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Abstract

In this paper, we take a numerical simulation of a complex moving rigid body under
the impingement of a shock wave in three-dimensional space. Both compressible
inviscid fluid and viscous fluid are considered with suitable boundary conditions. We
develop a high order numerical boundary treatment for the complex moving
geometries based on finite difference methods on fixed Cartesian meshes. The method
is an extension of the inverse Lax-Wendroff (ILW) procedure in our works (Cheng et al.,
Appl Math Mech (Engl Ed) 42: 841–854, 2021; Liu et al.) for 2D problems. Different from
the 2D case, the local coordinate rotation in 3D required in the ILW procedure is not
unique. We give a theoretical analysis to show that the boundary treatment is
independent of the choice of the rotation, ensuring the method is feasible and valid.
Both translation and rotation of the body are taken into account in this paper. In
particular, we reformulate the material derivative for inviscid fluid on the moving
boundary with no-penetration condition, which plays a key role in the proposed
algorithm. Numerical simulations on the cylinder and sphere are given, demonstrating
the good performance of our numerical boundary treatments.

Keywords: Inverse Lax-Wendroff procedure, High order accuracy, Complex moving
boundary treatment, Compressible inviscid fluid, Compressible viscous fluid, 3D

1 Introduction
In this paper, we design a high order boundary treatment combining high order finite
difference scheme for both inviscid and viscous fluids in the 3D time-varying domain.
The flow field is between two flat plates parallel to the xz-plane, and there is a rigid body
inside it. At the initial moment, there is a plane shock wave perpendicular to the x-axis
and moving to the positive direction of the x-axis, towards to the rigid body. Under the
impingement of the flow, the rigid body starts to move in the region, then the area of the
fluid varies with time, denoted by �(t).
In order to prescribe the boundary conditions on the surface of the rigid body, we take

the notation �(t) to represent the interface between the rigid body and fluid. Hence, we
have the boundary of the domain
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∂�(t) = �(t) ∪ �x ∪ �y ∪ �z,

where, �x, �y and �z are the outer boundaries of the computational area along x-, y- and
z-direction, parallel to the yz-, xz- and yz-plane, respectively. Inflow, outflow and reflec-
tion boundary conditions are imposed at the left boundary, the right boundary of �x
and the two boundaries of �y, respectively. Notice that, although the physical problem
we actually consider is infinite in the z-direction, the domain is truncated in numerical
computation. Due to the fact that the rigid body moves in a confined space during a lim-
ited period, the area can be assumed to be large enough in the z-direction that the body
and the reflective shock waves would not touch �z, and then we can impose the out-
flow boundary conditions on �z. Hence, the boundary treatment on �z will not affect
the computational results of the internal flow field near the rigid boundary. The bound-
ary conditions on the boundary �(t) vary with the properties of the fluid. In this paper,
we consider both the compressible inviscid fluid and viscous fluid with suitable boundary
conditions.
The governing equations for compressible inviscid fluid and viscous fluid in the three-

dimensions are written in the same form as follows:

Wt + F(W)x + G(W)y + H(W)z = δ

Re
(
S1(W)x + S2(W)y + S3(W)z

)
, (1)

where (x, y, z) ∈ �(t),W = (ρ, ρu, ρv, ρw,E)T and

F(W) =
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. (2)

Here, ρ, u, v, w, p and E stand for density, velocity in x-, y- and z-directions, pressure and
total energy per volume, respectively. On the right hand side of (1),

S1(W) =

⎛
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with the components of the viscous stress tensor given by

τ11 = 4
3
ux − 2

3
vy − 2

3
wz, τ22 = 4

3
vy − 2

3
ux − 2

3
wz, τ33 = 4

3
wz − 2

3
ux − 2

3
vy,

τ12 = τ21 = vx + uy, τ13 = τ31 = uz + wx, τ23 = τ32 = wy + vz,
(3)

and

σ1 = u τ11 + v τ12 + w τ13 + (c2)x
(γ − 1)Pr

,

σ2 = u τ21 + v τ22 + w τ23 + (c2)y
(γ − 1)Pr

,

σ3 = u τ31 + v τ32 + w τ33 + (c2)z
(γ − 1)Pr

.

(4)
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Here, Pr is the Prandtl number, Re is the Reynolds number, T = p/ρ is the temperature,
and c = √

γ p/ρ is the sound speed. An equation of state relating the pressure with other
variables is given as

p = (γ − 1)
(
E − 1

2
ρ
(
u2 + v2 + w2)

)
. (5)

γ is the adiabatic constant, which equals to 1.4 for an ideal polytropic gas.

• Compressible inviscid fluid. In this case, δ = 0 in the governing Eq. (1) and it
becomes the three-dimensional Euler equation,

Wt + F(W)x + G(W)y + H(W)z = 0, (6)

The no-penetration boundary conditions are imposed on the boundary of the body
surface �(t):

u · n = Vb · n, ∀ x ∈ �(t), (7)

with u = (u, v,w)T . Vb and n are the velocity and the outward unit normal vector on
�(t), respectively.

• Compressible viscous fluid. In this case, δ = 1 in the governing Eq. (1) and it is the
three-dimensional Navier-Stokes (NS) equation,

Wt + F(W)x + G(W)y + H(W)z = 1
Re
(
S1(W)x + S2(W)y + S3(W)z

)
, (8)

On �(t), we consider the isothermal no-slip wall boundary condition:
{
u = Vb

T = Tb
(9)

where Vb = (ub, vb,wb)
T and Tb are the velocity and the temperature of the rigid

body, respectively.

In this paper, we are trying to numerically solve the partial differential equations (PDEs)
(6) and (8) with high order finite difference methods on the fixed Cartesian mesh. Despite
the easy generation of the mesh, for such problems there are two main difficulties in
numerical simulation:

1. A high order finite difference scheme often has a wide stencil, thus we have to
evaluate the values at the ghost points near the boundary.

2. Another difficulty is that the Cartesian grids intersect with the physical boundary
with arbitrary fashion. This often leads to the so-called “cut-cell” problem [1], e.g. in
1D case the first grid is very closed to the physical boundary. If the boundary
treatment is not well designed, it may require the time step to be extremely small for
the sake of stability and result in the poor computation efficiency. For the moving
boundary problems, no matter how the mesh is generated initially, the “cut-cell”
problem is unavoidable.

One of the commonly used methods is to generate a body-fitted grid. For simple
and fixed boundaries, one may use the smooth mapping between the Cartesian mesh
and curvilinear mesh, while this kind of treatment often needs to change the original
equations. The new equations can be more complicated than the original equations and
also bring additional computation. For the time-varying geometric domain, complex grid
management is required at each time step and it may be extremely expensive. Another
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approach is to use a Cartesian mesh, and take special treatment on the boundaries. There
are several numerical boundary treatments listed as follows: embedded boundarymethod
[2–7], immersed boundary method [8–12] and Inverse Lax-Wendroff (ILW)method [13–
20], etc.
In this paper, we focus on the ILW boundary treatment for solving the moving bound-

ary problems in 3D. The idea of ILW procedure comes from [21, 22], in which the authors
simulated the traffic and pedestrian flow by solving an Eikonal equation at each time step.
They used the PDE repeatedly to convert the normal derivative into the tangent deriva-
tive at the boundary, and the ghost point values are defined by a Taylor expansion along
the normal direction. Enlightened by this approach, Tan and Shu extended it to hyper-
bolic conservation law equations in [17]. The main idea of the ILW method is to convert
the spatial derivative into a time derivative through the PDE, which is in contrast to the
traditional Lax-Wendroff scheme, in which the time derivative is converted into spatial
derivative (this is exactly the meaning of “inverse”). Numerical results demonstrate that
the ILW method can be applied to construct ghost point values when solving equations
with high order finite difference methods on a Cartesian mesh in a computational domain
with complex geometries. However, the original ILW method proposed in [17] has the
following drawbacks:

1. Heavy algebra in the ILW procedure for high dimensional nonlinear system.
2. For the junction of the inflow and outflow boundary, i.e, the sonic points, the ILW

method should be coupled with the least square method to ensure the stability of the
scheme.

3. The numerical solution obtained by the ILW method cannot satisfy the conservation
property while the exact solution of original PDE has this property.

There are several papers to address the issues above. In 2012 Tan et al. proposed the sim-
plified ILW (SILW) method in [19], which greatly reduced the computation cost of the
ILWmethod for solving the system. Ding et al. [14] redefined the concept of conservation
for the finite difference scheme, and gave a new ILWmethod that satisfies the new conser-
vation concept. Lu et al. [16] proposed an ILWmethod that can deal with the sonic points,
which can avoid the situation of the extremely small denominator. Except for hyperbolic
conservation laws, the ILW procedure can also be applied to other types of equations. In
[23] Filbet and Yang extended the ILWmethod to handle the Boltzmann equation, and Li
et al. studied the ILW procedure for the diffusion problems, and the authors in [15, 24,
25] extended the ILWmethod to handle the convection-diffusion equation. Stability anal-
yses for both the ILW and the simplified ILW procedures were given in [24–27], in which
the authors discussed various situations and gave us the guiding ideology for designing
a high order and stable numerical boundary treatment. In particular, theoretical analysis
indicates that the carefully designed (S)ILW boundary treatment can maintain stability
with the same CFL number (λcfl)max as in the periodic case, ignoring distances of the first
grid point to the physical boundary. This means that the SILWmethod can overcome the
“cut-cell" problem.
For moving boundary problems, in [18] Tan and Shu designed an ILW method for

inviscid fluid with free-slip no-penetration moving boundary conditions, in which they
only considered the translation of the moving boundary. Later, in [13] Cheng et al.
reformulated the material derivative and considered both translation and rotation of
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the body. Recently, [28] extended the moving boundary ILW method to deal with the
convection-diffusion equations and simulate the interaction between shock waves and
rigid bodies in viscous fluids. In particular, a unified algorithm was given for five cases:
pure convection, convection-dominated, convection-diffusion, diffusion-dominated and
pure diffusion cases. This paper is an extension of our works [13, 28], in which one
and two dimensional moving boundary problems were considered. Now we extend
these methods to handle three dimensional problems, with carefully designed numerical
boundary conditions such that they can achieve third order of accuracy in smooth case,
and no spurious oscillation when there is a shock near the surface. Particularly, in the
ILW and SILW procedure, a local coordinate rotation on the boundary point is needed
such that the x̂-axis of the new coordinate is in the same direction with the outward nor-
mal on the boundary. Different from the two dimensional problem, this rotation is not
unique. We prove that the rotation will not affect the results via ILW procedure. Hence,
the schemes can work with a simple form of rotation. Since the conditions are defined
on the moving boundaries, material derivatives are used in the ILW procedure instead
of the Eulerian time derivatives. However, this definition of material derivatives for func-
tions limited on the boundaries is not clear. In this paper, we will follow the idea in [13]
and reformulate the material derivatives on the moving boundaries with no-penetration
condition in 3D.
The organization of the paper is as follows. In Section 2, we introduce the spatial dis-

cretization and time evolution method for the Eqs. (6) and (8). In Section 3, we focus on
the boundary treatment and present the ILW method in detail. The method of tracking
the moving rigid body is discussed in Section 4. Numerical results are given in Section 5
and concluding remarks are given in Section 6.

2 Scheme formulation inside�(t)
We assume that the computational domain [ xl, xr]×[ yl, yr]×[ zl, zr] is divided by a Carte-
sian mesh (xi, yj, zk), and the mesh sizes in each direction are uniform, denoted by �x, �y
and �z, respectively,

xi = xl + i�x, yj = yl + (j − 0.5)�y, zk = zl + k �z. (10)

DenoteWi,j,k(t) as the approximation to the point valueW(xi, yj, zk , t). We will discretize
the Eqs. (6) and (8) in the method of lines framework, meaning that the spatial variable
is first discretized, then the numerical solution is updated in time by coupling a suitable
time integrator.

2.1 Spatial discretization

The semi-discrete approximation of the governing Eq. (1) is given as

dWi,j,k

dt
+ F̂i+1/2,j,k − F̂i−1/2,j,k

�x
+ Ĝi,j+1/2,k − Ĝi,j−1/2,k

�y
+ Ĥi,j,k+1/2 − Ĥi,j,k−1/2

�z
= Si,j,k ,

(11)

where F̂i+1/2,j,k , Ĝi,j+1/2,k and Ĥi,j,k+1/2 are numerical fluxes such that the flux difference
approximates the derivative to r-th order accuracy,
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F̂i+1/2,j,k − F̂i−1/2,j,k

�x
= F(W)x|i,j,k + O(�xr),

Ĝi,j+1/2,k − Ĝi,j−1/2,k

�y
= G(W)y|i,j,k + O(�yr),

Ĥi,j,k+1/2 − Ĥi,j,k−1/2

�z
= H(W)z|i,j,k + O(�zr).

Those numerical fluxes can be obtained by any reasonable finite difference scheme, such
as the finite difference (FD) WENO scheme [29], which can achieve high order accuracy
in smooth region and avoid numerical oscillatory near discontinuities. Here, we use the
third order FDWENO scheme to obtain the numerical fluxes, i.e. r = 3. Details are given
in Appendix A.
For the Euler Eq. (6), Si,j,k = 0 on the right hand side. And for the NS Eq. (8), Si,j,k is the

approximation to the diffusion terms. Due to the effect of diffusion, we use central finite
difference scheme without WENO to obtain Si,j,k . In particular, the five points central
scheme will guarantee fourth order of accuracy, and the formulations for the (mixed)
derivatives are given as follows:

∂f
∂x

|i,j,k = 1
12�x

(fi−2,j,k − 8fi−1,j,k + 8fi+1,j,k − fi+2,j,k),

∂2f
∂x2

|i,j,k = 1
12�x2

(−fi−2,j,k + 16fi−1,j,k − 30fi,j,k + 16fi+1,j,k − fi+2,j,k),

∂2f
∂x∂y

|i,j,k = 1
144�x�y

((fi−2,j−2,k − 8fi−1,j−2,k + 8fi+1,j−2,k − fi+2,j−2,k)

− 8(fi−2,j−1,k − 8fi−1,j−1,k + 8fi+1,j−1,k − fi+2,j−1,k)

+ 8(fi−2,j+1,k − 8fi−1,j+1,k + 8fi+1,j+1,k − fi+2,j+1,k)

− (fi−2,j+2,k − 8fi−1,j+2,k + 8fi+1,j−2,k − fi+2,j+2,k)).

(12)

2.2 Time discretization

The semi-discrete scheme (11) is equivalent to the first order ordinary differential
equation (ODE) system

dWi,j,k

dt
= L({Wi,j,k}), (13)

with L({Wi,j,k}) containing all spatial discritization terms. For time discretization, we use
the third-order total variation diminishing (TVD) Runge-Kutta method [30]:

W(1)
i,j,k = Wn

i,j,k + �tL({Wn
i,j,k}),

W(2)
i,j,k = 3

4
Wn

i,j,k + 1
4
W(1)

i,j,k + 1
4
�tL({W(1)

i,j,k}),

Wn+1
i,j,k = 1

3
Wn

i,j,k + 2
3
W(2)

i,j,k + 2
3
�tL({W(2)

i,j,k}).
(14)

In addition, a following constraint on time step �t is imposed such that the boundary
�(t) can move at most one grid in each direction in a time step:

�t ≤ min
(

�x
Vb,x,max

,
�y

Vb,y,max
,

�z
Vb,z,max

)
, (15)

where Vb,x,max, Vb,y,max and Vb,z,max represent the maximum magnitude of the moving
velocities in x-, y- and z- directions on the boundary �(t).
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3 Boundary treatments
In order to make the interior finite difference scheme work, we need to define enough
ghost points near the boundaries. Near the outer boundaries �x ∪�y ∪�z, which consist
of straight lines, ghost points are assigned according to the principles of inflow, outflow
and reflection boundary conditions. While near the inner boundary �(t), we will assign
carefully designed values on ghost points. In addition, there is a kind of points called
“newly emerging” points that deserve special attention, which are outside the compu-
tational domain �(tn−1) at the last time and entering �(tn) at the current time due to
the movement of the boundary. In [18], the authors pointed out that the newly emerg-
ing points do not need any special treatment, but just set at most one more ghost point
in each direction. Then, we can use the same scheme as the interior points to update the
values of these points at the last stage of (14). And that is exactly the reason why we give
a constraint on the time step in (15).
Note that those ghost points may not lie on the grid. Hence, we follow the idea given

in [17] that the method consists of the inverse Lax-Wendroff (ILW) type procedure for
inflow boundary conditions and extrapolation for outflow boundary conditions. At the
outflow boundary, WENO type extrapolation will be used in case of a shock close to the
boundary. And the idea of the ILW procedure is utilizing the PDE repeatedly to write
the normal derivatives of the variables W in terms of the time derivatives and tangential
derivatives ofW, both of which are obtained from boundary conditions. We should note
that the boundary location varies with time, hence we will employ the material derivative
rather than the Eulerian time derivative on the boundary. In the following subsections, we
will concentrate on how to define the values ofWi,j,k at the ghost points.

3.1 Boundary treatment for Euler equations

In the ILWmethod, we rewrite three-dimensional Euler equations in the form of primitive
variables

Ut + A(U)Ux + B(U)Uy + C(U)Uz = 0, (16)

where

U = (ρ,u, v,w, p)T ,

A(U), B(U) and C(U) are Jacobian matrixes, given as

A(U) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

u ρ 0 0 0
0 u 0 0 1

ρ

0 0 u 0 0
0 0 0 u 0
0 ρc2 0 0 u

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, B(U) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

v 0 ρ 0 0
0 v 0 0 0
0 0 v 0 1

ρ

0 0 0 v 0
0 0 ρc2 0 v

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, C(U) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

w 0 0 ρ 0
0 w 0 0 0
0 0 w 0 0
0 0 0 w 1

ρ

0 0 0 ρc2 w

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and c = √
γ p/ρ.

For any ghost point Pi,j,k = (xi, yj, zk), we first find a point Pa = (xa, ya, za) ∈ �(t) so
that its normal vector n outside the rigid body would pass through Pi,j,k :
⎧
⎪⎪⎨

⎪⎪⎩

xa = xc + r sinϕ cos θ ,

ya = yc + r sinϕ sin θ ,

za = zc + r cosϕ.

(17)
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The normal vector (from fluid to rigid body) of Pa is

n = (− sinϕ cos θ ,− sinϕ sin θ ,− cosϕ).

Then, we rotate the coordinate axis locally at Pa such that the x̂-axis of the new coordi-
nate system is in the same direction with n. We want to remark the fact that the rotation
is not unique due to ŷ- and ẑ-axis can be any orthogonal vectors in the tangent plane
with respect to the rigid body at Pa, but it will not effect the results via ILW procedure.
Particularly, in Appendix B, we prove the following theorem:

Theorem 1 The ILW boundary procedure for the Euler equation is independent of the
choice of the rotation, i.e, we can get the same boundary scheme even with different choices
of rotation.

Therefore, we can get the same formulation even with different choices of tangent vec-
tors. Here, we give one of these rotation methods and apply it to our later computation.
The new local coordinate system (x̂, ŷ, ẑ) and the coordinate transformation matrix T are
given as

⎛

⎜
⎝

x̂
ŷ
ẑ

⎞

⎟
⎠ = T

⎛

⎜
⎝

x
y
z

⎞

⎟
⎠ , and T =

⎛

⎜
⎝

− cos θ · sinϕ − sin θ · sinϕ − cosϕ

sin θ − cos θ 0
− cos θ · cosϕ − cosϕ · sin θ sinϕ

⎞

⎟
⎠ . (18)

Consequently, we can prove that the Euler Eq. (16) has the same form in the new
coordinate system as those in the original coordinate system:

Ût + A(Û)Ûx̂ + B(Û)Ûŷ + C(Û)Ûẑ = 0, (19)

with

Û = (ρ, û, v̂, ŵ, p)T , and

⎛

⎜
⎝

û
v̂
ŵ

⎞

⎟
⎠ = T

⎛

⎜
⎝

u
v
w

⎞

⎟
⎠ . (20)

Next, we can approximate the values Ûi,j,k at point Pi,j,k by a Taylor expansion at point
Pa. For instance, a third order approximation is given as

Ûijk = Ûa + (r · n)Û(1)
a + 1

2
(r · n)2 Û(2)

a , (21)

where r is a vector going from Pa to Pi,j,k , Ûa (or Û(0)
a ) is the point value at Pa, and Û(1)

a

and Û(2)
a are the normal derivatives Ûx̂|Pa and Ûx̂x̂|Pa , respectively. It can be extended to

arbitrary high order accuracy easily by keeping more terms in the Taylor expansion. For
the current third-order scheme, we just need to get the values Û(m)

a ,m = 0, 1, 2.
Before that, a local characteristic decomposition should be done at Pa, with the eigen-

decomposition

A(Ûa) = L−1
a �aLa,
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where, � is the diagonal matrix consisting of the eigenvalues of A(Û), and L forms from
the corresponding left eigenvectors {l1, . . . , l5}:

La = (l1, . . . , l5)T =

⎛

⎜
⎜
⎜
⎜
⎝

l1,1 l1,2 · · · l1,5
l2,1 l2,2 · · · l2,5
...

...
. . .

...
l5,1 l5,2 · · · l5,5

⎞

⎟
⎟
⎟
⎟
⎠
.

Notice that the point value Ûa is unknown, we will use the WENO extrapolation to
obtain the approximation Ûext

a (see Appendix C) and then substitute it into the formula-
tions above, obtaining La = L(Ûext

a ). After that, convert the original variables Û to the
characteristic fields V = LaÛ. Since the eigenvalues of A(Û) are

û − c, û, û, û, û + c,

the moving speeds of five characteristic lines relative to the boundary normal direction
are −c, 0, 0, 0, c, respectively.

3.1.1 Reformulation of thematerial derivative in 3D

In the ILWprocedure, we convert normal spatial derivatives to tangential and time deriva-
tives of the given boundary condition using the PDE. Specifically, for moving boundaries,
we would employ the material derivatives of the boundary conditions. Details will be
shown in Section 3.1.2. For any function g̃ ∈ C1(R3×R

+), the material derivative is given
as

Dg̃
Dt

= ∂ g̃
∂t

+ u
∂ g̃
∂x

+ v
∂ g̃
∂y

+ w
∂ g̃
∂z

, (22)

where, (u, v,w) is the flow velocity. Unfortunately, the definition above can not be used
for the functions defined on boundary only, such as the normal vector, since the spatial
derivatives may not exist. Therefore, for the functions limited on the surface in three-
dimensional space, we will give a new definition of material derivative, which would play
a key role in the ILWmethod in the following subsection.
Suppose that the three-dimensional moving boundary �(t) is given as

Xb = (x(τ1, τ2, t), y(τ1, τ2, t), z(τ1, τ2, t)),

where (τ1, τ2) are parameters in [ τ10, τ11]×[ τ20, τ21] . For example, the surface of a unit
sphere in 3D can be described in spherical coordinates:

x = sin(τ1) cos(τ2), y = sin(τ1) sin(τ2), z = cos(τ2),

where, (τ1, τ2) are parameters in [ 0, 2π ]×[−π/2,π/2].
Assume that, the parametric equation �(t) is regular, i.e., ∂Xb

∂τ1
and ∂Xb

∂τ2
are linearly inde-

pendent. Thus, ∂Xb
∂τ1

, ∂Xb
∂τ2

and n form a basis of the three-dimensional space. Then, the
velocities of the fluid and the boundary can be written as follows:

u = un n + uτ1
∂Xb
∂τ1

+ uτ2
∂Xb
∂τ2

,

Vb = Vb,n n + Vb,τ1
∂Xb
∂τ1

+ Vb,τ2
∂Xb
∂τ2

.
(23)
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Definition 1 Suppose there is a function defined on �(t): g(τ1, τ2, t) ∈
C1([ τ10, τ11]×[ τ20, τ21]×R

+). The material derivative is defined as:

L(g) = ∂g
∂t

+ (uτ1 − Vb,τ1)
∂g
∂τ1

+ (uτ2 − Vb,τ2)
∂g
∂τ2

. (24)

Moreover, it has the following property, which indicates the equivalence between our
new definition (24) and the traditional definition of material derivative on no-penetration
boundary.

Theorem 2 Suppose �(t) = (x(τ1, τ2, t), y(τ1, τ2, t), z(τ1, τ2, t)) is a smooth surface in
three dimensions, and the no-penetration boundary condition holds on �(t), i.e. u · n =
Vb · n. For any g̃(x, y, z, t) ∈ C1(R3 × R

+), we can define a function g on �(t):

g(τ1, τ2, t) = g̃(x(τ1, τ2, t), y(τ1, τ2, t), z(τ1, τ2, t), t). (25)

Then the following equation is true:

L(g) = Dg̃
Dt

= ∂ g̃
∂t

+ ∇ g̃ · u, (26)

where D
Dt is the material derivative given in (22).

Proof According to the formula (23) and u · n = Vb · n, we know that un = Vb,n. Using
the chain rule, we can obtain that

∂g
∂t

= ∂ g̃
∂t

+ ∂ g̃
∂x

∂x
∂t

+ ∂ g̃
∂y

∂y
∂t

+ ∂ g̃
∂z

∂z
∂t

= ∂ g̃
∂t

+ ∇ g̃ · Vb,

∂g
∂τ1

= ∂ g̃
∂x

∂x
∂τ1

+ ∂ g̃
∂y

∂y
∂τ1

+ ∂ g̃
∂z

∂z
∂τ1

= ∇ g̃ · ∂Xb
∂τ1

,

∂g
∂τ2

= ∂ g̃
∂x

∂x
∂τ2

+ ∂ g̃
∂y

∂y
∂τ2

+ ∂ g̃
∂z

∂z
∂τ2

= ∇ g̃ · ∂Xb
∂τ2

.

Therefore,

L(g) =∂g
∂t

+ (uτ1 − Vb,τ1)
∂g
∂τ1

+ (uτ2 − Vb,τ2)
∂g
∂τ2

=∂ g̃
∂t

+ ∇ g̃ · Vb + (uτ1 − Vb,τ1)∇ g̃ · ∂Xb
∂τ1

+ (uτ2 − Vb,τ2)∇ g̃ · ∂Xb
∂τ2

+ (un − Vb,n)∇ g̃ · n

=∂ g̃
∂t

+ ∇ g̃ · u = Dg̃
Dt

.

This completes the proof.
In the next subsection, we will use the definition L (24) on the given boundary con-

ditions in the ILW process. For easy notation, we write L(g) as Dg
Dt in the following

subsections.

3.1.2 ILWmethod

With the boundary conditions and the material derivative given in Definition 1, we now
proceed to construct Û(m)

a = ((Û1)
(m)
a , . . . , (Û5)

(m)
a )T ,m = 0, 1, 2.

• At first, we want to find the value of Û(0)
a . The no-penetration condition

û = û · n = Vb · n can be rewritten as

(Û2)
(0)
a = Vb · n.
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Do the extrapolation of those outgoing characteristic variables, and we have the
following equations

lj · Û(0)
a = (Vj)

(0)
a , j = 2, . . . , 5,

where, (Vj)
(0)
a are obtained by the WENO extrapolation. Hence, those equations tell

us a system as
⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

0 1 0 0 0
l2,1 l2,2 l2,3 l2,4 l2,5
l3,1 l3,2 l3,3 l3,4 l3,5
l4,1 l4,2 l4,3 l4,4 l4,5
l5,1 l5,2 l5,3 l5,4 l5,5

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

(Û1)
(0)
a

(Û2)
(0)
a

(Û3)
(0)
a

(Û4)
(0)
a

(Û5)
(0)
a

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

Vb · n
(V2)

(0)
a

(V3)
(0)
a

(V4)
(0)
a

(V5)
(0)
a

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

. (27)

Thus, Û(0)
a can be obtained by solving the above system.

• Then, we want to find the derivative of Û(1)
a . From the second equation of Euler

equations with primitive variables we can get

px̂ = −ρ
Dû
Dt

= ρ

[
û · Dn̂

Dt
− D

Dt
(Vb · n)

]
,

where
Dn
Dt

= u − Vb
r

,
Dn̂
Dt

= T
Dn
Dt

,

D
Dt

(Vb(t) · n) = dVb
dt

· n + Vb · Dn
Dt

.

So we get Û(1)
a by solving the following system:

⎧
⎪⎨

⎪⎩

(Û5)
(1)
a = ρ

(
û · Dn̂

Dt
− d

dt
(Vb · n)

)
,

lj · Û(1)
a = (Vj)

(1)
a , j = 2, . . . , 5,

(28)

Again, (Vj)
(1)
a are obtained by the WENO extrapolation.

• Finally, for the second derivative Û(2)
a , we will employ the idea of simplified ILW

(SILW) procedure proposed in [20], and the second derivative can be obtained by
WENO extrapolation.

Once Û(m)
a , m = 0, 1, 2 are obtained, we can use (21) to get Ûi,j,k , and further Ui,j,k and

Wi,j,k .

3.1.3 Coupling with RK time discretization

Notice that the numerical method we have described previously is for time level tn only.
When coupling with the third order RK scheme (14), we need to match the time levels
when constructing values of ghost points in the two intermediate stages W(1) and W(2).
In particular, the velocity û at the boundary at each RK stage is necessary as the boundary
condition, and we need to update û with the following formulations instead of the RK
scheme (14) to maintain the third order in time:

û(1) = ûn + �t
∂û
∂t

|x=Xb(tn),t=tn ,

û(2) = ûn + �t
2

∂û
∂t

|x=Xb(tn),t=tn + �t2

4
∂2û
∂t2

|x=Xb(tn),t=tn .
(29)
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As in [18], we can use a standard Lax-Wendroff procedure to get the time derivatives as we
want. More specifically, employing the second equation of (16) repeatedly, we can get the
time derivatives ∂û

∂t and ∂2û
∂t2 in terms of spatial derivatives. After finishing an inverse Lax

Wendroff procedure at the time level tn, all the first and second order spatial derivatives
values at x = Xb(tn) are given. Hence, we can get ∂û

∂t |x=Xb(tn),t=tn and ∂2û
∂t2 |x=Xb(tn),t=tn

with these spatial derivatives. More details can be found in [18].

3.2 Boundary treatments for NS equation

Similar to the case in Section 3.1, to define the value at a ghost point Pi,j,k = (xi, yj, zk),
we set up a local coordinate system at Pa by (18) at first. Then, consider the variables
and system in the local coordinate system. Again, the rotation is not unique but will not
affect the results of boundary scheme. The proof is very similar to the Euler equation in
Appendix B. We will not repeat it here.
Due to the fact that the Dirichlet boundary conditions are given for velocity û and

temperature T, we rewrite the Eq. (8) with respect to the new variables

Û = (ρ, û, v̂, ŵ,T)T ,

and then,

Ût + D(Û)Ûx̂ = E(Û)Ûx̂x̂ + Res, (30)

The matrixes and source term are given as

D(Û) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

û ρ 0 0 0
T
ρ

û 0 0 1
0 0 û 0 0
0 0 0 û 0
0 (γ − 1)T 0 0 û

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, E(Û) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 4

3Re·ρ 0 0 0
0 0 1

Re·ρ 0 0
0 0 0 1

Re·ρ 0
0 0 0 0 γ

Pr·Re·ρ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (31)

and

Res =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Res1
Res2
Res3
Res4
Res5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−ρ(v̂ŷ + ŵẑ) − v̂ρŷ − ŵρẑ
1

Re·ρ (ûŷŷ + ûẑẑ + 1
3 v̂x̂ŷ + 1

3 ŵx̂ẑ) − v̂ûŷ − ŵûẑ
1

Re·ρ ( 43 v̂ŷŷ + v̂ẑẑ + 1
3 ûx̂ŷ + 1

3 ŵŷẑ) − 1
ρ
Pŷ − v̂v̂ŷ − ŵv̂ẑ

1
Re·ρ (ŵŷŷ + 4

3 ŵẑẑ + 1
3 ûx̂ẑ + 1

3 v̂ŷẑ) − 1
ρ
Pẑ − v̂ŵŷ − ŵŵẑ

γ
Re·ρ·Pr (Tŷŷ + Tẑẑ) + NLT

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (32)

with

NLT = γ − 1
Re · ρ

(
−2
3
(ûx̂ + v̂ŷ + ŵẑ)

2 + 2(û2x̂ + v̂2ŷ + ŵ2
ẑ) + 2(v̂x̂ + ûŷ)2

+2(ŵx̂ + ûẑ)2 + 2(v̂ẑ + ŵŷ)
2) .

(33)

Again, the values Ûi,j,k at point Pi,j,k will be approximated by a Taylor expansion in x̂-
direction at point Pa. Once obtaining the point value Ûa, and normal derivatives Û(1)

a and
Û(2)
a , we can get the third order approximation of Ûi,j,k via (21).
Note that in the boundary treatment for the Euler equations in Section 3.1, the bound-

ary values Û(m)
a are obtained via either the ILWmethod based on the boundary conditions

or the extrapolation of the outgoing variables. However, for the compressible NS equation,
totally different boundary treatments are needed for the diffusion-dominated and the
convection-dominated regimes. Hence, [28] designed the numerical methods based on a
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careful combination of the boundary treatments for the two regimes and obtained a stable
and accurate boundary condition for general convection-diffusion equations with either
still or moving boundaries. Here, we extend the numerical method to our 3D model with
the given isothermal no-slip wall boundary condition.

3.2.1 Thematerial derivative in 3D

For the NS equation with moving boundary, the material derivative is also necessary in
the ILWmethod.

DÛ
Dt

= Ût + û Ûx̂ + v̂ Ûŷ + ŵ Ûẑ.

For the no-slip boundary, the material derivatives for the boundary and fluid are the same,

DÛ
Dt

= DÛb
Dt

.

Moreover, since Tb is constant, hence DTb/Dt = 0. And Dû/Dt = dVb/dt equal to the
acceleration of the rigid body. As a consequence,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dρ

Dt
+ ρ(ûx̂ + v̂ŷ + ŵẑ) = 0

Dû
Dt

+ 1
ρ
px̂ = 1

Reρ
(
4
3
ûx̂x̂ + ûŷŷ + ûẑẑ + 1

3
v̂x̂ŷ + 1

3
ŵx̂ẑ)

Dv̂
Dt

+ 1
ρ
pŷ = 1

Reρ
(v̂x̂x̂ + 4

3
v̂ŷŷ + v̂ẑẑ + 1

3
ûx̂ŷ + 1

3
ŵŷẑ)

Dŵ
Dt

+ 1
ρ
pẑ = 1

Reρ
(ŵx̂x̂ + ŵŷŷ + 4

3
ŵẑẑ + 1

3
ûx̂ẑ + 1

3
v̂ŷẑ)

DT
Dt

+ (γ − 1)T(ûx̂ + v̂ŷ + ŵẑ) = γ

ρ Re Pr
(Tx̂x̂ + Tŷŷ + Tẑẑ) + NLT

(34)

3.2.2 ILWmethod

In particular, the derivatives Û(m)
a , m = 1, 2, are a combination of those derived from the

ILW procedure and the extrapolation procedure from interior points. For easy notation,
we use the subscript “ilw" and “ext" to denote derivatives Û(m)

a obtained through the ILW
procedure Û(m)

a,ilw and the extrapolation Û(m)
a,ext , respectively.

Here, the matrix D(Û) is also diagonalizable,

D(Û) = L−1(Û)�(Û)L(Û),

with �(Û) = diag{û − c, û, û, û, û + c}. Hence, considering the characteristic variables
V = LaÛ, the components V2, · · · ,V5 are the outflow variables, and V1 is the inflow
variable. Again, Ûext

a is used in the characteristic decomposition.

• Construct the point value Û(0)
a . Note that the boundary condition (9) gives the value

of û and T at the boundary �(t) directly, so we can set

(Û2)
(0)
a = ûb, (Û3)

(0)
a = v̂b, (Û4)

(0)
a = ŵb, (Û5)

(0)
a = Tb. (35)

Since V5 is the outgoing variable, we have the relation that

l5 · Û(0)
a = V5 = l5 · Û(0)

a,ext .
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Therefore, we can obtain the value of (Û1)
(0)
a as follows,

(Û1)
(0)
a = (Û1)

(0)
a,ext

(Û5)
(0)
a,ext

(
2 (Û5)

(0)
a,ext − (Û5)

(0)
a +

√
γ · (Û5)

(0)
a,ext
(
(Û2)

(0)
a,ext − (Û2)

(0)
a
))

.

(36)

• Construct the derivative value Û(1)
a . Combining the definition p = ρ T and material

derivative Dû/Dt in (34), we have that

(Û5)
(0)
a (Û1)

(1)
a,ilw+(Û1)

(0)
a (Û5)

(1)
a,ilw = −(Û1)

(0)
a

Dûb
Dt

+ 1
Re

(
4
3
ûx̂x̂+ûŷŷ+ûẑẑ+ 1

3
v̂x̂ŷ + 1

3
ŵx̂ẑ

)
.

Given the outgoing performance of V2, . . . ,V5, we have the relation that

lj · Û(1)
a,ilw = (Vj)

(1)
a , j = 2, . . . , 5.

The second derivatives on the right hand side and (Vj)
(1)
a are obtained via

extrapolation. Thus, we can have Û(1)
a,ilw by solving the system. Then,

Û(1)
a = c2h2

c2h2 + 9ε2
Û(1)
a,ilw + 9ε2

c2h2 + 9ε2
Û(1)
a,ext . (37)

with ε = max{ 1
Reρ ,

4
3Reρ ,

γ
PrReρ } and h = √�x2 + �y2 + �z2.

• Construct the derivative value Û(2)
a . Based on the boundary condition (34), the

second derivatives (Û2)(2), . . . , (Û5)(2) satisfy equations and we set them as “ilw":
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Û2)
(2)
a,ilw = 3Reρ

4

(
Dûb
Dt

+ 1
ρ
Px̂ − 1

Reρ
(ûŷŷ + ûẑẑ + 1

3
v̂x̂ŷ + 1

3
ŵx̂ẑ)

)
,

(Û3)
(2)
a,ilw = Reρ

(
Dv̂b
Dt

+ 1
ρ
Pŷ − 1

Reρ
(
4
3
v̂ŷŷ + v̂ẑẑ + 1

3
ûx̂ŷ + 1

3
ŵŷẑ)

)
,

(Û4)
(2)
a,ilw = Reρ

(
Dv̂b
Dt

+ 1
ρ
Pẑ − 1

Reρ
(ŵŷŷ + 4

3
ŵẑẑ + 1

3
ûx̂ẑ + 1

3
v̂ŷẑ
)
,

(Û5)
(2)
a,ilw = ReρPr

γ

(
DTb
Dt

(γ − 1)T(ûx̂ + v̂ŷ + ŵẑ) − γ

ReρPr
(Tŷŷ + Tẑẑ) − NLT

)
.

There is no diffusion term in the first equation of (34), so we just take

(Û1)
(2)
a,ilw = (Û1)

(2)
a,ext ,

we can solve the system to get Û(2)
a,ilw. Finally, we have that

(
Ûj
)(2)

a
= c2h2

c2h2 + 9ε2j

(
Ûj
)(2)

a,ext
+ 9ε2j

c2h2 + 9ε2j

(
Ûj
)(2)

a,ilw
, (38)

with {ε1, ε2, ε3, ε4, ε5} =
{
0, 4

3Reρ ,
1

Reρ ,
1

Reρ ,
γ

PrReρ

}
.

3.2.3 Coupling with RK time discretization

When coupling the third order SSP RK time discretization, we need the value of(
Ûj
)

t
|Pa,tn and

(
Ûj
)

tt
|Pa,tn , j = 2, . . . , 5, to obtain high order accuracy in time via (29).

Fix at the boundary (x, y, z) = Pa and t = tn,

DÛj

Dt
=
(
Ûj
)

t
+ ûb

(
Ûj
)

x̂
+ v̂b
(
Ûj
)

ŷ
+ ŵb

(
Ûj
)

ẑ
,

we can take
(
Ûj
)

x̂
=
(
Ûj
)(1)

a
which is obtained from the previous boundary treatment,

and
(
Ûj
)

ŷ
and
(
Ûj
)

ẑ
can be approximated through extrapolation. Moreover, from the
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previous section, we can see that for the compressible viscous fluid DÛj
Dt at boundary is

given via boundary conditions. Hence, we can have DÛj
Dt directly. Thus, for j = 2, . . . , 5,

(
Ûj
)

t
|(x,y,z)=Pa,t=tn = (DÛj

Dt
− ûb

(
Ûj
)(1) − v̂b

(
Ûj
)

ŷ
− ŵb

(
Ûj
)

ẑ

)|(x,y,z)=Pa,t=tn . (39)

Look at the second material derivative
D2Ûj

Dt2
= ∂ûb

∂t

(
Ûj
)

x̂
+ ∂ v̂b

∂t

(
Ûj
)

ŷ
+ ∂ŵb

∂t

(
Ûj
)

ẑ
+ û2b

(
Ûj
)

x̂x̂
+ v̂2b
(
Ûj
)

ŷŷ
+ ŵ2

b

(
Ûj
)

ẑẑ

+ 2ûbv̂b
(
Ûj
)

x̂ŷ
+ 2ûbŵb

(
Ûj
)

x̂ẑ
+ 2v̂bŵb

(
Ûj
)

ŷẑ
+ 2ûb

(
Ûj
)

tx̂
+ 2v̂b

(
Ûj
)

tŷ

+ 2ŵb
(
Ûj
)

tẑ
+
(
Ûj
)

tt
.

Here, (
∂ûb
∂t ,

∂ v̂b
∂t ,

∂ŵb
∂t )T are the acceleration of the boundary. In particular, the spatial

derivatives
(
Ûj
)

α
and
(
Ûj
)

αβ
(α, β can be x̂, ŷ or ẑ) at (Pa, tn) are already obtained via

the ILW process tn. Hence, we only need to deal with
(
Ûj
)

tx̂
,
(
Ûj
)

tŷ
and
(
Ûj
)

tẑ
. Those

values can be simulated through the standard Lax-Wendroff idea, i.e., turning the time
derivative into spatial derivatives via PDE, and then approximating the spatial ones. How-
ever, the process would be very complex and the computational cost is large. Notice that
the time derivative

(
Ûj
)

t
|i,j,k at time tn is already known. Hence, the mixed derivatives

(
Ûj
)

tx̂
,
(
Ûj
)

tŷ
and
(
Ûj
)

tẑ
can be approximated by the spatial extrapolation.

4 Description of themoving rigid body
Under the impingement of the shock, the rigid body will move in the fluid. Here, both
translation and rotation of the body should be taken into account. For each point Xb =
(xb, yb, zb) ∈ �(t), the velocity is given as

Vb = Vtr + ω × r,

where, Vtr is the translational velocity, ω is the rotation velocity, and r is the vector from
the boundary point to the centroid coordinates Xc(t) = (xc(t), yc(t), zc(t)). Furthermore,
Vtr and ω satisfy the equation

dXb
dt

= Vb,
dVtr
dt

= atr ,
dω

dt
= aθ , (40)

with the translational acceleration atr and rotational acceleration aθ determined by New-
ton’s second law and rotational law respectively. In particular, for the inviscid fluid,

Matr =
∮

�(t)
pndS,

Iaθ =
∮

�(t)
p r × ndS.

(41)

Here, M is the mass of the sphere, n is the external normal vector of the surface (from
the rigid body to the fluid), and I is the moment of inertia of the sphere. While, for the
viscous fluid,

Matr =
∮

�(t)
(pn − τ · n) dS,

Iaθ =
∮

�(t)
r × (pn − τ · n) dS,

(42)
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with τ being the matrix defined as τ = 1
Re [ τi,j]3×3.

For the surface integrals in (41) and (42), these integrals can be expressed in the double
integral form with spherical coordinates. More specifically, we divide the integration area
into uniform grids in two directions, and then can use the two points composite Gaus-
sian quadrature to integrate these double integrals. And the integrand can be obtained by
extrapolation at each Gaussian point.

5 Numerical results
In this section, we will show a series of numerical examples. Time step is taken as:

�t = min
(

CFL
λx/�x + λy/�y + λz/�z

,
�x

max
�

(|Vb,x|) ,
�y

max
�

(|Vb,y|) ,
�z

max
�

(|Vb,z|)
)
, (43)

for Euler equation, and

�t =min
(

CFL
λx/�x + λy/�y + λz/�z + λd(1/�x2 + 1/�y2 + 1/�z2)

,

�x
max

�
(|Vb,x|) ,

�y
max

�
(|Vb,y|) ,

�z
max

�
(|Vb,z|)

)
,

(44)

for NS equation, with λx = max
ijk

|ui,j,k| + c, λy = max
ijk

|vi,j,k| + c, λz = max
ijk

|wi,j,k| + c, and

λd = max( 1
Re ρ

, 4
3Re ρ

, γ
Pr Re ρ

). We take CFL = 0.3 in our numerical simulation, and the
constraint (15) is automatically satisfied.

5.1 An example of accuracy test

In this example, we construct an inviscid isentropic flow and measure the entropy errors
to verify the accuracy of our algorithm. This model is obtained by stretching the 2Dmodel
(see Example 4.1 in [13]) in z-direction. But we do use the 3D algorithm introduced in
this paper to solve this problem. Specifically, the 3D example is given as follows:
The governing equation is the Euler Eq. (6). The computational domain is taken as

[−4, 4]×[−4, 4]×[−0.5, 0.5]. The boundaries in x- and y-direction are all solid walls. A
moving rigid cylinder with radius R = 1.0 and mass M = 1.0 is initially placed in the
domain paralleling to the z-axis, and the central axis is located at x = y = 0 . It will
move under the impingement of inviscid flow in the domain. The initial flow should be
isentropic, smooth and consistent with the boundary condition such that the flow keeps
isentropic as long as the solution stays smooth. Therefore, we set

u(x, y, z, 0) = −1
2
(
λ1(x, y)u1(x, y) + λ2(x, y)2

)
,

v(x, y, z, 0) = 1
2
(λ1(x, y)v1(x, y) + λ2(x, y)v2(x, y)),

w(x, y, z, 0) = 0,

p(x, y, z, 0) = 1,

ρ(x, y, z, 0) = 1,
where

λ1(x, y) = (4
√
2 − 1)(

√
x2 + y2 − 1)

(
√
16 + y2 − 1)(

√
16 + x2 − 1)

,
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λ2(x, y) =
√
x2 + y2

(
x2 − 16

) (
y2 − 16

)

(
x2

x2+y2 − 16
) (

y2
x2+y2 − 16

) ,

and

u1(x, y) = sin
(π
4
x
)
sin2
(π
4
y
)
,

v1(x, y) = sin2
(π
4
x
)
sin
(π
4
y
)
,

v2(x, y) = 1
16

(x2 + y2 − 1) sin(
π

4
x),

and we set the initial velocity of the moving cylinder as V b = (−0.5, 0, 0)T .
As long as the solution stays smooth, it maintains the isentropic flow, i.e., s(x, y, z, t) = 1.

In particular, solutions on any xy-section plane are the same as those in 2D. Hence, we
use zero spatial derivative on the boundaries in z-direction to guarantee two dimensional
property of the flow around the cylinder. We use the reflection boundary condition on
the boundaries in x- and y-direction, and the moving boundary algorithm proposed in
this paper is applied to deal with the cylinder boundary.
In Table 1, we give the entropy errors and the rate of convergence at t = 0.5 when the

solution is smooth. It is observed that the scheme can achieve the designed third order
accuracy.

5.2 Interaction between shock wave and a cylinder

This example is the three dimensional version of Example 4.3 in [13] and Example 5 in
[28]. We use it to verify the correctness of our algorithm. As in the two papers, the com-
putation area is taken as [ xl, xr]×[ yl, yr]×[ zl, zr]=[ 0, 1]×[ 0, 0.2]×[−0.5, 0.5]. At the
initial time, a cylinder is parallel to y-direction with its center located at (0.15, 0.05, 0). The
radius and the density are given as r = 0.05 and σ = 10.77, respectively. A shock wave
is located at x = 0.08. We test the example with Mach number Ms = 3. In z-direction,
we use zero spatial derivative on the infinite boundaries to guarantee two dimensional
property of the flow around the cylinder.

• Compressible inviscid fluid.We plot the pressure contour in Fig. 1 along the cross
section of z = 0 at two typical time points.

• Compressible viscous fluid.We take Re = 1000, Pr = 0.7, and Tb = 5
7 . We plot the

pressure contour in Fig. 2 along the cross section of z = 0 at two typical time points.

Our numerical results consist with those of two dimensional ones in [13, 28], indicating
our method for three dimensional problems is correct.

Table 1 The example 5.1: entropy errors and convergence rates

h L1 error Order L∞ error Order

1/5 7.47E-002 – 1.14E-002 –

1/10 9.57E-003 2.97 2.21E-003 2.37

1/20 1.03E-003 3.22 2.73E-004 3.02

1/40 1.11E-004 3.21 3.14E-005 3.12
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Fig. 1 The example 5.2: pressure contours of compressible inviscid fluid around a 3D cylinder.Ms = 3

5.3 Interaction between shock wave and a sphere

The computational domain is taken as [ xl, xr]×[ yl, yr]×[ zl, zr]=[ 0, 1]×[ 0, 0.2]×
[−0.5, 0.5]. The initial position of the spherical center is (0.15, 0.05, 0), with the radius
r = 0.05 and the density σ = 10.77. And a shock wave is located at x = 0.08 initially. We
test the example withMs = 3 andMs = 6.
In the early stage of computation, the sphere is impacted by the shock wave to produce

a reflected shock wave, and the reflected shock wave hits the lower wall to generate a new
reflected shock wave, causing uneven pressure distribution on the upper and lower sides
of the sphere. The uneven pressure causes the sphere to move upward. Figures 3 and 4
show this procedure for inviscid fluid and viscous fluid respectively.
Later, the reflections of Mach shocks from the walls reach the sphere, generating more

structures. Those structures will vary with the fluid.

Fig. 2 The example 5.2: pressure contours of compressible viscous fluid around a 3D cylinder.Ms = 3
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Fig. 3 The example 5.3: the early stage of the interaction of a plane shock wave and a sphere in inviscid case
for Mach numberMs = 3. Pressure contours along z = 0

• Compressible inviscid fluid. Figures 5, 6 and 7 contain the time evolution of the
interaction of a plane shock wave and a sphere for Mach numberMs = 3 andMs = 6
respectively. The pressure contours along the cross section of z = 0 are plotted. We
can observe that there is a reflected shock wave when the incident shock wave
interacts with the sphere. There is a second reflected shock wave when the reflected
shock wave interacts with the upper wall. The second reflected shock wave hits the
sphere again and forms a secondary interaction. The rigid body would be under
greater stress in fluid with a larger Mach number. Consequently, the body would
move faster. These numerical results show that our numerical method is robust in
the computation for the supersonic flow with high Mach number.

• Compressible viscous fluid.We take Re = 500 and 107, Pr = 0.7, and Tb = 5
7 . The

time evolution of the interaction of a plane shock wave and a sphere for Mach
numberMs = 3 andMs = 6 is plotted in Figs. 8, 9, 10, 11 and 12. Again, the system
of shock waves is observed clearly, and results are significantly different with different
Mach numbers. However, there is no discernible difference when changing Reynold
number.

In addition, 3D pictures of the iso-surface of vorticity and the contour of pressure of
the inviscid fluid and viscous fluid are given in Figs. 7 and 12, respectively. The numerical
results demonstrate that our methods are stable and efficient for general cases.

Fig. 4 The example 5.3: the early stage of the interaction of a plane shock wave and a sphere in viscous case
for Mach numberMs = 3, Re = 1000. Pressure contours along z = 0
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Fig. 5 The example 5.3: the time evolution of the interaction of a plane shock wave and a sphere in inviscid
case for Mach numberMs = 3. Pressure contours along z = 0

6 Conclusion
In this paper, we develop the high order numerical boundary treatments for compressible
inviscid fluid and viscous fluid, and further use them to simulate the interaction between
a complex moving rigid body and a shock wave in 3D. Schemes are based on the finite
difference methods on fixed Cartesian meshes in complex moving geometries. Values on
the ghost points can be obtained through a Taylor expansion on the boundary in the
normal direction. And we can construct point values and normal derivatives via ILW pro-
cedure or extrapolation, or their combination according to the equations and boundary
conditions. This is an extension of our works [13, 28], in which the boundary treatment
was designed for 2D problems. Different from the 2D case, the local coordinate rotation
required in the ILW procedure is not unique in 3D. We prove that the choice of the rota-
tion will not affect results of the boundary treatment. Hence, we can choose a simple
one in our simulation. On the other hand, the material derivative for inviscid fluid on the
moving boundary with no-penetration condition is newly given. Consequently, we can
simulate the body with both translation and rotation. In the numerical tests, we show the
results of cylinder and sphere, indicating our algorithm is effective and robust.

Fig. 6 The example 5.3: the time evolution of the interaction of a plane shock wave and a sphere in inviscid
case for Mach numberMs = 6. Pressure contours along z = 0
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Fig. 7 The example 5.3: The iso-surface of vorticity ω = 15 of the interaction of a plane shock wave and a
sphere in inviscid case for Mach numberMs = 3. The red line is the contour of pressure on xy- and xz-section
plane going through the center of the sphere

Fig. 8 The example 5.3: the time evolution of the interaction of a plane shock wave and a sphere in viscous
case for Mach numberMs = 3 and Re = 500. Pressure contours along z = 0
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Fig. 9 The example 5.3: the time evolution of the interaction of a plane shock wave and a sphere in viscous
case for Mach numberMs = 3 and Re = 107. Pressure contours along z = 0

Fig. 10 The example 5.3: the time evolution of the interaction of a plane shock wave and a sphere in viscous
case for Mach numberMs = 6 and Re = 500. Pressure contours along z = 0

Fig. 11 The example 5.3: the time evolution of the interaction of a plane shock wave and a sphere in viscous
case for Mach numberMs = 6 and Re = 107. Pressure contours along z = 0
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Fig. 12 The example 5.3: The iso-surface of vorticity ω = 15 of the interaction of a plane shock wave and a
sphere in viscous case for Mach numberMs = 3 and Re = 500. The red line is the contour of pressure on xy-
and xz-section plane going through the center of the sphere

Appendix A: WENOmethod
Numerical fluxes F̂i+1/2,j,k , Ĝi,j+1/2,k and Ĥi,j,k+1/2 can be approximated in a dimension-
by-dimension fashion. This means the numerical flux F̂i+1/2,j,k is obtained by the one
dimensional WENO reconstruction with j and k fixed. Likewise, the numerical flux
Ĝi,j+1/2,k (or Ĥi,j,k+1/2) is obtained by one dimensional approximation procedure with i
and k (or i and j) fixed. In the following part, we give the details of the third order WENO
procedure to construct F̂i+1/2,j,k . And for ease of notation, we ignore the indexes j and k
here.

1. Compute an average stateWi+1/2, using either the simple arithmetic mean

Wi+1/2 = 1
2

(Wi + Wi+1) ,

or a Roe average satisfying

F′(Wi+1/2)(Wi+1 − Wi) = F(Wi+1) − F(Wi);
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2. Compute the right eigenvectors, the left eigenvectors, and the eigenvalues of the
Jacobian F′(Wi+1/2), and denote them by

R = R(Wi+1/2), R−1 = R−1(Wi+1/2), � = �(Wi+1/2);

3. Transform all the point valuesWj and fluxes Fj = F(Wj) which are in the potential
stencil of the WENO reconstruction to the local characteristic fields:

W̃j = R−1Wj, F̃j = R−1Fj, j = i − 1, . . . , i + 2;

4. Do the flux splitting:

F̃±
j = 1

2

(
F̃j ± αW̃j

)
, j = i − 1, . . . , i + 2,

where, α = maxl |λl(F′(W))| takes over the relevant range ofW, and λl are the
eigenvalues of the Jacobian F′(W);

5. Perform the scalar WENO reconstruction procedure for each component of
F̃+ =

(
f̃ +
1 , . . . , f̃ +

5

)T
on the left-biased stencil to obtain the corresponding

component of the fluxes ˆ̃F+
i+1/2 =

(( ˆ̃f1
)+

i+1/2
, · · · , ( ˆ̃f5)+i+1/2

)T
. We summarize

the procedure for each component l = 1, . . . , 5 :

(a) On the two small stencils S(1) = {xi−1, xi} and S(2) = {xi, xi+1}, we have
the low order approximation

(
ˆ̃fl)(1)i+1/2 = −1

2
(f̃l)i−1 + 3

2
(f̃l)i,

(
ˆ̃fl)(2)i+1/2 = 1

2
(f̃l)i + 1

2
(f̃l)i+1,

and the linear weights

d1 = 1
3
, d2 = 2

3
;

(b) Change the linear weights dr to nonlinear weights ωr :

ωr = αr
α1 + α2

, αr = dr
(βr + ε)2,

, r = 1, 2,

with ε = 10−6 to avoid the denominator being zero, and the smoothness
indicators βr on each small stencil are given as

β1 =
(
(f̃l)i−1 − (f̃l)i

)2
,

β2 =
(
(f̃l)i − (f̃l)i+1

)2
;

(c) Find the third order reconstruction

(
ˆ̃fl)+i+1/2 = ω1(

ˆ̃fl)(1)i+1/2 + ω2(
ˆ̃fl)(2)i+1/2;

6. Construct ˆ̃F−
i+1/2 based on F̃− and the right-biased stencil. The process to obtain

ˆ̃F−
i+1/2 is mirror-symmetric to that for ˆ̃F+

i+1/2 , with respect to the target point
xi+1/2;

7. Form the numerical flux as
ˆ̃Fi+1/2 = ˆ̃F+

i+1/2 + ˆ̃F−
i+1/2;
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8. Transform back into physical space

F̂i+1/2 = R ˆ̃Fi+1/2.

Appendix B: A proof of Theorem 1
We prove the boundary treatment of the Euler equation here. The theorem also holds for
the Navier-Stokes equation, and the proof is similar.
As before, assume Pi,j,k = (xi, yj, zk) is the ghost point we are concerned about, Pa is its

pedal point at the boundary, and n = (n1, n2, n3) is the normal vector which points from
Pa to Pi,j,k . We choose t1 = (t11, t12, t13

)
, t2 = (t21, t22, t23

)
as two orthogonal tangent vectors

to take the rotation. The rotation matrix can be written as follows:

T =
⎛

⎜
⎝

n1 n2 n3
t11 t12 t13
t21 t22 t23

⎞

⎟
⎠ .

With this rotation, we have:
⎛

⎜
⎝

û(k)
a,ext

v̂(k)
a,ext

ŵ(k)
a,ext

⎞

⎟
⎠ = T

⎛

⎜
⎝

u(k)
a,ext

v(k)
a,ext

w(k)
a,ext

⎞

⎟
⎠ , k = 0, 1, 2

where u(k)
a,ext , v

(k)
a,ext ,w

(k)
a,ext can be obtained by extrapolation without using t1 and t2. And

the local characteristic decomposition can be written as:

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

(V̂1)
(k)
a

(V̂2)
(k)
a

(V̂3)
(k)
a

(V̂4)
(k)
a

(V̂5)
(k)
a

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

=La

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

ρ
(k)
a,ext

û(k)
a,ext

v̂(k)
a,ext

ŵ(k)
a,ext

p(k)
a,ext

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

=

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 − 1
2

√
γ p(0)

a,extρ
(0)
a,ext 0 0 1

2
0 0 0 1 0
0 0 1 0 0

1 0 0 0 − ρ
(0)
a,ext√
p(0)
a,ext

0 1
2

√
γ p(0)

a,extρ
(0)
a,ext 0 0 1

2

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

ρ
(k)
a,ext

û(k)
a,ext

v̂(k)
a,ext

ŵ(k)
a,ext

p(k)
a,ext

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

, k = 0, 1, 2

Substitute the above characteristic variables into the right-hand-term of equation (27)
and solve the linear system, we get:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Û1
)(0) = ρ

(0)
a,ext

⎛

⎝1 +
√√
√√ ρ

(0)
a,ext

γ p(0)
a,ext

(
û(0)
a,ext − ûb

)
⎞

⎠ ,

(
Û2
)(0) = ûb −

(
n1u(0)

a,ext + n2v(0)
a,ext + n3w(0)

a,ext

)
+
(
n1u(0)

a,ext + n2v(0)
a,ext + n3w(0)

a,ext

)
,

(
Û3
)(0) = t11u

(0)
a,ext + t12v

(0)
a,ext + t13w

(0)
a,ext ,

(
Û4
)(0) = t21u

(0)
a,ext + t22v

(0)
a,ext + t23w

(0)
a,ext ,

(
Û5
)(0) = p(0)

a,ext +
√

γρ
(0)
a,ext p

(0)
a,ext

(
û(0)
a,ext − ûb

)
.

Apply the relation

U(k) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 n1 t11 t21 0
0 n2 t12 t22 0
0 n3 t13 t23 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Û(k), k = 0, 1, 2. (45)
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We have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(U1)
(0) = ρ

(0)
a,ext

⎛

⎝1 +
√√
√
√ ρ

(0)
a,ext

γ p(0)
a,ext

(
û(0)
a,ext − ûb

)
⎞

⎠ ,

(U2)
(0) = n1

(
ûb −

(
n1u

(0)
a,ext + n2v

(0)
a,ext + n3w

(0)
a,ext
))

+ u(0)
a,ext ,

(U3)
(0) = n2

(
ûb −

(
n1u

(0)
a,ext + n2v

(0)
a,ext + n3w

(0)
a,ext
))

+ v(0)a,ext ,

(U4)
(0) = n3

(
ûb −

(
n1u

(0)
a,ext + n2v

(0)
a,ext + n3w

(0)
a,ext
))

+ w(0)
a,ext ,

(U5)
(0) = p(0)

a,ext +
√

γρ
(0)
a,ext p

(0)
a,ext
(
û(0)
a,ext − ûb

)
.

Here, the orthogonality of rotation matrix T is used. And we can see that all the terms
here are independent of t1 and t2.
Similarly, substitute the characteristic variables into equation (28) and solve the linear

system, we get:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Û1)
(1) = ρ

(1)
a,ext + ρ

(0)
a,ext

⎛

⎜
⎝

ρ
(0)
a,ext

Dû
Dt − p(1)

a,ext

γ p(0)
a,ext

+ Dû
Dt

⎛

⎝
ρ

(0)
a,ext

γ p(0)
a,ext

⎞

⎠

3
2 (

û(0)
a,ext − ûb

)
⎞

⎟
⎠ ,

(Û2)
(1) = n1u

(1)
a,ext + n2v

(1)
a,ext + n3w

(1)
a,ext + ûres,

(Û3)
(1) = t11u

(1)
a,ext + t12v

(1)
a,ext + t13w

(1)
a,ext ,

(Û4)
(1) = t21u

(1)
a,ext + t22v

(1)
a,ext + t23w

(1)
a,ext ,

(Û5)
(1) = ρ

(0)
a,ext

Dû
Dt

⎛

⎝1 +
√√
√
√ ρ

(0)
a,ext

γ p(0)
a,ext

(
û(0)
a,ext − ûb

)
⎞

⎠ ,

where
Dû
Dt

= û · Dn̂
Dt

− d
dt

(Vb · n)

and

ûres = −ρ
(0)
a,ext

Dû
Dt − p(1)

a,ext√
γ p(0)

a,extρ
(0)
a,ext

+ Dû
Dt

ρ
(0)
a,ext

γ p(0)
a,ext

(
û(0)
a,ext − ûb

)

are terms which are independent of t1 and t2.
Apply the relation (45), we get
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(U1)
(1) = ρ

(1)
a,ext + ρ

(0)
a,ext

⎛

⎜
⎝

ρ
(0)
a,ext

Dû
Dt − p(1)

a,ext

γ p(0)
a,ext

+ Dû
Dt

⎛

⎝
ρ

(0)
a,ext

γ p(0)
a,ext

⎞

⎠

3
2 (

û(0)
a,ext − ûb

)
⎞

⎟
⎠ ,

(U2)
(1) = n1ûres + u(1)

a,ext ,

(U3)
(1) = n2ûres + v(1)a,ext ,

(U4)
(1) = n3ûres + w(1)

a,ext ,

(U5)
(1) = ρ

(0)
a,ext

Dû
Dt

⎛

⎝1 +
√√
√
√ ρ

(0)
a,ext

γ p(0)
a,ext

(
û(0)
a,ext − ûb

)
⎞

⎠ .

Again, we can see the expression ofU(1)
a does not explicitly contain t1 and t2. Also, the sec-

ond order derivative U(2)
a , which is obtained by extrapolation directly, can be got without

using the tangent vectors.
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Therefore, the ghost points can be defined by a Taylor expansion without tangent
vectors.

Appendix C: WENO extrapolation
The idea of WENO extrapolation is using nonlinear weights to combine the approxima-
tions on candidate substencils.
Firstly, we select three candidate substencils S0, S1, S2 for extrapolation. There is more

than one way to select them. Thanks to the regular boundaries like a sphere, we can sim-
plify the traditional point finding method in [17]. Here, the inner lattice points whose
distance from point Pa is less than 1.1h, 2.1h and 3.1h are grouped to compose S0, S1, S2
respectively, where h = max(�x,�y,�z) is the largest mesh size.
Then, for each component of V, we reconstruct a polynomial of pm(x, y, z) (m = 0, 1, 2)

with the least square method on each candidate substencil Sm, respectively. Values of
∂kVi
∂ x̂k (i = 1, 2, 3, 4) can be extrapolated as:

∂kVi
∂ x̂k

=
2∑

m=0
dm

∂k

∂ x̂k
pm|(x,y,z)=(x(a),y(a),z(a)) (46)

where d0 = �x2 + �y2 + �z2, d1 = √�x2 + �y2 + �z2, d2 = 1 − d0 − d1.
Next, we change the approximation (46) to a WENO type extrapolation to avoid

spurious oscillation, with the following form:

∂kVi
∂ x̂k

=
2∑

m=0
ωm

∂k

∂ x̂k
pm|(x,y,z)=(x(a),y(a),z(a)), (47)

where ω0, ω1, ω2 are nonlinear weights depending on the smoothness of the functions on
candidate substencils, taken as

ωm = αm
∑2

s=0 αs
, m = 0, 1, 2, (48)

with

αm = dm
(ε + βm)2

. (49)

The small number ε is taken as 10−6 to avoid zero denominator. The smoothness
indicators βm are similar to those in [31]

β0 = �x2 + �y2 + �z2,

βm =
∑

1≤|μ|≤m

∫∫∫

K
|K |2/3|μ|−1(Dμpm)2dxdydz (50)

where μ is a muti-index and K =[ x(a) −�x/2, x(a) +�x/2]×[ y(a) −�y/2, y(a) +�y/2]×
[ z(a) − �z/2, z(a) + �z/2]. With the careful design of nonlinear weights ωm, the WENO
extrapolation can meet third order accuracy when the function is smooth enough on all
candidate substencils.
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