5] implements the CFD solver and direct simulation Monte Carlo (DSMC)

method in different regions. Another example is the general synthetic iterative scheme

(GSIS) [6] developed recently, which is solved by the CFD and discrete velocity method

(DVM) together in the whole region but at different levels. The hybrid methods need

to exchange the information between different solvers, which will bring extra complex-

ity even stability problem [7]. Therefore, besides the hybrid methods, a straightforward

approach is to extend the application of the kinetic methods to the continuum regime.

Following this direction, many multi-scale schemes based on kinetic models, such as
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Bhatnagar–Gross–Krook (BGK) [8–10] and Fokker-Planck (FP) [11–13], have been

proposed in recent decades. One of the categories is the deterministic DVM methods

with asymptotic preserving (AP) property, such as the BGK-type penalization method

[14], the implicit-explicit (IMEX) method [15, 16], the unified gas-kinetic scheme

(UGKS) [17] and the discrete unified gas kinetic scheme [18]. However, representing

the probability density function (PDF) with discrete velocities requests a large memory

consumption, especially for hypersonic gas flows. An alternative category is the stochas-

tic particle methods, such as the BGK particle method [19] and the Fokker-Planck par-

ticle method [20]. Unlike DVM, stochastic particle methods describe the PDF using

simulation particles, of which each represents a large number of real gas molecules of a

certain velocity. Since the distribution of computational particles can adaptively be re-

fined in the velocity space, the curse of dimensionality is circumvented compared to

the DVM method.

As decoupling the particle motion and collision in most stochastic particle methods,

they only asymptotically preserve the Euler limit. For example, considering the trad-

itional stochastic particle BGK (SP-BGK) method [8, 19], when the time step is much

larger than the mean collision time, its numerical viscosity is of the first order of the

time step, i.e. μnumBGK∼Δt . An important exception is the Fokker-Planck particle method,

for which particle motion and collisions can be solved simultaneously [11]. When the

time step is much larger than the mean collision time, its numerical viscosity μnumFP con-

verges to 2μ, where μ is the gas viscosity, that is, independent of the time step [13].

Therefore, the Fokker-Planck particle method could asymptotically preserve the

Navier-Stokes limit.

Recently, a unified stochastic particle method preserving the Navier-Stokes limit based

on the BGK model, which is referred to as the USP-BGK method, has also been developed

[21] by combining a modified continuous collision term with particle motions. It has been

demonstrated by a variety of gas flows [21, 22] that with the Crank–Nicolson scheme in

the particle motion step, the USP-BGK method has second-order accuracy in the con-

tinuum regime. In the aspect of implementation, the USP-BGK method is quite similar to

the other particle methods such as DSMC. However, to involve the collision effect in the

process of particle motions, virtual particles need to be introduced. In addition, to make

the spatial accuracy consist with the temporal accuracy, a second-order interpolation in

space is employed to obtain the mean quantities related to the individual particle. Since

these two aforementioned procedures are not contained in the original DSMC method,

transplanting the USP-BGK method into the existing DSMC program code is not

straightforward. To make the principle of USP-BGK easier to be understood and

minimize the difference of implementation between USP-BGK and DSMC, an efficient al-

gorithm of USP-BGK is developed in the present work.

The remainder of this paper is organized as follows. In section 2, we first review the

principle and the solution algorithm of the unified stochastic particle BGK method.

Then, the temporal evolution and spatial reconstruction of the efficient algorithm is in-

troduced in section 3. Note that the simplified time scheme without virtual particles

was already developed in the hybrid USPBGK-DSMC method [23]. Here we present a

sole USP-BGK version for the sake of clarity. In section 4, we provide numerical results

for several typical gas flows, and the accuracy of the proposed method is also validated.
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2 Review of the USP-BGK method
The BGK model simplifies the Boltzmann collision term using a relaxation process. In

general, its dimensionless kinetic equation can be written as

∂ f
∂t

þ ci
∂ f
∂xi

¼ 1
ε

f t− fð Þ; ð1Þ

where f(c; x, t) is the weighted probability density function, which is defined as n = ∫

f(c; x, t)dc. n is the number density, and c is the molecule velocity at position x and

time t. The subscript i indicates the i-th component in three-dimensional space. ft is a

target distribution function for the relaxation process [19]. In the original BGK model,

ft is assumed to be the Maxwellian distribution function, i.e.

f i ¼ f M ¼ n
2
π

� �3

exp −
4C2

πT

� �
ð2Þ

where C = c −U is the peculiar molecular velocity, U is the mean velocity, and T is

temperature. The Prandtl number (Pr) of the original BGK model is always unity for

any gas flows. To correct the Prandtl number, the Shakhov [24] (SBGK) and ellipsoidal

statistical [25] (ESBGK) BGK models are usually applied. Non-dimensional variables

used in the present paper are defined as,

x̂ ¼ x
x�

; n̂ ¼ n
n�

; ĉ ¼ c

C
; t̂ ¼ t

x�=C
; f̂ ¼ f

n�=C
3 ; ð3Þ

where x∗ and n∗ are the reference length and number density, respectively, C

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8RT �=π

p
is the mean thermal reference velocity and T∗ is the reference

temperature. R = kB/m is the gas constant, m is the molecular mass, and kB is the Boltz-

mann constant. Therefore, the Knudsen number ε is defined as ε ¼ C=ðυBGKx�Þ, where
υBGK = p/μ is the collision frequency of the BGK model, μ is the gas viscosity and p is

the pressure. For the sake of simplicity, all the equations, unless specified differently,

will be presented in the dimensionless form without hats on top of the variables.

The BGK equation can be either solved using the DVM [26] or stochastic particle [8]

methods. Similar to DSMC, the traditional SP-BGK method [19] decouples the particle

motion and collision, i.e., the BGK equation is numerically solved in sequence,

∂ f �

∂t
þ ci

∂ f �

∂xi
¼ 0 ð4aÞ

and

∂ f
∂t

¼ 1
ε

f t− fð Þ: ð4bÞ

Decoupling the particle motion and collision is easily and naturally implemented in

the stochastic particle methods. Note that the particle motion step as shown in Eq. (4a)

is represented by a collisionless kinetic equation, so if the time step is larger than the

mean collision time, its numerical dissipation is of the first order of the time step size.

To extend the applicability of the SP-BGK method, a unified stochastic particle method

based on the BGK model (USP-BGK) has been proposed recently [21]. Similarly, the

USP-BGK method also consists of particle motion and collision steps, i.e.
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∂ f �

∂t
þ ci

∂ f �

∂xi
¼ J�USPBGKð Þ ð5aÞ

and

∂ f
∂t

¼ 1
ε

f t− fð Þ− J�USPBGKð Þ: ð5bÞ

The key difference is that the collision term in the USP-BGK method is divided into

two parts, and the continuous part is calculated with particle motion simultaneously.

For monoatomic gas, the continuous part J(USPBGK) is closed by the 13 moments Grad’s

distribution function f|Grad, i.e.

J USPBGKð Þ ¼ Pc

ε
f M− f Gradj
� �

¼ −
Pc

ε
σ ij

2ρT 2

8
π

� �2

C<iC j> þ 2qiCi

5ρT2 Pr
8
π

� �2 4C2

πT
−
5
2

� �" #
f M; ð6Þ

where ρ is the density, σij is the shear stress, qi is the heat flux, and C<iCj> denotes the

symmetric and trace-free part of the tensor CiCj. The multi-scale parameter Pc, which

denotes the degree of the continuum, tends to 1 in the continuum regime and 0 in the

rarefied regime. It is employed to avoid the negativity of the first-order Chapman-

Enskog expansion assumed in the modified collision term. In the present paper, we

choose Pc = e−αε/Δt and set α = 0.1. Note that ε/Δt is also a good estimator for the rarefi-

cation as presented in ref. [23], and importantly it can be calculated from the PDF of

local computational particles. Therefore, with small Knudsen numbers, the particle mo-

tion step as shown in Eq. (5a) is represented by a first-order Chapman-Enskog expan-

sion of the BGK equation and converges to the NS limit. Otherwise, with large

Knudsen numbers, the USP-BGK method reduces to the traditional SP-BGK method as

shown in Eqs. (4a, 4b).

For the particle motion step as shown in Eq. (5a), to obtain a second order of accur-

acy in time, it is numerically solved with the Crank–Nicolson scheme, i.e.

f � c; x;Δtð Þ ¼ Δt
2

J�USPBGKð Þ c; x;Δtð Þ þ J USPBGKð Þ c; x−cΔt; 0ð Þ
h i

þ f c; x−cΔt; 0ð Þ; ð7Þ

with the initial condition f∗(c; x, 0) = f(c; x, 0). By introducing two auxiliary PDFs [18],

~f
� ¼ f �−

Δt
2

J�USPBGKð Þ ð8aÞ

and

f
_¼ f þ Δt

2
J ðUSPBGKÞ; ð8bÞ

Eq. (7) can be rewritten as

~f
�
c; x;Δtð Þ ¼ f

_
c; x−cΔt; 0ð Þ: ð9Þ

Therefore, ~f
�ðc; x;ΔtÞ can be obtained after tracking the computational particles

along the characteristic line dx/dt = c as same as the traditional SP-BGK method.
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Additionally, the PDF f∗(c; x,Δt) after the particle motion step needs to be recon-

structed from Eq. (8a).

For the collision step as shown in Eq. (5b), using the initial PDF generated by the par-

ticle motion step f∗(c; x,Δt), the integration solution is applied as same as the traditional

SP-BGK method, that is,

f c; x;Δtð Þ ¼ f � c; x;Δtð Þe−Δt=ε

þ 1−e−Δt=ε
� �Z Δt

0

et=ε

ε eΔt=ε−1ð Þ f t c; x; tð Þdt−ε 1−e−Δt=ε
� �

� J�USPBGKð Þ c; x;Δtð Þ ð10Þ

It should be noted that if the time step is larger than the mean collision time, the tar-

get distribution function ft(c; x, t) is no longer reasonable to be assumed constant as in

the SP-BGK method, so a particle velocity resampling should be exactly implemented

based on Eq. (10). Finally, we can construct f
_ ðc; x;ΔtÞ using Eq. (8b) and consider it

as the initial PDF for the next time step. The procedure described above starting from

Eq. (7) is repeated until the simulation is finished, and the detailed algorithm can be

found in reference [21].

3 An efficient algorithm of the USP-BGK method
Compared to the traditional SP-BGK method, three more operations need to be imple-

mented in the USP-BGK method. First, according to Eqs. (8a, 8b), the auxiliary PDFs ~f

and f
_

should be constructed before and after particle motion; second, according to Eq.

(10), an exact integral term of PDF needs to be sampled; third, to be consistent with

the second order of accuracy in time, the spatial reconstruction based on the particle

location should also be implemented. In the previous paper [21], the auxiliary PDFs are

constructed by adding virtual particles and a new time sampling method is applied to

deal with the integral term. Besides, linear interpolation is used to reconstruct the

macroscopic quantities of calculated particles with second-order accuracy in space. The

aforementioned operations would inevitably increase the complexity of computation.

To make the USP-BGK method as simple as the other particle methods such as DSMC,

an efficient algorithm improving temporal evolution and spatial reconstruction is pro-

posed in the present paper.

3.1 Temporal evolution

To avoid employing virtual particles, one can directly update the simulation based on

the auxiliary PDFs themselves as shown in the particle motion step Eq. (9). Therefore,

only the collision step (Eq. (10)) needs to be modified. For this purpose, the governing

equation of the collision step, i.e. Eq. (5b), is modified as

∂ f
∂t

¼ 1
ε

f U− fð Þ; ð11Þ

where the proposed target distribution fU is assumed as

f U ¼ f M 1þ ψ1
σ ij

2ρT 2

8
π

� �2

C<iC j> þ ψ2
2Ciqi
5ρT 2 Pr

8
π

� �2 4C2

πT
−
5
2

� �" #
; ð12Þ
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where ψ1 and ψ2 are two undetermined coefficients. Using the initial PDF ~f
�ðc; x;ΔtÞ

obtained from Eq. (9), the numerical solution of Eq. (11) can be written as,

f
_

c; x;Δtð Þ ¼ e−Δt=ε~f
�
c; x;Δtð Þ þ 1−e−Δt=ε

� �
f �U c; x;Δtð Þ: ð13Þ

Letting the right-hand side of Eq. (13) equal to f
_ ðc; x;ΔtÞ that obtained from Eq.

(10), then ψ1 and ψ2 can be determined. Note that Eqs. (9) and (13) have the same form

as the solutions of the particle motion and collision steps of the traditional SP-BGK

method [23] except for the different target distribution. In this way, virtual particles are

not needed for simulation.

Next, we exactly derive Eq. (10) in the USP-BGK method. In the present algorithm,

the Shakhov BGK model is employed to correct the Pr number, i.e. the target distribu-

tion reads

f t ¼ f S ¼ f M 1þ 1− Prð Þ 2Ciqi
5ρT 2

8
π

� �2 4C2

πT
−
5
2

� �" #
: ð14Þ

Substituting it into Eq. (10), we have

f
_

c; x;Δtð Þ ¼ e−Δt=ε~f
�
c; x;Δtð Þ þ 1−e−Δt=ε

� �
f M

Z Δt

0

et=ε

ε eΔt=ε−1ð Þ 1þ 1− Prð Þ 2Ciqi tð Þ
5ρT 2

8
π

� �2 4C2

πT
−
5
2

� �" #
dt

þPc
σ ij�

2ρT 2

8
π

� �2

C<iC j> þ 2Ciqi
�

5ρT 2 Pr
8
π

� �2 4C2

πT
−
5
2

� �" #
8>>>><
>>>>:

9>>>>=
>>>>;

−
Δt
2
Pc

ε
1þ e−Δt=ε
� �

f M
σ ij�

2ρT 2

8
π

� �2

C<iC j> þ 2Ciqi
�

5ρT2 Pr
8
π

� �2 4C2

πT
−
5
2

� �" #
:

ð15Þ

Multiplying mCiC
2/2 on both sides of Eq. (5b) and taking ensemble average, the mo-

ment equation of the heat flux is obtained as

∂qi
∂t

¼ −
Pr
ε
qi þ

Pc

ε
Prqi

�: ð16Þ

Hence, the solution of the heat flux at time t is

qi tð Þ ¼ e− Pr�t=εqi
� þ 1−e− Pr�t=ε

� �
Pcqi

�: ð17Þ

Substituting it into the right-hand side of Eq. (15), then f
_ ðc; x;ΔtÞ is obtained

f
_

c; x;Δtð Þ ¼ e−Δt=ε~f
�
c; x;Δtð Þ þ 1−e−Δt=ε

� �
f M

1þ Pc−
1þ e−Δt=ε

1−e−Δt=ε
Δt
2
Pc

ε

� �
σ ij�

2ρT2

8
π

� �2

C<iC j>

" #

þ Pc

Pr
þ 1−Pcð Þ

Pr
e−PrΔt=ε−e−Δt=ε

1−e−Δt=εð Þ −
Δt
2
Pc

ε

1þ e−Δt=ε
� �
1−e−Δt=εð Þ

 !
2qi

�Ci

5ρT2 Pr
8
π

� �2 4C2

πT
−
5
2

� �" #
8>>>><
>>>>:

9>>>>=
>>>>;
:

ð18Þ

Compared Eq. (13) with Eq. (18), the undetermined coefficients are calculated as
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ψ1 ¼ Pc−
1þ e−Δt=ε

1−e−Δt=ε
Δt
2
Pc

ε
ð19aÞ

and

ψ2 ¼
Pc

Pr
þ 1−Pcð Þ

Pr

e−PrΔt=ε−e−Δt=ε
� �

1−e−Δt=εð Þ −
Δt
2
Pc

ε

1þ e−Δt=ε
� �
1−e−Δt=εð Þ : ð19bÞ

From Eq. (13), we can obtain f
_ ðc; x;ΔtÞ after the collision step, and then it is dir-

ectly applied to particle motions in the next time step. Note that this technique has

been first introduced in the USPBGK-DSMC hybrid method [23]. In the hybrid

method, the USP-BGK method is only applied to the continuum regime, and the rar-

efied regime is solved by DSMC. In this work, with the multi-scale parameter Pc, the

present algorithm is used in the whole flow regimes.

3.2 Spatial reconstruction

To reach a second-order accuracy, besides the temporal evolution, it also requires the

same order of accuracy in space. In the particle motion step, the particle tracking is

exactly solved; however, in the collision step, to reconstruct the target distribution at

the location of the simulated particle, the mean velocity and temperature with second-

order accuracy need to be interpolated based on the flow field. In CFD, there are a lot

of methods to obtain second-order interpolation, such as the linear interpolation used

in the previous paper [21]. However, calculating interpolation would bring extra com-

plexity to the program code. Moreover, its statistical noise would introduce additional

numerical dissipation and instability. On the other hand, in most stochastic particle

methods such as DSMC, they only need to deal with the local macro variables. There-

fore, the interpolation module is usually not required in DSMC codes. In order to

transplant the USP-BGK method to the existing DSMC software easily, an interpolation

technique based on particle tracking is proposed as follows.

Mean quantities of the computational particle, such as the mean velocity uk(xp, t) and

temperature Tk(xp, t), equal to the macro velocity U(xp, t) and temperature T(xp, t) of

the flow field at the particle location xp and time t, i.e. uk(xp, t) =U(xp, t) and Tk(xp, t) =

T(xp, t). We assume that the macro variables of the flow field at the same location are

averaged from surrounding particles, taking macro velocity as an example, it is approxi-

mated as

U xp; t
� � ¼

XNp

k¼1

U x j; t; xp þ Δx∈ j
� �

K Δxð Þ

Np
; ð20Þ

where U(xj, t; xp +Δx ∈ j) represents the macro velocity of the cell j, which contains the

sampling particle located at xp +Δx, and xj is the cell center. K(Δx) is a symmetric ker-

nel, which represents the spatial distribution of sampling particles. The number of sam-

pling particles is

Np ¼
Z

fK Δxð Þdcdx ¼
Z

~f K Δxð Þdcdx ¼
Z

f
_
K Δxð Þdcdx ¼

X
k

K Δxð Þ: ð21Þ
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Note that the auxiliary PDFs do not change the averaging results. In Eq. (20), we ap-

proximate the mean velocity of the sampling particle at xp +Δx with the macro velocity

of the cell. As shown in proposition 3.1, the estimator of U(xp, t) with such simplifica-

tion can also obtain second-order accuracy.

Proposition 3.1 With a symmetric kernel K(Δx), the macro velocity and its derivation

obtained from Eq. (20) have second-order accuracy.

Proof If replaced U(xj, t; xp +Δx ∈ j) by the exact mean velocity of sampling particle

at xp +Δx, then Eq. (20) is rewritten as

U0 xp; t
� � ¼

XNp

k¼1

uk xp þ Δx; t
� �

K Δxð Þ

Np
: ð22Þ

Using Tayler expansion, Eq. (22) is expanded as

U0 xp; t
� � ¼

XNp

k¼1

uk xp; t
� �þ ∂2uk xp; t

� �
∂x2

Δx2 þ O Δx3
� �" #

K Δxð Þ

Np
: ð23Þ

If choosing K(Δx) as a symmetric function, it is easily found that the first-order term

vanishes and the macro velocity and its derivation based on Eq. (22) have second-order

accuracy.

Next, combining Eqs. (20) and (22), the error between U(xp, t) and U ' (xp, t) is calcu-

lated as

Error U−U0ð Þ ¼

XNp

k¼1

U x j; t; xp þ Δx∈ j
� �

−uk xp þ Δx; t
� �	 


K Δxð Þ

Np
: ð24Þ

Taking Tayler expansion around xp again, we obtain

Error U−U0ð Þ ¼

XNp

k¼1

∂U xp; t
� �
∂x

x j−xp
� �

−
∂U xp; t
� �
∂x

Δxþ O Δx2
� �� �

K Δxð Þ

Np
: ð25Þ

Since xj is determined by Δx and xp, it can be expanded as xj = xp + a1Δx + a2Δx
2 +

O(Δx3). Substituting it into Eq. (25), it is obtained

Error U−U0ð Þ ¼

XNp

k¼1

∂U xp; t
� �
∂x

a2Δx2 þ O Δx2
� �� �

K Δxð Þ

Np
; ð26Þ

where the first-order term of Δx vanishes due to the symmetric kernel. Therefore, ac-

cording to Eqs. (23) and (26), the estimator U(xp, t) introduced in Eq. (20) also satisfies

the second-order accuracy in space, if a symmetric kernel is employed.

In simulations, it is not necessary to take the average for Np particles as Eq. (20) at

every time step. Instead, only one sampling particle is required, i.e. a random distance

Δx can be first sampled based on the kernel function, then the mean velocity of the

computational particle is taken as the macro velocity of the cell where the sampling
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particle is located. Therefore, we can simply assume the mean velocity of the simulated

particle as

u xp; t
� �

≡U x j; t; xp þ Δx∈ j
� �

: ð27Þ

Similarly, the temperature of the computational particle is taken as

T xp; t
� �

≡ T x j; t; xp þ Δx∈ j
� �

: ð28Þ

Applying Eqs. (27) and (28), only the macro variables of the cell are required when

calculating the collision step.

Two symmetric kernels are employed and tested in the present paper, one is the uni-

form kernel, i.e.

KUniform Δxð Þ ¼ 1 Δxi∈ −Δh=2;Δh=2½ �
0 otherwise



; ð29Þ

where Δh is the cell size. Another one is the Gaussian kernel, i.e.

KGauss Δxð Þ ¼ 1
2πσx

� �3=2

exp −
Δx2

2σx

� �
; ð30Þ

where σx = (Δh/2)2. Note that it is free to use any other symmetric kernels.

3.3 Implementations of the efficient algorithm of the USP-BGK method

According to the algorithm introduced in sections 3.1 and 3.2, its implementations are

outlined in Table 1.

In addition, after resampling particle velocity in the collision step, the momentum

and energy conservation should be ensured in every cell. Therefore, the particle veloci-

ties need to be modified as,

c ¼ c0−
XNc

k¼1

c
0
k=Nc

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RT Nc−1ð Þ

XNc

k¼1

c
0
k−
XNc

k¼1

c
0
k=Nc

 !2

vuuuut þU; ð31Þ

where c' and c represent the velocities before and after modification, respectively. Nc is

the number of particles in the cell.

Table 1 Outline of the efficient algorithm of the USP-BGK method

1.
Initialization

Introduce initial computational particles in the computational domain. Their velocities are
sampled from the initial auxiliary PDF f

_ ðc; x; 0Þ.
2. Streaming Move the computational particles with their velocities and apply boundary conditions to obtain

~f
�ðc; x;ΔtÞ.

3. Collision (1 − e−Δt/ε) part of particles are randomly selected from the cell to assign new velocities, which
are sampled from the PDF fU; the velocities of the remaining part of particles are unchanged. fU
is calculated based on Eqs. (12) and (19a, 19b). Their mean velocity and temperature are
obtained based on particle tracking interpolation as shown in Eqs. (27) and (28), respectively. σ�ij
and q�i use the average values of the computational cell, which are obtained according to
Appendix.
After the collision step, the PDF of the computational particles is equal to f

_ ðc; x;ΔtÞ and
prepared for the next time step.

4. Sampling Sample the macroscopic quantities (also see Appendix).
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4 Numerical simulations
4.1 Homogeneous relaxation

The relaxation process in the homogeneous flow is first investigated to validate the

time scheme in the collision step, i.e. Eq. (13). The initial velocity PDF is described by

the 13 moments Grad’s distribution function, i.e.

f Gradj ¼ 1þ σ ij
2ρT2

8
π

� �2

C<iC j> þ 2qiCi

5ρT 2

8
π

� �2 4C2

πT
−
5
2

� �" #
f M; ð32Þ

where the number density is set to be n0 = 1.885 × 1020m−3, the initial velocity is zero

and temperature is T0 = 273K. The initial shear stress and heat flux are 0.1p0 and 0:1p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT 0=2m

p
, respectively, and p0 = n0kBT0. Argon gas is considered and Pc is set to be

zero for the homogeneous case. Four different time-step sizes are calculated and com-

pared, i.e. Δt ∈ {0.1τc, 0.25τc, 2.0τc, 4.0τc}, and τc is the mean collision time. Figure 1(a)

shows the relaxation of shear stress and heat flux. All of the results are consistent with

each other and independent of the time step. Figure 1(b) gives the evolution of the

temperature. We note that energy conservation is also well ensured for a wide range of

time step size.

4.2 Sod tube

The Sod’s 1D shock tube problem is a typical multiscale gas flow, and here a case se-

lected from ref. [27] is simulated. The length of the tube is 1 m, and initially there exists

a discontinuity in the density at x = 0.5 m. The initial density on the left and right-hand

sides of the discontinuities are 10−4kg/m3 and 0.125 × 10−4kg/m3, respectively. The

macro velocity of the gas flow is zero and the temperature is 273 K at the beginning.

Argon gas is considered, and the viscosity exponent ω is 0.81, i.e. μ = μ0(T/Tref)
ω, μ0 =

2.117 × 10−5Pa ⋅ s and Tref = 273K. In this simulation, 60 uniform cells were employed,

and the time step size was four times larger than the mean collision time of the left-

hand side tube. The efficient USP-BGK method computes up to the final time tfinal =

6.8 × 10−4s, and two kernel functions, i.e. uniform and Gaussian, are tested. Figure 2

Fig. 1 a relaxation of shear stress and heat flux; b temperature evolution in the homogeneous flow with
four different time step size Δt ∈ {0.1τc, 0.25τc, 2.0τc, 4.0τc}.
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shows the temperature and density distribution at the final time. The results of the two

kernel functions agree with each other and both are in good agreement with DSMC.

Due to the varied density, the ratio between the time step and the local mean collision

time changes from 4.0 to 0.5 through the tube, i.e. Δt ∈ [0.5τc, 4.0τc]. Therefore, the re-

sults of Fig. 2 also indicate that the efficient USP-BGK method with both uniform and

Gaussian kernels can well capture the multi-scale gas flow.

4.3 Poiseuille flow

The Poiseuille flow is confined between two infinite and parallel plates and is driven by

a pressure gradient dp/dx along the plates. The temperature of the upper and lower

plates is fixed at 273 K, and the fully diffusive boundary condition is employed for these

two plates. The Argon gas is initially set up at the standard condition (p =1 atm and

T = 273K). Two different Knudsen numbers (Kn = λ/L) are calculated, i.e., Kn = 0.1 and

Kn = 0.001. L is the distance of the two plates and λ is the mean free path. The pressure

gradients are 4.0 × 106 Pam−1 for Kn = 0.001 and 4.0 × 1010 Pam−1 for Kn = 0.1, re-

spectively. Uniform computational cells are employed and the CFL number is 1.0 for

Kn = 0.1 and 0.5 for Kn = 0.001. We compared the L2-norm of error for velocities of the

traditional SP-BGK and USP-BGK methods, i.e.,

ux−u
s
x

�� ��
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ux−usx
� �2D Er

; ð33Þ

where usx is the reference velocity and the symbol 〈⋯〉 denotes an ensemble average

over all meshes. usx is determined by the NS solution for Kn = 0.001 and obtained from

the finest simulation data for Kn = 0.1. Both the SP-BGK and USP-BGK methods em-

ploy the same spatial reconstruction proposed in section 3.2 and the uniform kernel is

applied. However, their temporal evolution is different, where the SP-BGK method de-

couples the particle motion and collision and performs as ref. [8]. Figure 3 shows that

in the continuum regime (Kn = 0.001) the USP-BGK method has smaller numerical dis-

sipation and second-order accuracy; in the rarefied regime (Kn = 0.1), when the time

Fig. 2 (Color online) Sod tube case. a temperature and b density at the final time tfinal = 6.8 × 10−4s. The
solid lines are results of DSMC obtained by S. Tiwari [27] and the symbols refer to the efficient
USP-BGK results
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step is much smaller than the mean collision time, the USP-BGK method reduces to

the SP-BGK method and both methods have similar performance.

4.4 Taylor-Green vortex flow

The Taylor-Green vortex flow [28] is widely used to investigate the order of accuracy.

For a 2D and low Mach number flow, the analytic solutions of the Taylor-Green vortex

flow can be obtained from the Navier–Stokes equation, i.e.

Ux x; y; tð Þ ¼ −U0 cos kxxð Þ sin kyy
� �

e−k
2μt=ρ; ð34Þ

Uy x; y; tð Þ ¼ kx
ky

U0 cos kyy
� �

sin kxxð Þe−k2μt=ρ; ð35Þ

and

p x; y; tð Þ ¼ p0−
1
4
ρ0U

2
0 cos 2kxxð Þ þ kx

ky

� �2

cos 2kyy
� �" #

e−2k
2μt=ρ; ð36Þ

where U0 and p0 are the reference velocity and pressure, respectively. kx = 2π/Lx and

ky = 2π/Ly represent the wavenumbers in x and y directions, and k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
. Lx and

Ly are the length of the two-dimensional computational domain, Lx = Ly = 1.0 m. In the

current simulation, we set the Mach number Ma ¼ U0=
ffiffiffiffiffiffiffiffiffiffiffi
γRT 0

p ¼ 0:1, and the refer-

ence temperature T0 = 273K. The Reynolds number Re = ρ0U0Lx/μ0 = 100, and the ref-

erence viscosity is set as same as that in the Sod tube case. The initial velocity of the

particles is sampled from the PDF of first-order Chapman-Enskog expansion, in which

the macro quantities and their derivatives are computed by the analytical solutions in

Fig. 3 L2-norm of the Ux-errors in Poiseuille flow obtained by the USP-BGK and SP-BGK methods in the
continuum (Kn = 0.001) and rarefied (Kn = 0.1) flow regimes
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Eqs. (34) and (35) at t = 0. Besides, the initial density is assumed to be uniform in the

computational domain and equals to ρ0. Then the initial temperature is calculated from

Eq. (36).

The Taylor-Green vortex flow is simulated up to the final time t = ln(2)/(k2μ/ρ). Uni-

form meshes in two dimensions are employed, and the number of computational cells

changes from 20 × 20 to 50 × 50. The time step is determined by the CFL number,

which is 0.4 in all cases. Figure 4 presents the L2-norm of errors of Ux depended on the

cell size Δh, and Us
x is the accurate solution obtained in Eq. (34). We note that both

the uniform and Gaussian kernels can obtain second-order accuracy, and the numerical

dissipation of the uniform kernel is smaller than the Gaussian one.

4.5 Two-dimensional Riemann problem

For the compressive gas flow, one of the two-dimensional Riemann problems is studied

[29]. The computational domain is set as [0, 1] × [0, 1] (m2). Constant initial data is

taken in each quadrant, i.e.

ρ;U ;V ; pð Þ ¼
0:5313; 0:0; 0:0; 0:4ð Þ x∈ 0:5; 1½ �; y∈ 0:5; 1½ �
1:0; 0:7276; 0:0; 1:0ð Þ x∈ 0; 0:5½ Þ; y∈ 0:5; 1½ �
0:8; 0:0; 0:0; 1:0ð Þ x∈ 0; 0:5½ Þ; y∈ 0; 0:5½ Þ
1:0; 0:0; 0:7276; 1:0ð Þ x∈ 0:5; 1½ � y∈ 0; 0:5½ Þ

8>><
>>: ; ð37Þ

where U and V normalized by
ffiffiffiffiffiffiffiffiffi
RT 0

p
are the macro velocity in x and y direction, and

T0 = 273K. The density and pressure are normalized by ρ0 = 1.78kg/m3 and p0 = ρ0RT0,

respectively, and Argon gas is applied. A 200 × 200 uniform mesh is employed, and the

CFL number is set to be 0.4. The viscosity is also set as same as that in the Sod tube

Fig. 4 L2-norm of the Ux-errors for the efficient USP-BGK method in the Taylor-Green vortex flow depended
on the cell size, and Δh ∈ {1/50, 1/40, 1/30, 1/20} (m). The uniform and Gaussian kernel functions
are employed
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case. Figure 5 shows the density contours at t ¼ 0:2=
ffiffiffiffiffiffiffiffiffi
RT 0

p
. It is noted that the uniform

and Gaussian kernels obtain a consistent result and both can capture the shock wave

properly.

5 Conclusion
The USP-BGK method can calculate the multi-scale gas flow much more efficient than

the traditional stochastic particle methods. To simplify the implementation of the USP-

BGK method, a new temporal evolution and spatial reconstruction scheme was pre-

sented in the present work. Four typical numerical cases, such as the homogeneous and

multi-scale sod tube flows, the weak and strong compressive flows, have been used to

validate this efficient algorithm. Without additional virtual particles and spatial

interpolation, the efficient algorithm of USP-BGK implements as same as DSMC except

for the collision term, which resampling a target distribution like the traditional BGK

particle method [19]. Therefore, a USP-BGK programme can be easily accomplished

based on any DSMC codes by replacing the collision module only. This algorithm can

also be implemented in the hybrid USPBGK-DSMC method and would reduce the

complexity of the computing programme significantly.

6 Appendix
6.1 Calculation of macroscopic quantities from the auxiliary PDFs

Since the collision operator conserves mass, momentum, and energy, the conserved

variables can be calculated from the auxiliary PDFs directly, they are

ρ ¼
Z

mfdc ¼
Z

m f
_
dc ¼

Z
m~f dc; ðA1Þ

ρUi ¼
Z

mcifdc ¼
Z

mci f
_
dc ¼

Z
mci~f dc ðA2Þ

and

Fig. 5 Density distribution of the 2D Riemann problem using the efficient USP-BGK method with a Gaussian
and b uniform kernel functions

Fei et al. Advances in Aerodynamics            (2021) 3:18 Page 14 of 16



ρe ¼ 3
2
ρRT ¼

Z
1
2
mC2 f dc ¼

Z
1
2
mC2 f

_
dc ¼

Z
1
2
mC2~f dc: ðA3Þ

Multiplying Eq. (8) with mC<iCj> and mC2Ci/2 and taking integral over the velocity

space, the shear stress and heat flux can be obtained as

σ ij ¼
Z

mC<iC j>fdc ¼ 2
R
mC<iC j> f

_
dc

2−PcΔt=ε
¼ 2

R
mC<iC j>

~f dc
2þ PcΔt=ε

ðA4Þ

and

qi ¼
1
2

Z
mC2Cifdc ¼

R
mC2Ci f

_
dc

2−PcΔt Pr=ε
¼
R
mC2Ci

~f dc
2þ PcΔt Pr=ε

: ðA5Þ

In a computational cell with volume Vc and Nc particles, the above macro quantities

are averaged over particles using Eqs. (A1)–(A5), i.e. in detail

Density:ρ ¼ mNc=Vc; ðA6Þ

Macro velocity:Ui ¼
XNc

k¼1

ci:k=Nc; ðA7Þ

Temperature:T ¼
XNc

k¼1

ci:k−Uið Þ2=R Nc−1ð Þ; ðA8Þ

Shear stress from~f
� �

: σ ij ¼ Nc

Nc−1
2

2þ PcΔt=ε

XNc

k¼1

m ci:k−Uið Þ c j:k−U j
� �

=Vc; ðA9Þ

Heat flux from~f
� �

: qi

¼ Nc
2

Nc−1ð Þ Nc−2ð Þ
1

2þ PcΔt Pr=ε

XNc

k¼1

m ci:k−Uið Þ c j:k−U j
� �2

=Vc:

ðA10Þ

The factor 1/(Nc − 1) in the temperature and shear stress occurs to produce unbiased-

ness of T and σij, respectively. Similarly, the unbiased factor in the heat flux is Nc/(Nc −

1)(Nc − 2) [19].
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