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Abstract

The surface correction to the quadrupole source term of the Ffowcs Williams and
Hawkings integral in the frequency domain suffers from the computation of high-order
derivatives of Green’s function. The far-field approximations to the derivatives of
Green’s function have been used without derivation and verification in previous work.
In this work, we provide the detailed derivations of the far-field approximations to the
derivatives of Green’s function. The binomial expansions for the derivatives of Green’s
function and the far-field condition are employed during the derivations to circumvent
the difficulties in computing the high-order derivatives. The approximations to the
derivatives of Green’s function are systemically verified by using the benchmarks two
-dimensional convecting vortex and the co-rotating vortex pair. In addition, we provide
the derivations of the approximations to the multiple integrals of Green’s function by
using the far-field approximations to the derivatives.

Keywords: Ffowcs Williams and Hawkings integral, Green’s function, High-order
derivatives, Far-field approximation

1 Introduction
The objective of this work is to provide the detailed derivations of the far-field approxima-
tions to the derivatives of Green’s function for the FfowcsWilliams andHawkings (FW-H)
equation [1]. The FW-H equation is among the most popular acoustic analogy meth-
ods to predict sound generated by unsteady flows. The solution to the FW-H equation
is usually expressed as an integral over the sources. The integral or the correction to the
integral suffers from the computation of derivatives of the Green’s function. The far-field
approximations to the derivatives of Green’s function is a feasible way to circumvent the
difficulties in computing the derivatives. The FW-H equation has been successfully used
to predict the sound generated by flows from jet engines [2, 3], propellers [4], hydrofoils
[5], high-speed trains [6, 7], ducted tail rotors [8] and biomimetic asymmetric bars [9].
The FW-H equation is a nonhomogeneous wave equation that extends Lighthill’s acoustic
analogy to problems with arbitrarily moving permeable/nonpermeable boundaries. The
FW-H equation with a uniform convective flow can be given as follows [10],
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where ρ′ = ρ − ρo is the density fluctuation. ρ is the density, and ρo is the ambient den-
sity at the far field. The far field pressure fluctuation p′ = p− po is c2oρ′ in the assumption
that the acoustic wave is an isentropic process. p is the pressure, and po is the ambient
pressure at the far field. We use the superscript (·)′ to denote the fluctuation and sub-
script (·)o to denote the far-field variable. t is time. xi (i = 1, 2, 3) are the independent
variables in the Cartesian coordinate system defined by o−x1x2x3. Mi = Ui/co is the
freestreamMach number along the o−xi axis, where Ui is a component of the freestream
velocity. co is the speed of sound. f is a function that defines the permeable or nonper-
meable boundary by f = 0. f (x) also satisfies the constraints that f is greater than zero
(f > 0) outside the domain enclosed by the boundary f = 0 and less than zero (f < 0)
inside the domain. H(f ) is the Heaviside’s step function which is unity where f > 0 and
zero where f < 0. δ(f ) is the Dirac delta function that is zero everywhere except where
f = 0. Tij = ρuiuj + Pij − c2oρ′δij is the Lighthill stress tensor, where ui is the fluid
velocity component along the o−xi axis. Pij = (p − po)δij − τij is the compressive stress
tensor, where ρ′ = ρ − ρo is the density fluctuation, ρo is the far-field density in the
ambient medium, δij is the Kronecker delta function and τij is the viscous stress tensor.
Fi = (

Pij + ρ(ui − Ui)(uj + Uj) + ρoUiUj
)
nj, where nj is the normal vector of the per-

meable/nonpermeable surface S0 defined by f = 0. Q = (ρ(ui + Ui) − ρoUi)ni. The
three terms on the right-hand side of the FW-H equation ∂

∂t (Qδ(f )), − ∂
∂xi
(
Fiδ(f )

)
, and

∂2

∂xi∂xj
(
TijH(f )

)
are usually termed monopole sources, dipole sources, and quadrupole

sources, respectively. It is noted that Eq. (1) is a general form of the FW-H equation.When
the freestream Mach number is Mi = 0, Eq. (1) reduces to the classical form of FW-H
equation [1, 11] without boundary motions
(
1
c2o

∂2

∂t2
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) (
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The solution to the FW-H equation can be expressed as surface integrals of the
monopole source and dipole source and a volume integral of the quadrupole source.
Hereinafter, we refer to these integrals as monopole source term, dipole source term,
and quadrupole source term, respectively. The quadrupole source term is usually ignored
under the assumption that the monopole source term and dipole source term dominate
the far-field sound in low Mach number flows [12]. However, recent studies show that
ignoring the quadrupole source termmay result in significant spurious sound even at rela-
tively lowMach numbers [13, 14]. The spurious sound results from the vortical or entropy
waves that pass across the integral surface [15]. Different methods have been proposed to
eliminate or suppress the spurious sound [14, 16–18].
One of the most widely used methods for the elimination of spurious sound is the sur-

face correction integral proposed by Wang et al. [19]. The idea of the surface correction
integral is to account for the contribution of the quadrupole sources outside the integral
domain because spurious sound is generated by the eddies crossing the boundary of the
integral domain. With the frozen eddy assumption, the contribution of the quadrupole
sources outside the integral domain can be modelled by using the quadrupole source
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flux on the boundary of the integral domain. Then, the surface correction integral can be
constructed based on the quadrupole source flux accounting for the contributions of the
quadrupole sources outside the integral domain. Spurious sound has been eliminated or
dramatically reduced by the surface correction integral in the computation of the sound
generated by flows over airfoils [19]. However, the surface correction integral requires
that the eddies leave the boundary of the integration domain at a nearly constant speed.
To improve the surface correction integral proposed by Wang et al. [19], different meth-
ods have been proposed based on accounting for the nonconstant convective velocity at
the boundary of the integral domain [13, 18]. Most of the surface correction integrals are
developed within the time-domain framework.
Lockard and Casper [20] first proposed the surface correction integral for the FW-H

equation within the frequency domain. The derivation of the surface correction integral
for the frequency-domain method involves repeated integration by parts. Thus, the sur-
face correction integral reported by Lockard and Casper [20] consists of a series of surface
integrals as follows

IQ(x;ω) ≈ −
n∑

l=1

∫
f=0

(−iU1
ω

)l
Tij(y,ω)

∂ l−1

∂yl−1
1

(
∂2G(x; y)

∂yi∂yj

)
dS, (3)

where f = 0 is the boundary of the volume integral of the quadrupole source in the FW-
H equation (hereinafter referred to as the FW-H integral surface). i = √−1 is the unit
of the imaginary number. Without loss of generality, we set the convective velocity of
the quadrupole sources along the o − x1 direction and use U1 to denote the convective
velocity. G(x; y) is Green’s function, where x and y are the observer and source positions,
respectively. ω is the frequency. The surface correction integral for the frequency-domain
method (Eq. (3)) works reasonably well in the test cases of a convecting vortex when
the convective Mach number of the flow Ma = U1/co is lower than 0.5. The problems
with the surface correction integral for the frequency-domain method (Eq. (3)) are that
(1) the series of surface integrals on the right-hand side of Eq. (3) may diverge when the
convective Mach number is higher than 0.5, and (2) the computation of the high-order
derivatives of Green’s function is quite complicated and nontrivial [20]. The divergence of
Eq. (3) is caused by the convective velocity larger than the phase velocity of a perturbation
propagating through convective flows. The far-field approximations to the derivatives of
Green’s function have also been utilized to fix the second problem of the surface cor-
rection integral. However, these far-field approximations to the derivatives of Green’s
function have been used without derivation and verification [21].
Detailed derivations and verification of the approximations to the derivatives of Green’s

function are given in this work. The derivations of the approximations are based on the
binomial expansion of the derivatives of Green’s function and the far-field condition.
These approximations to the derivatives are verified in detail by computing the far-field
acoustic pressure from the quadrupole source term generated by the two-dimensional
convecting vortex and the co-rotating vortex pair. In addition, the approximations to the
integrals of Green’s function are derived by using the approximations to the derivatives of
Green’s function.
The remainder of the paper is organized as follows. We will give the derivations of the

approximations to the derivatives of Green’s function for 2D and 3D flows in Section 2.
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The verifications of the approximations to the derivatives of Green’s function are reported
in Section 3. Finally, conclusions are drawn in Section 4.

2 Far-field approximations to the derivatives of Green’s function
We investigate the FW-H equation in the form of a convective wave equation in the fre-
quency domain in accordance with the work of Lockard et al. [10, 20]. Green’s function
for the convective wave equation in the frequency domain is simply referred to as Green’s
function hereinafter when there is no ambiguity. We directly give the expressions of the
far-field approximations to the derivatives of Green’s function in subsection 2.1. Then, we
provide the detailed derivations of the approximations in subsection 2.2.

2.1 Expressions of the far-field approximations to the derivatives of Green’s function

The (l + 2)th-order derivative of Green’s function with respect to the variables yq, yi and
yj can be approximated at the far field as follows:

∂ l

∂ylq

(
∂2G(x; y)

∂yi∂yj

)
≈
(

∂ϕ(x; y)
∂yq

)l
∂2G(x; y)

∂yi∂yj
, (4)

where G is Green’s function and ϕ is the phase function of Green’s function.
For the two-dimensional (2D) flows, we haveG ≈ G2D and ϕ = ϕ2D in the far field with

G2D = i
4β

(
2β2

πkR

) 1
2
expϕ2D , (5)

ϕ2D(x; y) = i
[
Mk(x1 − y1)

β2 + π

4
− k

β2R
]
, (6)

where the observer and source locations are denoted by x and y, respectively. k = ω/co is
the wavenumber. β = √

1 − M2 is the Prantle-Glauert factor. M is the Mach number of
the freestream flow. The distance R is computed by

R = R2D =
√

(x1 − y1)2 + β2(x2 − y2)2. (7)

It is noted that the 2D Green’s function G2D given in Eq. (5) is the asymptotic Green’s
function for 2D flows.
For the three-dimensional (3D) flows, we have G = G3D and ϕ = ϕ3D with

G3D = − 1
4πR

expϕ3D , (8)

ϕ3D(x; y) = −ik
(R − M (x1 − y1))

β2 , (9)

where the distance R is computed by

R = R3D =
√

(x1 − y1)2 + β2(x2 − y2)2 + β2(x3 − y3)2. (10)

By using the approximations to the derivatives to Green’s function (Eq. (4)), the surface
correction integral (Eq. (3)) proposed by Lockard and Casper [20] can be approximated by

IQ(x;ω) ≈ −
n∑

l=1

∫
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(
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iω

)l
Tij(y,ω)

(
∂ϕ(x; y)

∂y1
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dS. (11)
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The high-order derivatives of Green’s function ∂ l−1

∂yl−1
1

(
∂2G(x;y)
∂yi∂yj

)
in Eq. (3) are approximated

by
(

∂ϕ(x;y)
∂y1

)l−1
∂2G(x;y)
∂yi∂yj in Eq. (11). Therefore, the difficulties in computing the high-order

derivatives of Green’s function are circumvented.

2.2 Derivations of the approximations to the derivatives of Green’s function at the far field

The approximations in Eq. (4) can be derived separately by setting q = 1, · · · ,ND, where
ND = 2 for two-dimensional flows and ND = 3 for three-dimensional flows. We report
the detailed derivation of the approximations to the derivatives of Green’s function when
q = 1 in Eq. (4). The same derivations can be obtained following the same method for
q = 2 and q = 3. The subscript q = 1 in Eq. (4) indicates that the lth-order derivative of
∂2G(x;y)
∂yi∂yj is taken along the direction of the o − y1 axis. When the subscript q = 1, Eq. (4)

can be expressed as

∂ l

∂yl1

(
∂2G(x; y)

∂yi∂yj

)
≈
(

∂ϕ(x; y)
∂y1

)l
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. (12)

We re-write the left-hand-side of Eq. (12) as

∂ l

∂yl1

(
∂2G(x; y)

∂yi∂yj

)
= ∂2

∂yi∂yj

(
∂ lG(x; y)
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)
. (13)

For the two-dimensional flows with G = G2D, the lth-order derivative of Green’s func-
tion with respect to the variable y1 can be expressed with the binomial expansion as
follows

∂ lG2D(x; y)
∂yl1

= i
4β

(
2β2

πk

)1/2 l∑
k1=0

Ck1
l

∂k1expϕ(x;y)

∂yk11

∂ l−k1(R−1/2)

∂yl−k1
1

, (14)

where Ck1
l is the binomial coefficient.

We consider the far-field sound generated by the compact source flows. Without loss
of generality, we set the origin of the reference frame near the compact source flows. For
the far-field sound at the observation position x generated by the sources at the position
y, we have |x| � |y|. The k1th-order derivative to the distance R given by Eqs. (7) and (10)
can be approximated by

∂k1R
∂yk11

≈ O
(
R−k1

)
R. (15)

Similarly, we have

∂k1(R−1/2)

∂yk11
≈ O

(
R−k1

)
R−1/2. (16)

The detailed derivations of Eqs. (15) and (16) are reported in Appendix B. By using Eq.
(15), the k1th-order derivative of expϕ(x;y) can be approximated by

∂k1expϕ(x;y)

∂yk11
≈
(

∂ϕ(x; y)
∂y1

)k1
expϕ(x;y)(k1 ≥ 1). (17)
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The detailed derivation of Eq. (17) is reported in Appendix C. Thus, the binomial
expansion of Eq. (5) can be expressed as

∂ lG2D(x; y)
∂yl1

= i
4β

(
2β2

πk

)1/2 l∑
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≈ i
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∂yl−k1
1

.

(18)

Furthermore, the derivatives of R−1/2 terms on the right-hand side of Eq. (18) can be
approximated according to Eq. (16). Thus, we obtain the far-field approximations to the
(l + 2)th-order derivatives of Green’s function for the two-dimensional flows with q = 1
as follows

∂ l

∂yl1

(
∂2G2D(x; y)

∂yi∂yj

)
≈
(

∂ϕ2D(x; y)
∂y1

)l ∂2G2D(x; y)
∂yi∂yj

. (19)

For three-dimensional flows with G = G3D, the lth-order derivative of Green’s function
with respect to the variable y1 can be expressed with the binomial expression as follows

∂ lG3D(x; y)
∂yl1

= −1
4π

l∑
k1=0

Ck1
l

∂k1expϕ(x;y)

∂yk11

∂ l−k1(R−1)

∂yl−k1
1

. (20)

It is noted that Eq. (19) is not directly obtained from Eq. (18). A second-order derivative
of Eq. (18) is first derived. Then, according to Eq. (16) and Appendix C, Eq. (19) can be
obtained by ignoring the terms of high-order of R−1/2 and ϕ.
For the far-field sound at the observation position x generated by the sources at the

position y, we have |x| � |y|. The approximated k1th-order derivative to the distance R
given by Eq. (15) is then employed to give the three-dimensional formulation of Eq. (17).
Therefore, the binomial expansion as Eq. (20) can be expressed as

∂ lG3D(x; y)
∂yl1

= −1
4π

l∑
k1=0

Ck1
l

(
∂ϕ(x; y)

∂y1

)k1
expϕ(x;y) ∂

l−k1(R−1)

∂yl−k1
1

≈ −1
4π

l∑
k1=0

Ck1
l

(
∂ϕ(x; y)

∂y1

)k1
expϕ(x;y) ∂

l−k1(R−1)

∂yl−k1
1

.

(21)

Similar to the derivation of Eq. (15), the k1th-order derivative of R−1 can be approximated
as follows

∂k1(R−1)

∂yk11
≈ O

(
R−k1

)
R−1. (22)

Furthermore, the approximated derivatives of R−1 terms can be employed to simplify
the right-hand side of Eq. (21). Thus, we obtain the far-field approximations to the (l +
2)th-order derivative of Green’s function for the three-dimensional flows with q = 1 as
follows

∂ l

∂yl1

(
∂2G3D(x; y)

∂yi∂yj

)
≈
(

∂ϕ3D(x; y)
∂y1

)l ∂2G3D(x; y)
∂yi∂yj

. (23)

The full derivations of the approximations given by Eq. (4) can be obtained by setting
the subscript q = 2 for two-dimensional flows and q = 2, 3 for three-dimensional flows.



Zhou et al. Advances in Aerodynamics            (2022) 4:12 Page 7 of 23

3 Results and discussion
We verify the proposed esimations by the benchmark cases of two-dimensional convect-
ing vortex and co-rotating vortex pair. It is noted that both the benchmark cases reported
in this section can be addressed by using the classical FW-H solver. Here, we have used
different methods to solve the two benchmark cases to verify the formulations proposed
in this manuscript.

3.1 Two-dimensional convecting vortex

We use the benchmark flow of a two-dimensional convecting vortex to verify the approx-
imations to the derivatives of Green’s function in this subsection. The time-varying
velocity and pressure of the convecting vortex are given by:

p = 1
γ

(
1 − a2 exp

(
1 − r2

)) γ
γ−1 ,

u = U1 − a0a1y2 exp
((
1 − r2

)
/2
)
,

v = a0a1(y1 − Mat) exp
((
1 − r2

)
/2
)
,

ρ =
(

p
po

)1/γ
,

(24)

where po is the pressure of the ambient medium at the far field. γ = 1.4 is the specific
heat ratio of air. The quantities are normalized by using the ambient speed of sound co,
reference length L and density ρ of fluid. We assume that the vortex is convected along
the o − y1 axis with a velocity of U1.Ma = U1/co is the convecting Mach number, which
is equal to the freestream Mach number. The parameters are given by a0 = 1 and a1 =
1/(2π), respectively. The parameters a2 and r are computed by

a2 = (γ − 1)a20a
2
1/2,

r2 = (y1 − Mat)2 + y22 .
(25)

Figure 1 gives the schematic of the pressure field when the two-dimensional convecting
vortex crosses the permeable FW-H integral surface. Here, we take the permeable FW-H
integral surface as a square with an edge of 10 units in length, as shown by the dashed
edges in Fig. 1. The contours in Fig. 1 show the distribution of the fluctuating pressure
p − po, which is normalized by po.
The pressure fluctuation approaches zero monotonically away from the vortex centre,

as shown in Fig. 2, where the convecting Mach number of the vortex is Ma = 0.2. Thus,
the sound pressure should approach zero at the far field [17]. However, the computation
of the far-field sound pressure using the FW-H integral without the surface correction
results in significant spurious sound when the vortex is moving across the permeable
integral surface, as shown in Fig. 3, where the solid line shows the acoustic pressure com-
puted by using the FW-H surface integral at the position x = (100, 0) that is completely
spurious sound.
The surface correction integral given by Eq. (3) and its approximation at the far field

given by Eq. (11) are shown by dashed lines and dash-dotted lines in Fig. 3, respectively.
For convenient comparison, we plot the minus of the surface correction integral, i.e.,−IQ,
in Fig. 3. It is clear that the surface correction integrals computed with both the origi-
nal derivatives of Green’s function (Eq. (3)) and the approximated derivatives of Green’s
function (Eq. (11)) can accurately estimate the spurious sound generated by the vortex
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Fig. 1 Instantaneous pressure fluctuation field generated by a convecting vortex

crossing the integral surface. The results shown in Fig. 3 indicate that the approximations
of Eq. (4) are correct. To further verify the approximations to the derivatives of Green’s
function, we compare the first three terms in Eqs. (3) and (11) in detail as follows.
We denote the first, second and third terms in Eq. (3) by

p′
1(x;ω) = −

∫
f=0

(−iU1
ω

)
Tij(y,ω)

(
∂2G(x; y)

∂yi∂yj

)
dS, (26)

Fig. 2 Spaced-varied pressure fluctuation along the streamwise direction (y1-axis) from the vortex center at
the freestream Mach number 0.2
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Fig. 3 Comparison of the quadrupole correction (IQ) to the errors produced by the FW-H integral

p′
2(x;ω) = −

∫
f=0

(−iU1
ω

)2
Tij(y,ω)

∂

∂y1

(
∂2G(x; y)

∂yi∂yj

)
dS, (27)

p′
3(x;ω) = −

∫
f=0

(−iU1
ω

)3
Tij(y,ω)

∂2

∂y21

(
∂2G(x; y)

∂yi∂yj

)
dS, (28)

and the first, second and third terms in Eq. (11) by

p′
1,appr(x;ω) = −

∫
f=0

(−iU1
ω

)
Tij(y,ω)

(
∂2G(x; y)

∂yi∂yj

)
dS, (29)

p′
2,appr(x;ω) = −

∫
f=0

(−iU1
ω

)2
Tij(y,ω)

∂ϕ

∂y1

(
∂2G(x; y)

∂yi∂yj

)
dS, (30)

p′
3,appr(x;ω) = −

∫
f=0

(−iU1
ω

)3
Tij(y,ω)

(
∂ϕ

∂y1

)2 (
∂2G(x; y)

∂yi∂yj

)
dS, (31)

where we use the subscript “appr” to indicate the approximated computation of the
derivatives of Green’s function in Eq. (11). The first terms in Eq. (3) and Eq. (11) are exactly
the same since the approximation to the derivative of Green’s function is not used. The
differences between the second and third terms in Eq. (3) and Eq. (11) are that the approx-
imations to the derivatives of Green’s function are used in Eq. (11), as shown in Eqs. (27),
(30) and (28), (31), respectively.We verify the approximations to the derivatives of Green’s
function by comparing the second terms (Eqs. (27), (30)) and the third terms (Eqs. (28),
(31)) at different observer distances, different directions, and different convecting Mach
numbers.
Figure 4 shows the sound pressures corresponding to the second and third terms at dif-

ferent observer distances S = |x − Y0|, where x and Y0 are the observer position and
the initial central position of the convecting vortex, respectively. We set the initial cen-
tral position of the convecting vortex at Y0 = 0 in this work. The central position of the
convecting vortex Y moves along the o − y1 axis. The sound pressures at the non-time
dimensional time t = 120 are plotted in Fig. 4. At this time moment of t = 120, the cen-
tral position of the convecting vortex is at Y = (24.0, 0.0). For the case reported in Fig. 4,
the convecting Mach number of the vortex isMa = 0.2, and the observers are distributed
along the line with θ = 0◦, where θ is defined as the angle between the observer position
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Fig. 4 Sound pressures correspond to (a) the second term and (b) the third term at different observer
distances S. The sound pressures corresponding to the second term are computed by using the Eqs. (27) and
(30), respectively. The sound pressures corresponding to the third term are computed by using the Eqs. (28)
and (31), respectively. The sound pressures at the non-time dimensional time t = 120 are plotted. The
convecting Mach number of the vortex isMa = 0.2 and the observers are distributed along the line with
θ = 0◦

and the o − y1 axis, as shown in Fig. 1. The variations in the sound pressure computed
by using Eqs. (27) and (30) are shown in Fig. 4(a). The results indicate that the sound
pressure p′

2,appr approaches the sound pressure p′
2 as the observer distance S increases.

The difference between the sound pressure p′
2,appr and p′

2 is less than 5% of IQ(x) at the
same position when S > 53, indicating that the right-hand side of Eq. (4) gives a reason-
able approximation to its left-hand side when l = 1 when the observer distance S > 53.
The variations in the sound pressure computed by using Eqs. (28) and (31) are shown
in Fig. 4(b). Similar to that corresponding to the second term, the sound pressure p′

3,appr
approaches the sound pressure p′

3 as the observer distance S increases. The difference
between the sound pressure p′

3,appr and p′
3 is less than 5% of IQ(x) at the same position

when S > 35, indicating that the right-hand side of Eq. (4) gives a reasonable approxima-
tion to its left-hand side when l = 2 when the observer distance S > 35. The results also
indicate that the approximation on the left-hand side of Eq. (4) converges to its right-hand
side faster with l = 2 than that with l = 1.
Figures 5 and 6 show the variations in the sound pressures with the observer distances

at convecting Mach numbers of Ma = 0.3 and Ma = 0.4, respectively. The observers are
distributed along the line with θ = 0◦. We plot the sound pressures at the same non-time
dimensional time t = 120 as the case in Fig. 4. At time t = 120, the central position of
the convecting vortex is at Y = (36.0, 0.0) forMa = 0.3 and Y = (48.0, 0.0) forMa = 0.4.
For Ma = 0.3, the variations in the sound pressure computed by using Eqs. (27) and
(30) are shown in Fig. 5(a). Similar to Fig. 4(a), the sound pressure p′

2,appr approaches
the sound pressure p′

2 as the observer distance S increases. The difference between the
sound pressure p′

2,appr and p′
2 is less than 5% of IQ(x) at the same position when S > 71.

The variations in the sound pressure computed by using Eqs. (28) and (31) are shown in
Fig. 5(b). The sound pressure p′

3,appr approaches the sound pressure p′
3 as the observer

distance S increases. The difference between the sound pressure p′
3,appr and p′

3 is less than
5% of IQ(x) at the same position when S > 56. The results also support the conclusion
that the approximation on the left-hand side of Eq. (4) approaches its right-hand side
more rapidly with l = 2 than with l = 1. Compared with those plotted in Fig. 4, the
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Fig. 5 Sound pressures correspond to (a) the second term and (b) the third term at different observer
distances S. The sound pressures corresponding to the second term are computed by using the Eqs. (27) and
(30), respectively. The sound pressures corresponding to the third term are computed by using the Eqs. (28)
and (31), respectively. The sound pressures at the non-time dimensional time t = 120 are plotted. The
convecting Mach number of the vortex isMa = 0.3 and the observers are distributed along the line with
θ = 0◦

results indicate that the approximations on the left-hand side of Eq. (4) approach its right-
hand side more slowly for Ma = 0.3 than for Ma = 0.2. For Ma = 0.4, the variations in
the sound pressure computed by using Eqs. (27) and (30) are shown in Fig. 6(a). Similar
to those plotted in Figs. 4(a) and 5(a), the sound pressure p′

2,appr approaches the sound
pressure p′

2 as the observer distance S increases. The variations in the sound pressure
computed by using Eqs. (28) and (31) are shown in Figure 6(b). The sound pressure p′

3,appr
approaches the sound pressure p′

3 as the observer distance S increases. All of these results
support the conclusion that the approximation on the left-hand side of Eq. (4) converges
to its right-hand side faster with l = 2 than that with l = 1. Compared with the plots in
Figs. 4 and 5, the results also indicate that the convergence of approximations on the left-
hand side of Eq. (4) to its right-hand side becomes slow as the convecting Mach number
increases.

Fig. 6 Sound pressures correspond to (a) the second term and (b) the third term at different observer
distances S. The sound pressures corresponding to the second term are computed by using the Eqs. (27) and
(30), respectively. The sound pressures corresponding to the third term are computed by using the Eqs. (28)
and (31), respectively. The sound pressures at the non-time dimensional time t = 120 are plotted. The
convecting Mach number of the vortex isMa = 0.4 and the observers are distributed along the line with
θ = 0◦
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Fig. 7 Sound pressures correspond to (a) the second term and (b) the third term at different observer
distances S. The sound pressures corresponding to the second term are computed by using the Eqs. (27) and
(30), respectively. The sound pressures corresponding to the third term are computed by using the Eqs. (28)
and (31), respectively. The sound pressures at the non-time dimensional time t = 120 are plotted. The
convecting Mach number of the vortex isMa = 0.2 and the observers are distributed along the line with
θ = 45◦

Figures 7 and 8 show the variations in the sound pressures with the observer distances
along the directions with θ = 45◦ and θ = 90◦, respectively. The convecting Mach num-
ber is set as Ma = 0.2. We plot the sound pressures at the same non-time dimensional
time t = 120 as that for the case shown in Fig. 4. For θ = 45◦, the variations in the sound
pressure computed by using Eqs. (27) and (30) are shown in Fig. 7(a). Similar to those
plotted in Fig. 4(a), the sound pressure p′

2,appr converges to the sound pressure p′
2 as the

observer distance S increases. The difference between the sound pressure p′
2,appr and p′

2
is less than 5% of IQ(x) at the same position when S > 42. The variations in the sound
pressure computed by using Eqs. (28) and (31) are shown in Fig. 7(b). The sound pres-
sure p′

3,appr converges to the sound pressure p′
3 as the observer distance S increases. The

difference between the sound pressure p′
3,appr and p′

3 is less than 5% of IQ(x) at the same
position when S > 39. For θ = 90◦, the variations in the sound pressure computed by

Fig. 8 Sound pressures correspond to (a) the second term and (b) the third term at different observer
distances S. The sound pressures corresponding to the second term are computed by using the Eqs. (27) and
(30), respectively. The sound pressures corresponding to the third term are computed by using the Eqs. (28)
and (31), respectively. The sound pressures at the non-time dimensional time t = 120 are plotted. The
convecting Mach number of the vortex isMa = 0.2 and the observers are distributed along the line with
θ = 90◦
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using Eqs. (27) and (30) are shown in Fig. 8(a). The sound pressure p′
2,appr converges to

the sound pressure p′
2 as the observer distance S increases. The difference between the

sound pressure p′
2,appr and p′

2 is less than 5% of IQ(x) at the same position when S > 42.
The variations in the sound pressure computed by using Eqs. (28) and (31) are shown in
Fig. 8(b). The sound pressure p′

3,appr converges to the sound pressure p′
3 as the observer

distance S increases. The difference between the sound pressure p′
3,appr and p′

3 is less than
5% of IQ(x) at the same position when S > 37. All of these results support the conclusion
that the approximation on the left-hand side of Eq. (4) converges to its right-hand side
faster with l = 2 than that with l = 1. Comparison of the results plotted in Figures 4, 7,
and 8 indicates that the approximations on the left-hand side of Eq. (4) converge to its
right-hand side and become faster as the directive angle θ increases.

3.2 Co-rotating vortex pair

In this subsection, we use the benchmark flow of a co-rotating vortex pair to verify the
approximations to the derivatives of Green’s function. The co-rotating vortex pair is a
classical model for studying the jet engine noise generated from the interaction of coher-
ent structures [22]. A co-rotating vortex pair can be modelled by two line vortices of
equal strength separated by the distance 2d, as shown in Fig. 9 [23]. The sound generated
by the co-rotating vortex pair can be computed by modifying Lighthill’s acoustic analogy
equation into the vortex sound equation as follows

1
c2∞

∂2p′

∂t2
− ∂2p′

∂x2i
= ρ0

∂(ω × v)i
∂xi

, (32)

where the sound sources other than the divergence of the Lamb vector ω × v are
neglected according to dimensional analysis [24]. The corresponding frequency-domain
formulation can be expressed as

Fig. 9 Schematics of a co-rotating vortex pair
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k2p′ + ∂2p′

∂x2i
= −ρ0F

(
∂(ω × v)i

∂xi

)
, (33)

where the operatorF defines the Fourier transform. Although we use Lighthill’s equation
here, the corresponding Green’s function is consistent with Green’s function of the FW-H
equation without freestream flow. Using Gauss’s theorem, the far-field acoustic pressure
can be computed by

p′

ρ0
=
∫
V

F ((ω × v)i)
∂G2D (x; y)

∂yi
dV . (34)

For a co-rotating vortex pair, the Lamb vector ω × v can be expressed as

ω × v = −�y(ν)
(
δ
(
y1 − y(ν)

1

)
δ
(
y2 − y(ν)

2

)
− δ

(
y1 + y(ν)

1

)
δ
(
y2 + y(ν)

2

))
, (35)

where � = 
4πd2 is the angular velocity of the vortex pair and ±y(ν) =

± (d cos(�t), d sin(�t)) represents the location of the vortex pair. By using the sifting
property of the Dirac delta function, the frequency-domain far-field acoustic pressure
generated by the vortex pair can be obtained by the acoustic pressure expressed as follows

p′

ρ0
= −F

(
�d cos(�t)

(
∂G2D
∂y1

∣∣∣∣
y=y(ν)

− ∂G2D
∂y1

∣∣∣∣
y=−y(ν)

))

− F
(

�d sin(�t)
(

∂G2D
∂y2

∣∣∣∣
y=y(ν)

− ∂G2D
∂y2

∣∣∣∣
y=−y(ν)

))
.

(36)

To verify the approximations to the derivatives of Green’s function, we first conduct
Taylor’s expansion for Green’s function,

G2D = G0 +
∑
j

1
j!

(
ym

∂

∂ym

)j
G2D(x; y). (37)

By using the approximations to the derivatives of the Green’s function given by Eq. (4),
we can approximate the expansion of Green’s function as follows

G2D = G0 +
∑
j

1
j!

(
ym

∂ϕ0
∂ym

)j
G0, (38)

where G0 and ∂ϕ0
∂ym are Green’s function G and space derivatives of the phase function ∂ϕ

∂ym
at the origin. By replacing the Green’s function in Eq. (36) with the approximations in Eq.
(38), we can obtain the approximated acoustic pressure as follows

p′

ρ0
≈

n∑
j=1

−�G0
(j − 1)!

F
((

y(ν)
1

∂ϕ0
∂y1

+ y(ν)
2

∂ϕ0
∂y2

)j
) (

1 + (−1)j
)
. (39)

It is noted that the first nonzero term in Eq. (39) is the quadrupole term, confirming that
the quadrupole source term dominates the acoustic pressure generated by the co-rotating
vortex pair [25].
Figure 10 compares the far-field acoustic pressure computed by using the approxi-

mated acoustic pressure formulation Eq. (39) with that computed by the acoustic pressure
formulation Eq. (36). For the results reported in Fig. 10, the observer is located at
( 100�2π , 100�2π ), which is sufficiently far away from the centre of the corotating vortex pair.
The fluid density is taken as 1kg/m3. The speed of sound is set as c = 100m/s, which is
sufficiently large compared to the characteristic velocity of the vortex U = �d. The dis-
tance between the two vortices is 2d = 0.2m, and the angular velocity is � = 2π rad/s.
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Fig. 10 Acoustic pressure computed by using the acoustic pressure formulation (Eq. (36)) and the
approximated acoustic pressure formulation (Eq. (39))

The black solid line in Fig. 10 is the result computed by using the acoustic pressure expres-
sion of Eq. (36), while the red circle is computed by using the approximated acoustic
pressure formula (Eq. (39) with n=2). It is observed that the approximated acoustic pres-
sure formulation (Eq. (39)) gives a good approximation to the vortex acoustic pressure
result (Eq. (36)), indicating that the approximations to the derivatives of Green’s function
given by Eq. (4) are correct.

4 Conclusion
Computation of the high-order derivatives of Green’s function for the FW-H equation is
required to eliminate the spurious sound associated with the quadrupole sources. The
approximations to the derivatives of Green’s function in the frequency domain have been
used without derivation in previous work. This work provides the detailed derivations
of the approximations to the derivatives of Green’s function. The essential expressions
and formulations associated with the binomial expression of the derivatives of Green’s
function and the far-field condition to obtain the approximations are provided in detail.
The benchmark flows of the two-dimensional convecting vortex and co-rotating vortex
pair are used to verify the approximations. The results show that the approximations can
be accurate at different Mach numbers and observer directions as long as the distance is
large enough. The derivations of the approximations to integrals of Green’s function by
using approximations to the derivatives are also reported in detail.

Appendix A: Approximations to the integrals of the Green’s function

The approximations to the integrals of Green’s function have been used by Zhou et al.
[17] to fix the divergence problem of the frequency-domain surface correction integral
[20]. However, the detailed derivations of the approximations to the integrals of Green’s
function have not been provided. In this Appendix, we show that the approximations
to the integrals of Green’s function can be derived based on the approximations to the
derivatives of Green’s function.
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The approximations to the integrals of Green’s function with respect to the variable y1
at the far field used in the work of Zhou et al. [17] are given as follows

∂2Gq,n(x; y)
∂yi∂yj

≈
(

∂ϕ(x; y)
∂yq

)-n
∂2G(x; y)

∂yi∂yj
, (40)

where

∂2Gq,n(x; y)
∂yi∂yj

= Iq,n
(

∂2G(x; y)
∂yi∂yj

)

=
∫ yq

∞

(∫ ξn

∞

(∫ ξn−1

∞

(
· · ·
∫ ξ3

∞

(∫ ξ2

∞
Kdξ1

)
dξ2 · · ·

)
dξn−2

)
dξn−1

)
dξn,

K(x; y) = ∂2G(x; y)
∂yi∂yj

(41)

is the multiple integral of ∂2G(x;y)
∂yi∂yj with respect to the variable yq . For the ith integral

(i < n) from the inner of Eq. (41), the independent variable is ξi and the upper limit of
the integral is ξi+1. When i = n, the independent variable is ξn, and the upper limit of the
integral is yq.
Equation (40) is obtained by proving the following equation

∂2Gq,l(x; y)
∂yi∂yj

=
∂2
((

∂ϕ(x;y)
∂yq

)−l
G(x; y)

)

∂yi∂yj
. (42)

We give the details of the derivation of Eq. (42) for the two-dimensional flows by using
the mathematical induction method and the approximations of Eq. (4). The derivation of
Eq. (42) for the three-dimensional flows can be obtained in a similar manner.
To use the mathematical induction method, we first prove that Eq. (42) is valid when

l = 1 and q = 1. For l = 1 and q = 1, Eq. (41) reduces to

∂2G1,1
2D (x; y)

∂yi∂yj
=
∫ y1

∞

⎛
⎝ ∂2G2D(x; y)

∂yi∂yj

∣∣∣∣∣
y1=ξ1

⎞
⎠ dξ1. (43)

After transforming the partial derivative with respect to y to x and using integration by
parts, the right-hand side of Eq. (43) becomes

∂2G1,1
2D (x; y)

∂yi∂yj
= ∂2

∂xi∂xj

∫ y1

∞
i
4β

(
2β2

πkR

)1/2
expϕ(x;ξ1,y2)dξ1

= ∂2

∂xi∂xj

∫ y1

∞
∂

∂ξ1

[
i
4β

(
2β2

πkR

)1/2(
∂ϕ(x; ξ1, y2)

∂ξ1

)−1
expϕ(x;ξ1,y2)

]
dξ1

− ∂2

∂xi∂xj

∫ y1

∞

[(
∂ϕ(x; ξ1, y2)

∂ξ1

)−1
expϕ(x;ξ1,y2)

]
∂

∂ξ1

(
i
4β

(
2β2

πkR

)1/2)
dξ1.

(44)

According to Eq. (16), the integrand in the last term on the right-hand side of Eq. (44)
is of order O(R−3/2). Meanwhile, the left-hand side of Eq. (44) is of order O(R−1/2). Thus,
the last term on the right-hand side of Eq. (44) can be neglected compared with the left-
hand side of Eq. (44), so that we have
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∂2G1,1
2D (x; y)

∂yi∂yj
≈ ∂2

∂xi∂xj

∫ y1

∞
∂

∂ξ1

[
i
4β

(
2β2

πkR

)1/2(
∂ϕ(x; ξ1, y2)

∂ξ1

)−1
expϕ(x;ξ1,y2)

]
dξ1.

(45)

Considering the limit of Green’s function at infinity and transforming the partial
derivative with respect to x back to y, Eq. (45) becomes

∂2G1,1
2D (x; y)

∂yi∂yj
≈ ∂2

∂yi∂yj

[
i
4β

(
2β2

πkR

)1/2(
∂ϕ(x; y)

∂y1

)−1
expϕ(x;y)

]

=
∂2
((

∂ϕ(x;y)
∂y1

)−1
G2D(x; y)

)

∂yi∂yj
,

(46)

proving that Eq. (42) is valid when l = 1 and q = 1.
According to the procedures of the mathematical induction method, we assume that

Eq. (42) is valid when l = h and q = 1.

∂2G1,h
2D (x; y)

∂yi∂yj
≈

∂2
[(

∂ϕ(x;y)
∂y1

)−h
G2D(x; y)

]

∂yi∂yj
. (47)

According to Eqs. (41) and (47), we have

∂2G1,h+1
2D (x; y)
∂yi∂yj

≈
∫ yh

∞

⎛
⎜⎜⎝

∂2
[(

∂ϕ(x;y)
∂y1

)−l
G2D(x; y)

]

∂yi∂yj

∣∣∣∣∣∣∣∣
y1=ξ1

⎞
⎟⎟⎠ dξ1. (48)

Using integration by parts, we reformulate Eq. (48) as follows

∂2G1,h+1
2D (x; y)
∂yi∂yj

≈ ∂2

∂xi∂xj

∫ y1

∞

⎛
⎝ i

4β

(
∂ϕ(x; y)

∂y1

)−h( 2β2

πkR

)1/2
expϕ(x;y)

∣∣∣∣∣
y1=ξ1

⎞
⎠ dξ1

= ∂2

∂xi∂xj

∫ y1

∞

⎧⎨
⎩

∂

∂y1

[
i
4β

(
∂ϕ(x; y)

∂y1

)−h( 2β2

πkR

)1/2(
∂ϕ(x; y)

∂y1

)−1
expϕ(x;y)

]∣∣∣∣∣
y1=ξ1

⎫⎬
⎭ dξ1

− ∂2

∂xi∂xj

∫ y1

∞

⎧⎨
⎩
[(

∂ϕ(x; y)
∂y1

)−1
expϕ(x;y)

]
∂

∂y1

[
i
4β

(
∂ϕ(x; y)

∂y1

)−h( 2β2

πkR

)1/2]∣∣∣∣∣
y1=ξ1

⎫⎬
⎭ dξ1.

(49)

From Eq. (16), we know that the last term on the right-hand side of Eq. (49) can be
neglected compared with the left-hand side of Eq. (49). Similar to the derivation of Eq.
(46), Eq. (49) can be approximated by

∂2G1,h+1
2D (x; y)
∂yi∂yj

≈ ∂2

∂yi∂yj

[
i
4β

(
2β2

πkR

)1/2(
∂ϕ(x; y)

∂y1

)−(h+1)
expϕ(x;y)

]
. (50)

Equation (50) shows that Eq. (42) is valid when l = h + 1 and q = 1.
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By using the Leibniz product rule, the right-hand side of Eq. (42) is equal to

∂2

∂yi∂yj

[
i
4β

(
2β2

πk

)1/2 (
R−1/2

(
∂ϕ(x; y)

∂y1

)−l
)
expϕ(x;y)

]

= i
4β

(
2β2

πk

)1/2 [
R−1/2

(
∂ϕ(x; y)

∂y1

)−l
expϕ(x;y)

((
∂ϕ(x; y)

∂yi

)(
∂ϕ(x; y)

∂yj

)
+ o(1)

)]

+ i
4β

(
2β2

πk

)1/2

⎡
⎢⎢⎣

∂

(
R−1/2

(
∂ϕ(x;y)

∂y1

)−l
)

∂yi
∂
(
expϕ(x;y))

∂yj

⎤
⎥⎥⎦

+ i
4β

(
2β2

πk

)1/2

⎡
⎢⎢⎣

∂

(
R−1/2

(
∂ϕ(x;y)

∂y1

)−l
)

∂yj
∂
(
expϕ(x;y))

∂yi

⎤
⎥⎥⎦

+ i
4β

(
2β2

πk

)1/2

⎡
⎢⎢⎣

∂2
(
R−1/2

(
∂ϕ(x;y)

∂y1

)−l
)

∂yi∂yj
expϕ(x;y)

⎤
⎥⎥⎦ .

(51)

In the far field, ∂ϕ(x;y)
∂yi is of order O(1), and the derivative of R−1/2

(
∂ϕ(x;y)

∂y1

)−l
can

be expressed by o
(
R−1/2

(
∂ϕ(x;y)

∂y1

)−l
)
. Thus, the last three terms of Eq. (51) can be

neglected compared with the first term on the right-hand side. We ignore the derivatives

corresponding to
(

∂ϕ(x;y)
∂y1

)−l
and obtain

∂2

∂yi∂yj

[
i
4β

(
2β2

πk

)1/2 (
R−1/2

(
∂ϕ(x; y)

∂y1

)−l
)
expϕ(x;y)

]

≈
(

∂ϕ(x; y)
∂y1

)−l
∂2

∂yi∂yj

[
i
4β

(
2β2

πk

)1/2
R−1/2expϕ(x;y)

]

=
(

∂ϕ(x; y)
∂y1

)−l
∂2G2D
∂yi∂yj

.

(52)

Finally, substituting Eq. (52) in Eq. (50) yields Eq. (40). Thus, approximations to the
integral of Green’s function are derived.
We use a homogeneous vortical flow with a uniform Lighthill stress tensor to verify

the far-field approximations to the integrals of Green’s function. We define the uniform
Lighthill stress tensor as Tij = A cos(2π ft), where A is 1/s2. The uniform vortical flow
moves within a domain V of [ 0, 10]×[ 0, 10]. The frequency f is taken as 1Hz. The speed
of sound is taken as c0 = 340m/s, and the density is taken as ρ = 1kg/m3. The far-
field observer is located at (340000m, 340000m), which is sufficiently large compared to
the wavelength of sound. The freestream Mach number is 0.3 along the o − y1 axis. The
contribution from the Lighthill stress tensor to the far-field sound can be computed by
using the quadrupole source term in the FW-H integral as follows

IQ,FW−H =
∫
V

Tij
∂2G2D (x; y)

∂yi∂yj
dy. (53)
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By using the far-field approximations to the integrals of Green’s function (Eq. (40)), the
far-field sound can be approximated by

IQ,appr = Tij

∫
V

∂2G2D (x; y)
∂yi∂yj

dy

= 1
2
Tij

∫
V

∂

∂y1

((
∂ϕ2D
∂y1

)−1
∂2G2D (x; y)

∂yi∂yj

)
+ ∂

∂y2

((
∂ϕ2D
∂y2

)−1
∂2G2D (x; y)

∂yi∂yj

)
dy

= 1
2
Tij

∫
S

(
∂ϕ2D
∂yq

)−1
∂2G2D (x; y)

∂yi∂yj
nqdy.

(54)

Figure 11 shows the results calculated by using Eqs. (53) and (54), respectively. The
results computed by using the surface integral (Eq. (54)) match well with the volume inte-
gral (Eq. (53)), indicating that the approximation to the integrals of Green’s function is
valid.

Appendix B: Derivation of Eqs. (15) and (16)

The detailed derivation of Eqs. (15) and (16) in Section 2.2 are given in this Appendix.
Here, we start from the derivation of Eq. (15).
According to Eqs. (7) and (10), we rewrite R as

R = (
glr2l

)1/2,
gl = 1 + (

β2 − 1
)
(1 − δ1l) ,

rl = yl − xl,

(55)

where the subscript l = 1, 2 in two dimension and l = 1, 2, 3 in three dimension. The
Einstein summation convention is used in Eq. (55). β = √

1 − M2 is the Prantle-Glauert
factor.M is the Mach number of the freestream flow. δij is the Kronecker delta function.

Fig. 11 Contribution to far-field acoustic pressure from the homogeneous vortical flow computed by using
(a) the volume integral (Eq. (53)) and (b) the surface integral (Eq. (54))
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By defining λ1 = g1/21 r1, the 1st- to 3rd-order derivatives of the distance R can be
reformulated as follows

∂R
∂y1

= ∂R
∂λ1

∂λ1
∂y1

= g1/2l
∂R
∂λ1

, (56)

∂2R
∂y21

= ∂

∂λ1

(
∂R
∂y1

)
∂λ1
∂y1

= ∂

∂λ1

(
g1/2l

∂R
∂λ1

)
∂λ1
∂y1

= gl
∂2R
∂λ21

, (57)

∂3R
∂y31

= ∂

∂λ1

(
∂2R
∂y21

)
∂λ1
∂y1

= ∂

∂λ1

(
gl

∂2R
∂λ21

)
∂λ1
∂y1

= g3/2l
∂3R
∂λ31

. (58)

For the high-order derivatives of the distance R, we have

∂k1R
∂yk11

= gk1/2l
∂k1R
∂λ

k1
1
. (59)

We can estimate that gl ∼ O(1), since 0 ≤ β < 1, max(δ1l) = 1, and min(δ1l) = 0. For
the computation of far-field sound, we approximately estimate the order of magnitude
by using the assumption λ1 ∼ O(R). We notice that this assumption is not true for the
observer near the vertical direction. However, it gives a reasonable approximation to the
order of magnitude for the observer at the most part of the region. The numerical result
in Section 3 also shows that the above relations give good approximations to the far-field
sound pressure. The detailed investigation to the effects of this assumption on the results
is expected to be conducted in the future.
We denote R as DRm1λ1n1 with D = 1, m1 = 1 and n1 = 0. Further, the derivative of

Rm1λ1n1 with respect to λ1 ism1Rm1−2λn1+1
1 +n1Rm1λ

n1−1
1 . Rm1λ1n1 andm1Rm1−2λn1+1

1 +
n1Rm1λ

n1−1
1 are of the order O(Rm1+n1) and O(Rm1+n1−1), respectively. In the most part

of the region where λ1 ∼ O(R), the derivative of Rm1λ1n1 with respect to λ1 is one order
smaller than Rm1λ1n1 . Therefore, the k1-th order derivative of R with respect to λ1 is of
the order O(R1−k1). According to Eq. (59), ∂k1R

∂yk11
is thus of the order O(R1−k1). Therefore,

we can express the k1th-order derivative of R with respect to y1 as

∂k1R
∂yk11

≈ O
(
R−k1

)
R. (60)

It is noted that the first order derivative of R with respect to y1 is ∂R
∂y1

= λ1
R g1/2l ∼ O(1)

in the most part of the region where λ1 ∼ O(R). For Eq. (16), a similar formulation to the
Eq. (63) can be obtained as follows

∂k1R−1/2

∂yk11
= ∂k1R−1/2

∂λ
k1
1

gk1/2l . (61)

The derivation of Eq. (61) can be obtained by a similar way to that of Eq. (59) with
the use of chain rule. It is noted that R−1/2 can be written as DRm1λ1n1 with D = 1,
m1 = −1/2 and n1 = 0. The derivative of Rm1λ1n1 with respect to λ1 ism1Rm1−2λn1+1

1 +
n1Rm1λ

n1−1
1 . Rm1λ1n1 and m1Rm1−2λn1+1

1 + n1Rm1λ
n1−1
1 are of the order O(Rm1+n1) and

O(Rm1+n1−1), respectively. In the most part of the region where λ1 ∼ O(R), the derivative
of Rm1λ1n1 with respect to λ1 is one order smaller than Rm1λ1n1 . Therefore, the k1th-
order derivative of R−1/2 with respect to λ1 is of the order O(R−1/2−k1). According to Eq.
(61), ∂k1R−1/2

∂yk11
is thus of the order O(R−1/2−k1). Therefore, we can express the k1-th order
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derivative of R with respect to y1 as

∂k1R−1/2

∂yk11
≈ O

(
R−k1

)
R−1/2. (62)

Appendix C: Derivation of Eq. (17)

The detailed derivation of Eq. (17) is reported in this Appendix. We expand the k1 th-
order derivative of expϕ as follows

∂k1

∂yk11
expϕ =

(
∂ϕ

∂y1

)k1
expϕ + E1

(
∂ϕ

∂y1

)k1−1
∂2ϕ

∂y21
expϕ

+ E2
(

∂ϕ

∂y1

)k1−2
∂3ϕ

∂y31
expϕ + E3

(
∂ϕ

∂y1

)k1−3
∂4ϕ

∂y41
expϕ

+ E4
(

∂ϕ

∂y1

)k1−4
(

∂2ϕ

∂y21

)2

expϕ + ...,

(63)

where E1, E2, E3, E4... are the coefficients corresponding to the number of derivative’s
order k1.
We start from the derivation from the Eq. (17) in the two-dimensional space. According

to Eq. (6), the exponent ϕ of the 2D Green’s function for the FW-H equation is as follows

ϕ(x; y) = i
[
Mk(x1 − y1)

β2 + π

4
− k

β2R
]
, R =

√
(x1 − y1)2 + β2(x1 − y1)2, (64)

where i = √−1 is the unit of the imaginary number. k = ω/co is the acoustic wavenumber
where ω and co are the angular frequency and the speed of sound, respectively. x and y
are the coordinate of observer and source locations, respectively. β = √

1 − M2 is the
Prantle-Glauert factor.M is the Mach number of the freestream flow.
The derivative of the exponent ϕ with respect to y1 is

∂ϕ

∂y1
= −iMk

β2 − ik
β2

∂R
∂y1

. (65)

The k1th-order (k1 ≥ 2) derivative of ϕ with respect to y1 is

∂k1ϕ

∂yk11
= −ik

β2
∂k1R
∂yk11

. (66)

When ∂k1ϕ

∂yk11
= 0 (k1 ≥ 2), Eq. (63) reduces to

∂k1expϕ(x;y)

∂yk11
=
(

∂ϕ(x; y)
∂y1

)k1
expϕ(x;y). (67)

When ∂k1ϕ

∂yk11
�= 0 (k1 ≥ 2) , the ratio between ∂ϕ

∂y1
and ∂k1ϕ

∂yk11
(k1 ≥ 2) is

∂ϕ
∂y1
∂k1ϕ

∂yk11

=
M + ∂R

∂y1
∂k1R
∂yk11

. (68)

For subsonic flows with 0 ≤ M < 1, we have ∂ϕ
∂y1

/
∂k1ϕ

∂yk11
∼ O(Rk1−1) according to Eq.

(60), which means that ∂ϕ
∂y1

is much larger than ∂k1ϕ

∂yk11
(k1 ≥ 2) at the far-field (R � 1).
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It is noticed that E1, E2, E3, E4... in Eq. (63) are dependent on the order of the deriva-
tive k1 and independent of the distance R. For the computation of sound at far field,
we can always find large enough distance R which is much larger than the coefficients
E1, E2, E3, E4.... Therefore, by ignoring the terms including high order derivatives of
expϕ in Eq. (63), Eq. (63) can be approximately computed as follows,

∂k1expϕ(x;y)

∂yk11
≈
(

∂ϕ(x; y)
∂y1

)k1
expϕ(x;y). (69)

Equation (17) in Section 2 can be obtained by combining Eqs. (67) and (69). The
derivation of Eq. (17) for in three-dimensional space can be obtained in a similar way.
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