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Abstract

Due to the very high requirements on the quality of computational grids, stability
property and computational efficiency, the application of high-order schemes to
complex flow simulation is greatly constrained. In order to solve these problems, the
third-order hybrid cell-edge and cell-node weighted compact nonlinear scheme
(HWCNS3) is improved by introducing a new nonlinear weighting mechanism. The
new scheme uses only the central stencil to reconstruct the cell boundary value, which
makes the convergence of the scheme more stable. The application of the scheme to
Euler equations on curvilinear grids is also discussed. Numerical results show that the
new HWCNS3 achieves the expected order in smooth regions, captures discontinuities
sharply without obvious oscillation, has higher resolution than the original one and
preserves freestream and vortex on curvilinear grids.

Keywords: Third-order, Compact nonlinear scheme, Curvilinear grids, Nonlinear
interpolation

1 Introduction
In the past three decades, a series of nonlinear schemes with high accuracy and high res-
olution were developed for the numerical simulation of complex flow fluid with shock
wave and multiscale structures, such as turbulence and aeroacoustics problems. Among
them, the weighted essentially non-oscillatory (WENO) scheme and the weighted com-
pact nonlinear scheme (WCNS) are both appliedmore extensively. TheWCNS developed
by Deng et al. [1–3], which is derived from the classical compact scheme on the basis of
the weighted considerations, is a finite difference method with high accuracy, including
the explicit form and the implicit form. The classical WCNS procedure consists of three
steps: (1) node-to-midpoint weighted nonlinear interpolation of flow variables, (2) fluxes
evaluation at midpoints, and (3) midpoint-to-node centered flux differencing. It has not
only the high precision/high resolution properties of the spectral-type compact difference
scheme, but also the capability of capturing discontinuities automatically of the WENO
scheme. Therefore, the WCNS gets lots of attention in the field of computational fluid
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dynamics. Nonomura et al. [4] compared the freestream and vortex preservation prop-
erties of the classic WENO and WCNS on curvilinear grids, and pointed out that the
WCNS works better than the WENO in the generalized coordinate system. In 2008, two
groups [5, 6] explored higher order WCNS and expanded the scheme to the ninth order,
respectively. To further improve the resolution of the WCNS, Yan and Liu [7] developed
the Y-type nonlinear weights and proposed a new seventh order compact nonlinear inter-
polation method based on the same stencil as the fifth order WENO scheme. To recover
the optimal numerical resolution in smooth flow field, Zhang et al. [8] recently introduced
an ENO-like stencil selection procedure to the WCNS, which fully abandons the oscilla-
tory stencils crossing discontinuities and directly applies optimal linear weights when the
flow field is smooth.
In 2011, Deng et al. developed the hybrid cell-edge and cell-node weighted compact

nonlinear schemes (HWCNS) [9] based on the original WCNS, and put forward the
conservation metric method (CMM) to make the scheme follow the geometrical conser-
vation law. The HWCNS is a hybrid scheme of cell-edge and cell-node, with advantages
of narrower difference stencil, higher efficiency and better stability. Furthermore, the
HWCNS satisfies the geometric conservation law, and it is more suitable for the simula-
tion of flow fields with complex geometric shapes. Considering that the non-uniqueness
form of CMMmay cause serious computational instability and inaccuracy for high-order
schemes, a symmetrical conservative metric method (SCMM) is proposed based on the
discussions of the metrics and Jacobian in [10]. It makes the calculations based on the
high-orderWCNS schemes around complex geometry flows possible and somewhat easy.
In [11], Nonomura et al. modified the flux differencing step of WCNS and developed the
midpoint-and-node-to-node difference (MND) scheme. Their modification makes the
scheme more robust, but at the same time, more dissipative. And so far, the WCNS has
been successfully applied to the numerical simulation of the flow field in the low speed,
the supersonic speed and the hypersonic speed, and shown good performance in the
computation of the complicated flow field.
Compared with the fifth-order and higher-order WCNS, the advantages of the third-

order scheme are robust for shock problems, such as fewer grid points, less computational
cost. However, the computational results show that the classical WCNS using the JS
weight of Jiang and Shu [12] is too dissipative. To overcome the shortcomings, a stencil-
selection procedure was introduced to improve the nonlinear weight of the third-order
WCNS in [13]. Since the proposed scheme has reduced the dissipation and dispersion
errors, compared with the WCNSs using typical nonlinear weights, there is a parame-
ter to choose during the stencil-selection procedure. In [14], Zhu first designed a new
type of finite difference WENO schemes based on the original idea of the multiresolu-
tion methods [15, 16]. For the third-order nonlinear interpolation, only the information
defined on one one-point central stencil and one three-point central stencil is used. If the
solution is smooth enough, the information defined on such two central spatial stencils is
combined together to obtain a third-order approximation. When there is a discontinuity
in the three-point central stencil, the information of the three-point stencil is effectively
abandoned and the approximation order degrades to one. In this work we incorpo-
rate Zhu’s nonlinear interpolation procedure to improve the HWCNS and propose a
third-order hybrid cell-edge and cell-node weighted compact nonlinear scheme, which
is simple and efficient in practical applications. In addition, the new method is applied
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to the governing equations under the curvilinear coordinate system and its freestream
and vortex preservation properties are verified. Our numerical experiments show that
the improved method has stronger robustness and its dissipation at nonlinear waves is
slightly smaller than that of the original method.
The other parts of the paper are organized as follows. In Section 2, the conventional

HWCNS3 on the curvilinear coordinates for hyperbolic conservation laws are reviewed.
Section 3 presents the improved HWCNS3. A series of numerical examples are given in
Section 4. Concluding remarks are provided in Section 5.

2 Preliminaries
2.1 Governing equations in curvilinear coordinates

In this subsection, the three-dimensional Euler equations in the Cartesian and gener-
alized coordinate systems and the metrics used in the generalized coordinate system
are described. In addition, the numerical technique that can preserve the freestream
conditions for the HWCNS is also presented.
The three-dimensional Euler equations in the Cartesian coordinate system are

expressed as
∂U
∂t

+ ∂F
∂x

+ ∂G
∂y

+ ∂H
∂z

= 0, (1)

where

U =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρ

ρu
ρv
ρw
E

⎞
⎟⎟⎟⎟⎟⎟⎠
,F =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρu
ρu2 + p

ρuv
ρuw

(E + p)u

⎞
⎟⎟⎟⎟⎟⎟⎠
,G =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρv
ρuv

ρv2 + p
ρvw

(E + p)v

⎞
⎟⎟⎟⎟⎟⎟⎠
,H =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρw
ρuw
ρvw

ρw2 + p
(E + p)w

⎞
⎟⎟⎟⎟⎟⎟⎠

are conservative variables and convective fluxes, respectively. Here ρ, u, v, w, p and E are
density, components of velocity in the x, y and z coordinate directions, pressure and total
energy, respectively. By assuming that the fluid obeys the perfect gas state equation, p can
be calculated as

p = (γ − 1)
(
E − 1

2
ρ

(
u2 + v2 + w2)

)

where γ indicates the specific heat ratio of the gas.
When a curvilinear grid is used for numerical computation, the governing Eq. (1) is first

transformed into a generalized coordinates system (ξ , η, ζ )with the following relationships

ξ = ξ(x, y, z), η = η(x, y, z), ζ = ζ(x, y, z).

The transformed equation can be written as

∂Ũ
∂t

+ ∂F̃
∂ξ

+ ∂G̃
∂η

+ ∂H̃
∂ζ

= 0, (2)

where

Ũ = 1
J
U

F̃ = ξ̃xF + ξ̃yG + ξ̃zH

G̃ = η̃xF + η̃yG + η̃zH

H̃ = ζ̃xF + ζ̃yG + ζ̃zH
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The transformation Jacobian J and the metrics ξ̃x, ξ̃y, · · · are given by

1
J

= xξ yηzζ − xξ yζ zη + xηyζ zξ − xηyξ zζ + xζ yξ zη − xζ yηzξ

⎧⎪⎨
⎪⎩

ξ̃x = ξx
J = yηzζ − yζ zη, ξ̃y = ξy

J = xζ zη − xηzζ , ξ̃z = ξz
J = xηyζ − xζ yη

η̃x = ηx
J = yζ zξ − yξ zζ , η̃y = ηy

J = xξ zζ − xζ zξ , η̃z = ηz
J = xζ yξ − xξ yζ

ζx
J = ζ̃x = yξ zη − yηzξ , ζ̃y = ζy

J = xηzξ − xξ zη, ζ̃z = ζz
J = xξ yη − xηyξ

(3)

2.2 Original HWCNS

The semi-discrete approximation of the governing Eq. (2) at a grid point indexed as (i, j, k)
is as follows:(

dŨ
dt

)

i,j,k
= −

(
F̃′

ξ

)
i,j,k

−
(
G̃′

η

)
i,j,k

−
(
H̃′

ζ

)
i,j,k

(4)

where
(
F̃′

ξ

)
i,j,k

,
(
G̃′

η

)
i,j,k

and
(
H̃′

ζ

)
i,j,k

are the approximation to the first spatial derivatives

of the fluxes F̃, G̃ and H̃ with respect to ξ , η and ζ , respectively. For HWCNS3,
(
F̃′

ξ

)
i,j,k

is computed by the fourth-order MND formula [11]:
(
F̃′

ξ

)
i,j,k

= 4
3�ξ

(
F̂i+ 1

2 ,j,k
− F̂i− 1

2 ,j,k

)
− 1

6�ξ

(
F̃i+1,j,k − F̃i−1,j,k

)
(5)

where F̂i± 1
2 ,j,k

are the numerical fluxes at half points, the local Lax-Friedrichs flux is used
here:

F̂i± 1
2 ,j,k

= 1
2

[
F̃

(
ŨL
i± 1

2 ,j,k

)
+ F̃

(
ŨR
i± 1

2 ,j,k

)
− α

(
ŨR
i± 1

2 ,j,k
− ŨL

i± 1
2 ,j,k

)]
(6)

where α is the maximum eigenvalue of the Jacobian matrix, the cell-boundary recon-
structions ŨL

i± 1
2 ,j,k

and ŨR
i± 1

2 ,j,k
are computed by the third-order nonlinear interpolation

in the characteristic space. Here, only the construction of ŨL
i+ 1

2 ,j,k
is presented, and the

subscripts “j, k” are dropped for simplicity.
Denote Im and rm the mth left and right eigenvectors of the Jacobi matrix A = ∂F

∂U .
At first, conservative variables are transformed into characteristic variables, the mth
characteristic variable is computed as follows:

Ul,m = ImŨl, (l = i − 1, i, i + 1), l = 1, 2.

Then UL
i+ 1

2 ,m
is constructed by the following nonlinear interpolation:

UL
i+ 1

2 ,m
= ω1,mÛ1

i+ 1
2 ,m

+ ω2,mÛ2
i+ 1

2 ,m
(7)

where

Û1
i+ 1

2 ,m
= −1

2
Ui−1,m + 3

2
Ui,m

Û2
i+ 1

2 ,m
= 1

2
Ui,m + 1

2
Ui+1,m

and the nonlinear weights ω1,m and ω2,m are determined as follows

ωl,m = αl,m
α1,m + α2,m

, αl,m = dl
(ISl,m + ε)2
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with d1 = 1
4 and d2 = 3

4 are the linear weights, ε = 10−6 is a small positive number to
avoid the denominator becoming zero, and the smoothness indicators are

IS1,m = (
Ui−1,m − Ui,m

)2 (8)

IS2,m = (
Ui,m − Ui+1,m

)2 (9)

Finally, the characteristic form of the interpolated value is transformed into the
conservative form:

ŨL
i+ 1

2
=

∑
m

UL
i+ 1

2 ,m
rm (10)

3 The new HWCNS
3.1 Node-to-midpoint interpolation

The computational results show that the original HWCNS scheme is too dissipative. To
overcome this shortcoming, we propose a new nonlinear reconstruction procedure with
similar ideas that was first presented in [14].
We still use the construction of UL

i+ 1
2 ,m

as an example. Two central stencils are chosen:
T1 = {i} and T2 = {i − 1, i, i + 1}, the corresponding reconstruction polynomials are
denoted as q1,m(x) and q2,m(x),

q1,m
(
xi+ 1

2

)
= Ui,m (11)

q2,m
(
xi+ 1

2

)
= −1

8
Ui−1,m + 3

4
Ui,m + 3

8
Ui+1,m (12)

For consistency, the reconstruction polynomials are normalized to obtain the following
interpolation polynomials:

p1,m(x) = q1,m(x) (13)

p2,m(x) = 1
γ2

q2,m(x) − γ1
γ2

q1,m(x) (14)

where γ1 and γ2 are linear weights with γ1+γ2 = 1. Based on a balance between the sharp
and essentially non-oscillatory shock transitions in nonsmooth regions and accuracy in
smooth regions, we set γ1 = 1

11 , γ2 = 10
11 .

The smoothness indicator β2,m of p2,m(x) is computed according to the definition in
[12]:

β2,m = (
Ui−1,m − 2Ui,m + Ui+1,m

)2

+1
3

(
U2
i−1,m + U2

i,m + U2
i+1,m − Ui−1,mUi,m − Ui,mUi+1,m − Ui+1,mUi−1,m

)

While for the zeroth-degree polynomial p1,m(x), the measurement of smoothness is
different:

μ1,m =
{

1
11 , IS1,m ≥ IS2,m,
10
11 , IS1,m < IS2,m,

μ2,m = 1 − μ1,m.

σl,m = μl,m

(
1 + |IS1,m − IS2,m|

ISl,m + ε

)
, l = 1, 2.

σm = σ1,m + σ2,m

β1,m =
(
σ1,m(Ui,m − Ui−1,m) + σ2,m(Ui+1,m − Ui,m)

)2
σ 2
m

with IS1,m and IS2,m are defined in Eqs. (8) and (9).
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The nonlinear weights are defined by

ωl,m = ωl,m
ω1,m + ω2,m

, ωl,m = γl

(
1 + τm

ε + βl,m

)
, l = 1, 2.

where τm is defined as the absolute difference between the smoothness indicators:

τm = |β2,m − β1,m|
and ε = 10−6 is a small number to avoid the denominator becoming zero.
The final reconstructed variable at cell edges is given by

UL
i+ 1

2 ,m
= ω1,mp1

(
xi+ 1

2

)
+ ω2,mp2

(
xi+ 1

2

)
(15)

3.2 Freestream preservation property

In uniform flow regions, U,F,G andH are constants, and Eq. (2) is simplified as

∂Ũ
∂t

+ IxF + IyG + IzH = 0, (16)

where⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ix = ∂
∂ξ

(
ξ̃x

)
+ ∂

∂η
(η̃x) + ∂

∂ζ

(
ζ̃x

)

Iy = ∂
∂ξ

(
ξ̃y

)
+ ∂

∂η

(
η̃y

) + ∂
∂ζ

(
ζ̃y

)

Iz = ∂
∂ξ

(
ξ̃z

)
+ ∂

∂η
(η̃z) + ∂

∂ζ

(
ζ̃z

) (17)

By substituting Eq. (3) into Eq. (17), we can see that

Ix = Iy = Iz = 0 (18)

which means the uniform flow conditions hold:
∂Ũ
∂t

= 0.

The condition Eq. (18) is called the freestream condition. To preserve it numerically, we
first rewrite the metrics in an equivalent form as suggested in [17]:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
J = 1

3

[(
xξ̃x + yξ̃y + zξ̃z

)
ξ

+ (
xη̃x + yη̃y + zη̃z

)
η

+
(
xζ̃x + yζ̃y + zζ̃z

)
ζ

]

ξ̃x = (yηz)ζ − (yζ z)η, ξ̃y = (zηx)ζ − (zζ x)η, ξ̃z = (xηy)ζ − (xζ y)η
η̃x = (yζ z)ξ − (yξ z)ζ , η̃y = (zζ x)ξ − (zξx)ζ , η̃z = (xζ y)ξ − (xξ y)ζ
ζ̃x = (yξ z)η − (yηz)ξ , ζ̃y = (zξx)η − (zηx)ξ , ζ̃z = (xξ y)η − (xηy)ξ

(19)

Then, Eq. (2) at grid node (i, j, k) is discretized as
(

∂Ũ
∂t

)

i,j,k
+ Dξ

1

(
F̃
)
i,j,k

+ Dη
1

(
G̃

)
i,j,k

+ Dζ
1

(
H̃

)
i,j,k

= 0 (20)

where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
F̃
)
i,j,k

=
(
Dζ
2
((
Dη
3y

)
z
) − Dη

2

((
Dζ
3y

)
z
))

(F)i,j,k +
(
Dζ
2
((
Dη
3z

)
x
) − Dη

2

((
Dζ
3z

)
x
))

(G)i,j,k

+
(
Dζ
2
((
Dη
3x

)
y
) − Dη

2

((
Dζ
3x

)
y
))

(H)i,j,k(
G̃

)
i,j,k

=
(
Dξ
2

((
Dζ
3y

)
z
)

− Dζ
2

((
Dξ
3y

)
z
))

(F)i,j,k +
(
Dξ
2

((
Dζ
3z

)
x
)

− Dζ
2

((
Dξ
3z

)
x
))

(G)i,j,k

+
(
Dξ
2

((
Dζ
3x

)
y
)

− Dζ
2

((
Dξ
3x

)
y
))

(H)i,j,k(
H̃

)
i,j,k

=
(
Dη
2

((
Dξ
3y

)
z
)

− Dξ
2
((
Dη
3y

)
z
))

(F)i,j,k +
(
Dη
2

((
Dξ
3z

)
x
)

− Dξ
2
((
Dη
3z

)
x
))

(G)i,j,k

+
(
Dη
2

((
Dξ
3x

)
y
)

− Dξ
2
((
Dη
3x

)
y
))

(H)i,j,k

(21)
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For l = 1, 2, 3, Dξ

l ,D
η

l and Dζ

l denote the finite difference operators in ξ , η and ζ

coordinate directions respectively.
As proven in [18], the freestream conditions hold if D1 and D2 are exchangeable.

Furthermore, D2 = D3 in practical calculations can prevent large numerical errors.
Therefore, D1, D2 and D3 all use the fourth-order compact differential operator Eq. (5).
The values at midpoint are obtained analytically or by the fourth-order Lagrangian
interpolation, for example,

(
ξ̃x

)
i+ 1

2 ,j,k
= 1

16

(
−

(
ξ̃x

)
i−1,j,k

+ 9
(
ξ̃x

)
i,j,k

+ 9
(
ξ̃x

)
i+1,j,k

−
(
ξ̃x

)
i+2,j,k

)
(22)

4 Numerical experiments
In this section, a variety of benchmark problems are given to illustrate the behavior of
the present method, compared with the original HWCNS3. The CFL number is taken as
0.6, except for the accuracy tests where a smaller time step is taken to ensure that spatial
errors dominate.

4.1 The order of numerical accuracy

Example 1: We consider the one-dimensional Euler equations on [ 0, 2π ] with periodic
boundary conditions and initial conditions:

ρ(x, 0) = 1 + 0.2 sin x, u(x, 0) = 1, p(x, 0) = 1, γ = 1.4.

This problem has an exact solution of ρ(x, t) = 1 + 0.2 sin(x − t). We compute the
solution up to t = 1 using the new HWCNS3, the errors and orders of convergence are
listed in Table 1. We can see that the third order of accuracy is achieved.

Example 2:We then consider the two-dimensional Euler equations on [ 0, 2π ]×[ 0, 2π ]
with periodic boundary conditions and initial conditions:

ρ(x, y, 0) = 1+0.2 sin(x+y), u(x, y, 0) = v(x, y, 0) = 1, p(x, y, 0) = 1, γ = 1.4.

The exact solution of this problem is ρ(x, y, t) = 1 + 0.2 sin(x + y − 2t). The final time
is t = 1. Table 2 lists the errors and orders of convergence of density. We can see that the
third order of accuracy is also achieved for this two-dimensional case.

4.2 Shock capturing ability

Example 3: We consider two shock tube problems of the one-dimensional Euler
equations. The Sod shock tube problem involves a right-moving shock of Mach number
1.7. Its initial conditions are given as

Table 1 The accuracy test for the one-dimensional Euler equations

Grid size L∞ error Order L1 error Order

51 2.53E-03 5.40E-04

101 2.95E-04 3.10 3.47E-05 3.96

201 9.67E-06 4.93 1.39E-06 4.65

401 4.14E-07 4.54 9.05E-08 3.94

801 2.39E-08 4.12 1.13E-08 3.01

1601 2.35E-09 3.35 1.41E-09 3.00
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Table 2 The accuracy test for the two-dimensional Euler equations

Grid size L∞ error Order L1 error Order

51 × 51 2.53E-03 5.40E-04

101 × 101 2.95E-04 3.10 3.47E-05 3.96

201 × 201 9.67E-06 4.93 1.39E-06 4.65

401 × 401 4.14E-07 4.54 9.05E-08 3.94

801 × 801 2.39E-08 4.12 1.13E-08 3.01

1601 × 1601 2.35E-09 3.35 1.41E-09 3.00

(ρ,u, p, γ ) =
{

(1, 0, 1, 1.4), x ∈[ 0, 0.5] ,
(0.125, 0, 0.1), x ∈ (0.5, 1] .

(23)

The next problem is the Lax shock tube problem which involves a right-moving shock
of Mach number 2.0. The initial conditions are given as

(ρ,u, p, γ ) =
{

(0.445, 0.698, 3.528, 1.4), x ∈[ 0, 0.5] ,
(0.5, 0, 0.571), x ∈ (0.5, 1] .

(24)

The computed density ρ of the two problems is presented in Figs. 1 and 2 respectively.
We can observe that the new method has better resolution than the original HWCNS3
in the neighborhood of shocks for these two problems.

Example 4:We now consider the interaction of two blast waves. The initial conditions
are given as

(ρ,u, p, γ ) =

⎧⎪⎨
⎪⎩

(1, 0, 103, 1.4), x ∈[ 0, 0.1),
(1, 0, 10−2, 1.4), x ∈[ 0.1, 0.9),
(1, 0, 102, 1.4), x ∈[ 0.9, 1] .

(25)

The boundaries at x = 0 and x = 1 are solid walls with reflecting boundary conditions.
At the final time t = 0.038, the flow field has three contact discontinuities. The middle
one, which is generated by the two shocks interacting with each other, is very difficult to
resolve. Figure 3 shows the results with N = 600 grid points. Once again, it appears that
the new HWCNS3 works better than the original one for this example.

Fig. 1 Numerical solutions for the Sod Problem at t = 0.2, N = 200. Left: Density; Right: Zoom in density
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Fig. 2 Numerical solutions for the Lax Problem at t = 0.14, N = 200. Left: Density; Right: Zoom in density

Example 5: We consider a two-dimensional Riemann problem [19] in the square
[ 0, 1]×[ 0, 1] which is initialized by the following conditions:

(ρ,u, v, p, γ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1.5, 0, 0, 1.5, 1.4), 0.8 ≤ x ≤ 1, 0.8 ≤ y ≤ 1,
(0.5323, 1.206, 0, 0.3, 1.4), 0 ≤ x < 0.8, 0.8 ≤ y ≤ 1,
(0.138, 1.206, 1.206, 0.029, 1.4), 0 ≤ x < 0.8, 0 ≤ y < 0.8,
(0.5323, 0, 1.206, 0.3, 1.4), 0.8 ≤ x ≤ 1, 0 ≤ y < 0.8.

(26)

This problem is characterized by rich small scales in the flow fields, and thus is specif-
ically chosen to evaluate the ability of the proposed numerical schemes and resolve the
fine structures. We evolve the solution until time t = 0.8. The results with grid points
400×400 and 1200×1200 are plotted in Figs. 4 and 5.We can see that the new HWCNS3
can capture the rich small scales for this specific example.
Example 6: We consider the double Mach reflection problem. This problem describes

the phenomenon that a Mach 10 shock reflected from the wall with an incidence angle
of 60◦. The computational domain is chosen to be [ 0, 4]×[ 0, 1] and the initial conditions
are given as

(ρ,u, v, p) =
{

(ρL,uL, vL, pL) = (8.0, 7.145,−4.125, 116.5), y ≥ √
3(x − 1

6 ),
(ρR,uR, vR, pR) = (1.4, 0, 0, 1), y <

√
3(x − 1

6 ).
(27)

γ = 1.4. The left state value and right state value are specified at the left and right bound-
ary respectively. At the bottom boundary y = 0, the reflective boundary conditions are
applied when x ≥ 1

6 and the inflow boundary conditions are applied when x < 1
6 . At

the top boundary y = 1, the left state value is specified when x < g(t) and the right
state value is specified when x ≥ g(t), where g(t) = 1

6 +
√
3
3 (1 + 20t). Using grid points

Fig. 3 Numerical solutions for the blast wave Problem at t=0.038,N=600. Left: Density; Right: Zoom in density
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Fig. 4 Numerical solutions with grid points 400 × 400 for the 2D Riemann Problem at t = 0.8, 30 density
contour lines ranging from 0.1 to 1.8. Left: the original HWCNS3; Right: the improved HWCNS3

1920×480, the results at t = 0.2 are shown.We present the density of region [ 0, 3]× [ 0, 1]
in Fig. 6. The newHWCNS could gain good resolution and sharp shock transitions for this
example.

4.3 Freestream and vortex preservation

Example 7: The freestream is tested on a three-dimensional wavy grid, as shown in Fig. 7.
This grid is generated by

xi,j,k = xmin + �x0
[
(i − 1) + Ax sin

nxyπ(j − 1)�y0
Ly

sin
nxzπ(k − 1)�z0

Lz

]
,

yi,j,k = ymin + �y0
[
(j − 1) + Ay sin

nyzπ(k − 1)�z0
Lz

sin
nyxπ(i − 1)�x0

Lx

]
,

zi,j,k = zmin + �z0
[
(k − 1) + Az sin

nzxπ(i − 1)�x0
Lx

sin
nzyπ(j − 1)�y0

Ly

]
,

where Lx = Ly = Lz = 4,Ax = Ay = Az = 1, nxy = nxz = nyz = nyx = nzx = nzy = 4, and
xmin = −Lx/2, ymin = −Ly/2, zmin = −Lz/2. The grid resolution is set to 21 × 21 × 21.
The initial condition of an ideal gas is given as

ρ = 1,u = 0.5, v = w = 0, p = 1
γ

where γ = 1.4 is the specific heat ratio.

Fig. 5 Numerical solutions with grid points 1200 × 1200 for the 2D Riemann Problem at t = 0.8, 30 density
contour lines ranging from 0.1 to 1.8. Left: the original HWCNS3; Right: the improved HWCNS3
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Fig. 6 Numerical solutions for the double Mach reflection Problem at t = 0.2, 30 density contour lines
ranging from 1.8 to 20. Top: the original HWCNS3; Bottom: the improved HWCNS3

We take �t = 0.03 and compute 200 steps. The L2 errors of the velocity components
v and w of the flow field and the CPU time distribution are shown in Table 3, where T1
denotes the CPU time for computing the grid metrics and Jacobian and T2 denotes the
CPU time for time iteration.We can clearly observe that the L2 errors are all at the level of
round-off errors for different precisions, and verify the expected freestream preservation
property accordingly. Since the grid metrics and Jacobian only need to be calculated once
and stored in the whole computational process, its CPU time is negligible compared with
the CPU time of time iteration.

Fig. 7 The three-dimensional wavy grids for the freestream preservation test
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Table 3 L2 errors of v- and w-Components and CPU time distribution in the freestream problem on
the wavy grid

Precision v-Component w-Component T1 T2

Single 1.44E-7 1.27E-7 4.45 69.72

Double 2.51E-16 2.14E-16 4.68 77.90

Quadruple 2.32E-34 1.91E-34 34.13 1452.20

Example 8: We consider a two-dimensional moving vortex problem on the following
wavy grid to test the vortex preservation property.

xi,j = xmin + �x0
[
(i − 1) + Ax sin

nxyπ(j − 1)�y0
Ly

]
,

yi,j = ymin + �y0
[
(j − 1) + Ay sin

nyxπ(i − 1)�x0
Lx

]
,

where Lx = Ly = 20,Ax × �x0 = Ay × �y0 = 0.6, nxy = nyx = 8, and xmin =
−Lx/2, ymin = −Ly/2.
Initially, the mean flow is ρ = 1,u = 0.5, v = 0 and p = 1

γ
. Then we add an isentropic

vortex to it with perturbation centered at (x0, y0) = (0, 0) in (u, v) with T = p/ρ, and no
perturbation in entropy S = p/ργ ,

(δu, δv) = ετeα(1−τ 2)(sin θ ,− cos θ), δT = − (γ − 1)ε2

4αγ
e2α(1−τ 2), δS = 0,

where τ = r
rc , r = √

(x − x0)2 + (y − y0)2 and rc = 1. The exact solution of this problem
is smooth and periodic. We set α = 0.204, ε = 0.02 and use 5 different grids to evaluate
the scheme convergence. The time-step sizes �t respect to those grids are selected as
�t = 0.2min(�x,�y). The numerical results at T = 40 are given in Fig. 8. It can be
observed that the new HWCNS3 is able to resolve the moving vortex. In Table 4, grid
convergence rates with the wavy grid are shown. As expected, the formal third order of
accuracy is obtained.

4.4 Supersonic flow past a cylinder

Example 9: Finally, the supersonic flow past a cylinder is simulated on a randomized
curvilinear grid [20]. As shown in Fig. 9, the grid is generated as:

x = (
Rx − (Rx − 1)η′) cos (

θ(2ξ ′ − 1)
)
,

y = (
Ry − (Ry − 1)η′) sin (

θ(2ξ ′ − 1)
)
,

where

ξ ′ = ξ − 1
imax − 1

, ξ = i + Randomi, i = 1, 2, · · · , imax,

η′ = η − 1
jmax − 1

, η = j + Randomj, j = 1, 2, · · · , jmax,

√
Random2

i + Random2
j =

{
0.2, inner points,
0, boundary points.

with θ = 5π
12 ,Rx = 3,Ry = 6, imax = 81 and jmax = 61.
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Fig. 8 21 equally spaced vorticity contours from 0.0 to 0.006 of moving vortex on a two-dimensional wavy
grid

The reflective boundary condition is applied on the cylinder surface, the supersonic
inflow condition at the left boundary and the supersonic outflow condition at the other
boundaries.
For this problem, the improved HWCNS3 is more robust than the original one. First,

we consider a Mach 2 supersonic flow moving toward the cylinder from left and taking
the time-step as �t = 0.01. The new scheme works well while the original scheme will
diverge unless the time-step is reduced to 0.001. Figure 10 shows the density and pressure

Table 4 L1, L2 errors of v-Components and their corresponding convergence rates in the moving
vortex on a wavy grid

Grid size L1 error L1 order L2 error L2 order

31 × 31 8.89E-4 2.62E-3

61 × 61 3.96E-4 1.17 1.26E-3 1.05

121 × 121 7.40E-5 2.42 2.63E-4 2.26

241 × 241 9.91E-6 2.90 3.69E-5 2.83

481 × 481 1.26E-6 2.97 4.74E-6 2.96
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Fig. 9 The computational grids of supersonic flow past a cylinder

contours of the two schemes. We can see that the results have good agreement with that
of [20]. We then increase the Mach number of the inflow to 10 and take the time-step as
�t = 0.001. Although both schemes can work in this situation, the density obtained by
the original scheme oscillates slightly as shown in Fig. 11. Finally, we increase the Mach
number of the supersonic inflow to 20 and take the time-step as �t = 0.001, again the
new scheme is still robust while the original scheme is divergent under the same con-
dition. Although the original scheme can converge if we further reduce the time step to
0.0001, the density still has small oscillation as shown in Fig. 12.
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Fig. 10 Numerical solutions for Mach = 2 flow past a cylinder with 21 contour lines. The density contour
lines range from 1.2 to 3, and the pressure contour lines range from 0.86 to 3.88

5 Conclusions
In this paper, we construct a third-order HWCNS for the compressible Euler equations
on curvilinear grids. The new scheme uses the information defined on two nested cen-
tral spatial stencils to compute the cell boundary values, which makes it more stable.
This nonlinear weighting mechanism can also be extended to the WCNS with arbitrary
high order accuracy. Various numerical analyses have shown that the presented scheme

Density Density

Pressure

Fig. 11 Numerical solutions for Mach = 10 flow past a cylinder with 21 contour lines. The density contour
lines range from 1.05 to 5.5, and the pressure contour lines range from 5 to 90
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Fig. 12 Numerical solutions for Mach = 20 flow past a cylinder with 21 contour lines. The density contour
lines range from 1.05 to 6, and the pressure contour lines range from 20 to 360

is capable of simulating complex flow problems, including curvilinear geometric bound-
ary, strong shock waves and small-scale structures. Further applications of the proposed
method are expected.
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