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Abstract 

A general framework for the development of high-order compact schemes has been 
proposed recently. The core steps of the schemes are composed of the following. 
1). Based on a kinetic model equation, from a generalized initial distribution of flow 
variables construct a time-accurate evolution solution of gas distribution function 
at a cell interface and obtain the corresponding flux function; 2). Introduce the WENO-
type weighting functions into the high-order time-derivative of the cell interface flux 
function in the multistage multi-derivative (MSMD) time stepping scheme to cope 
with the possible impingement of a shock wave on a cell interface within a time step, 
and update the cell-averaged conservative flow variables inside each control volume; 
3). Model the time evolution of the gas distribution function on both sides of a cell 
interface separately, take moments of the inner cell interface gas distribution func-
tion to get flow variables, and update the cell-averaged gradients of flow variables 
inside each control volume; 4). Based on the cell-averaged flow variables and their 
gradients, develop compact initial data reconstruction to get initial condition of flow 
distributions at the beginning of next time step. A compact gas-kinetic scheme (GKS) 
up to sixth-order accuracy in space and fourth-order in time has been constructed 
on 2D unstructured mesh. In this paper, the compact GKS up to fourth-order accuracy 
on three-dimensional tetrahedral mesh will be further constructed with the focus 
on the WENO-type initial compact data reconstruction. Nonlinear weights are designed 
to achieve high-order accuracy for the smooth Navier-Stokes solution and keep super 
robustness in 3D computation with strong shock interactions. The fourth-order compact  
GKS uses a large time step with a CFL number 0.6 in the simulations from subsonic 
to hypersonic flow. A series of test cases are used to validate the scheme. The high-order 
compact GKS can be used in 3D applications with complex geometry.

Keywords:  Compact scheme, High-order GKS, WENO reconstruction, Tetrahedral 
mesh

1  Introduction
Over the last decades, the development of high-order schemes with the order ≥ 3 has 
received great attention in the  computational fluid dynamics (CFD) research commu-
nity. Compared with second-order scheme, high-order schemes show overwhelming 
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advantages in efficiency and accuracy in scale-resolved simulations [1–3], such as large 
eddy simulation (LES) and direct numerical simulation (DNS). In flow problems with 
complex geometry, unstructured meshes are often used due to the flexibility and auto-
matical mesh generation. High-order compact schemes [4–11] are preferred on unstruc-
tured mesh due to the low storage, high resolution, and high parallel efficiency. The use 
of compact stencils is crucially important on unstructured mesh, especially in three-
dimensional flow computation. For the compact schemes, besides the cell-averaged flow 
variables, additional variables or degrees of freedom (DOFs) are theoretically needed 
locally to achieve high-order accuracy.

Different from the compact schemes with the Riemann solver as the underlying 
dynamic model and Runge-Kutta time stepping for the temporal evolution, the compact 
GKS is based on a multidimensional evolution solution, i.e., the time-accurate gas dis-
tribution function, to evaluate both flow variables and their corresponding fluxes on the 
cell interface. As a result, the cell-averaged conservative flow variables and their gradi-
ents inside each control volume can be updated to the next time level and be used in the 
initial data reconstruction with compact stencils. The high-order compact GKS has been 
developed in two-dimensional space with structured and triangular meshes [12–14]. 
Besides the adoption of WENO-type methodology on the initial data reconstruction, in 
order to keep the robustness of the scheme and the use of a large time step, a nonlinear 
limiter through WENO formulation has been introduced into the high-order multistage 
multi-derivative time evolution process as well to cope with the possible discontinuous 
solution passing through a cell interface within a time step. This kind of possible scene 
doesn’t appear in the 1st-order evolution model of the Riemann solver. This framework 
makes the spatial and temporal discretization on an equal footing in the construction of 
high-order compact schemes. Even with an accuracy up to 8th-order, the CFL number 
used in the compact GKS can take a value CFL > 0.8 in two-dimensional computation 
on triangular mesh. The numerical domain of dependence matches with the physical 
domain of dependence in the compact scheme very well, which clearly indicates the 
importance for the coupled space-time flow evolution in the construction of numerical 
algorithm. In this paper, a compact GKS up to 4th-order accuracy on three-dimensional 
tetrahedral mesh will be constructed. Different from the weak formulation in the update 
of flow variable at solution points in CPR [9, 15, 16], the updating cell-averaged gradients 
through Gauss’s theorem in GKS are based on the physical evolution solution with pos-
sible discontinuities at cell interfaces [14]. Within the physical domain of dependence, 
the compact stencils provide the reconstructions in different orders. In this paper, a sim-
plified WENO method is adopted [17, 18], with improved adaptivity for both smooth 
and discontinuous solutions. The nonlinear reconstruction is based on a combination of 
zeroth-order, first-order and higher-order polynomials, with the achievement of an opti-
mal order of accuracy. With the implementation of simplified WENO reconstruction, 
the nonlinear compact GKS can present similar solution as that from the correspond-
ing linear schemes in the well-resolved flow region, and capture discontinuous solution 
automatically.

This paper is organized as follows. The gas-kinetic evolution model of GKS will be 
introduced in Section 2. Section 3 is about the direct modeling of flow evolution at a cell 
interface for the update of cell-averaged conservative flow variables and their gradients. 
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Sections 4 and 5 will present the linear and nonlinear compact reconstructions for the 
determination of piecewise high-order polynomials inside each control volume. In Sec-
tion  6, the compact GKS will be tested in a wide range of cases in three-dimensional 
space on tetrahedral mesh. The last section is the conclusion.

2 � Time‑accurate gas‑kinetic evolution model
For the construction of high-order compact GKS, the use of high-order gas evolution 
model beyond the 1st-order Riemann solution is necessary. In this section, we will briefly 
present the time-accurate evolution solution of a gas distribution at a cell interface.

The gas-kinetic evolution is based on the kinetic BGK equation [19],

where u = (u, v,w) is the particle velocity, f is the gas distribution function, g is the cor-
responding equilibrium state that f approaches, and τ is the particle collision time. The 
equilibrium state g is a Maxwellian distribution,

where � = 1/2RT  , and R and T are the gas constant and temperature, respectively. K 
is the number of internal DOFs, i.e. K = (5− 3γ )/(γ − 1) for three-dimensional flow, 
and γ is the specific heat ratio. ξ is the internal variable with ξ2 = ξ21 + ξ22 + ...+ ξ2K  . At 
a relatively low temperature without exciting the vibrational mode, a diatomic molecule 
in a three-dimensional flow has two rotational DOFs in ξ , such as K = 2 . U = (U ,V ,W ) 
is the macroscopic flow velocity which is the same velocity in the Navier-Stokes (NS) 
equations. Due to the conservation of mass, momentum and energy during particle col-
lisions, f and g satisfy the compatibility condition,

at any point in space and time, where ψ = (ψ1,ψ2,ψ3,ψ4,ψ5)
T = (1,u, v,w, 12 (u

2 + ξ2))T , 
d� = dudvdwdξ1...dξK .

The macroscopic conservative flow variables W = (ρ, ρU , ρV , ρW , ρE) can be evalu-
ated from the gas distribution function,

The corresponding fluxes for mass, momentum and energy in the  i-th direction are 
given by

(1)ft + u · ∇f =
g − f

τ
,

g = ρ
�

π

K+3
2

e−�((u−U)2+ξ2),

(2)
∫

g − f

τ
ψd� = 0,

(3)W =
∫

f ψd�.

(4)Fi =
∫

uif ψd�,
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with (u1,u2,u3) = u in the 3-D case. According to the Chapman−Enskog expansion 
[20–22], the zeroth-order truncation f = g corresponds to the invicid Euler equations, 
and the first-order truncation f = g − τ (u · ∇ug + gt) gives the NS equations.

In GKS, the evolution solution W(t) and F(t) at a cell interface are determined by the 
time-accurate gas distribution function f. Based on the integral solution of BGK equa-
tion and the modeling for the initial state and equilibrium state distribution in local 
space and time [21], the time-accurate distribution function at a cell interface becomes

where x0 is the numerical quadrature point at the cell interface, and x0 = x
′ + u(t − t

′
) 

is the particle trajectory. Here f0 is the initial state of gas distribution function f at t = 0 . 
In order to explicitly obtain the solution f of Eq. (5), both f0 and g in Eq. (5) need to be 
modeled. The second-order accurate solution for f is [21]

where the terms related to g0 are from the integral of the equilibrium state and the terms 
related to gl and gr are from the initial term f0 in Eq. (5). All the coefficients in Eq. (6), 
such as akl and akr(k = 1, 2, 3) , can be determined from the initially reconstructed mac-
roscopic flow variables at the left and right sides of the cell interface. The above time 
evolution solution is distinguishable from the generalized Riemann problem (GRP) 
solver [23] in the following aspects. (1). The above distribution function takes a physical 
process from the flux vector splitting transport to the NS solution at the cell interface x0 ; 
(2). The flow evolution has multidimensional mechanism with the participation of ∂xi 
terms in the solution, while the GRP solver with multidimensional properties has been 
developed for the wave equations [24]; (3). In smooth flow region, the evolution solution 
in GKS gets back to the Lax-Wendroff type central difference method; (4). The cell inter-
face evolution solution is obtained explicitly without iterations.

3 � Solution updates
The discrete conservation law in a control volume �j is,

where W(x, t) is the conservative flow variable in a control volume �j , and F(t) is the 
corresponding flux across the cell interface ∂�j . The above integral conservation law is 
valid in any flow regimes from the rarefied to the continuum one once the dynamics of 
F(t) can be properly modeled [25, 26]. The accuracy of the updated solution depends 

(5)
f (x0, t,u, ξ) =

1

τ

∫ t

0
g(x′, t ′,u, ξ)e−(t−t ′)/τdt ′

+ e−t/τ f0(x0 − u(t − t0),u, ξ),

(6)

f (x0, t,u, ξ) =(1− e−t/τ )g0 + ((t + τ )e−t/τ − τ)(a1u+ a2v + a3w)g0

+ (t − τ + τe−t/τ )Āg0

+ e−t/τ gl[1− (τ + t)(a1lu+ a2lv + a3lw)− τAl]H(u)

+ e−t/τ gr[1− (τ + t)(a1ru+ a2rv + a3rw)− τAr](1−H(u)),

(7)
∫

�j

W(x, tn+1)dV =
∫

�j

W(x, tn)dV −
∫ tn+1

tn

∫

∂�j

F(t) · ndSdt,
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critically on the time-dependent interface flux function F(t) , which depends on the ini-
tial condition Wj(t

n) and the evolution model for the cell interface flux F(t).
As a compact scheme, with the time-accurate interface flow variable W(t) , the cell-

averaged gradient of the flow variable can be updated as well by the Gauss’s law,

With the consideration of possible discontinuous flow distribution around the cell inter-
face, the above flow variable W(tn+1) is the value at the inner side on the cell interface 
of the control volume. In other words, W(x0, t

n+1) may have multiple values, such as 
Wl(x0) and Wr(x0) at both sides of a cell interface. The outstanding example is that a 
stationary shock is exactly standing on the cell interface. The evolution solution of F(t) 
and Wl,r(x0) will be presented next.

3.1 � Update of cell‑averaged flow variable

The conservation law in Eq. (7) can be written as

where Wj is the cell-averaged flow variable defined as

The surface integral in Lj(t) is discretized by a q-point Gaussian quadrature rule,

where |Ŵl | is the face area of the cell, l0 is the number of cell faces, nl is the unit outer nor-
mal vector, and q and ωk are the number of quadrature points and weight of the Gauss-
ian quadrature rule.

With the consideration of possible discontinuous flux function F across the cell 
interface, such as a moving shock with speed vs passing through the cell interface 
vs = [Fn]/[Wn] , the flux function Fn(t) on a cell interface may be a discontinuous func-
tion of time. In order to capture such a dynamic evolution without introducing oscil-
lation, same as nonlinear reconstruction polynomial of flow variables in space, the 
nonlinearly limited flux function in time has be developed as well. Using a fourth-order 
time-accurate flux function in which terms of quadratic and above are limited, Eq. (9) is 
discretized as

(8)�j∇Wj(t
n+1) =

∫

�j

∇W(x, tn+1)dV =
∫

∂�j

W(tn+1)ndS.

(9)Wn+1
j = Wn

j +
∫ tn+1

tn
Lj(t)dt,

(10)Wj =
1∣∣�j

∣∣
∫

�j

W(x)dV .

(11)Lj(t) = −
1

|�j|

∫

∂�j

F · ndS = −
1

|�j|

l0∑

l=1

(
q∑

k=1

ωkF(xk) · nl

)
|Ŵl |,
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where in the second stage from tn to tn+1 a nonlinear limiter for the higher-order time 
derivatives of the flux function is introduced [14]. The nonlinearly limited operator L̃j is 
given as

where ωt
l  is a nonlinear weight for the lth interface of the cell and ωt

l ∈ [0, 1] . The nonlin-
ear weight ωt is defined as

where α is a positive integer, and α takes α = 3 in this paper. τ tZ is the local high-order 
reference value to indicate smoothness of the large stencil in the spatial reconstruc-
tion. ISL,Rs  and ISL,Rd  are smooth indicators corresponding to  a smooth and a possibly 
discontinuous candidate polynomial in the nonlinear compact spatial reconstruction in 
the cells on both sides of the cell interface. The determination of these parameters are 
given in Eq. (29) at the end of Section 5. The above fourth-order scheme in time can be 
reduced to a second-order one-step method for discretizing Eq. (9),

which is equivalent to the Lax-Wendroff method.

3.2 � Update of cell‑averaged gradient

The RHS of Eq. (8) can be discretized by the same q-point Gaussian quadrature rule as 
that in Eq. (11). The update of cell-averaged gradient becomes

where Wn+1(xk) is the value at the inner surface of �j , which may be different from the 
value at the other side of the surface. In order to obtain a high-order accurate flow vari-
able at the quadrature point, the macroscopic flow variable is evolved by two stages

(12)

W
n+1/2
j =Wn

j +
�t

2
Lj(W

n)+
�t2

8
Lj,t(W

n),

Wn+1
j =Wn +�tLj(W

n)+
�t2

2
Lj,t(W

n)

−
�t2

3
L̃j,t(W

n)+
�t2

3
L̃j,t(W

n+1/2),

(13)L̃j(W) = −
1∣∣�j

∣∣
l0∑

l=1

ωt
l

(
q∑

k=1

ωkF(xk) · nl

)
|Ŵl |,

(14)

α̃k
1 =1+

(
τ tZ

ISks + ǫ

)α

, α̃k
2 = 1+

(
τ tZ

ISkd + ǫ

)α

, k = L,R,

αk
2 =2

α̃k
2

α̃k
1 + α̃k

2

,

ωt =min
{
αL
2 ,α

R
2

}
,

(15)Wn+1
j = Wn

j +�tLj(W
n)+

�t2

2
Lj,t(W

n),

(16)∇Wj =
1∣∣�j

∣∣
l0∑

l=1

(
|Ŵl |nl

q∑

k=1

ωkW
n+1(xk)

)
,
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To provide the flow variable at both sides of a cell interface [14], the update model for 
W(x, t) is given by

The evolution solution We is given by the moments of the time-accurate distribution 
function in Eq. (6), and Wl

0 and Wr
0 are obtained from Eq. (6) as well with the assump-

tions smooth initial condition on both sides of the cell interface separately. Eq. (18) is the 
modeling for the real flow physics. The solutions of flow variables on both sides of the 
interface may become discontinuous, since the appropriate approach in a shock-captur-
ing scheme is to assume a continuous subcell flow distribution and contribute all possi-
ble discontinuity to the cell interface. The weighting function e−�t/τ0 is constructed from 
a physical relaxation model, while in the smooth flow region under �t ≫ τ0 , a single 
flow variable at the cell interface is recovered. The relaxation time τ0 is defined as

where pl and pr are the pressures at both sides of the cell interface, and εdiss is a constant 
coefficient with a uniform value εdiss = 5 in all test cases in this paper. The same mod-
eling of relaxation time in case of numerical shock wave is firstly proposed in GKS [21].

(17)
Wn+1/2(x) =Wn(x)+

1

2
�tWn

t (x),

Wn+1(x) =Wn(x)+�tW
n+1/2
t (x).

(18)
Wl(x, t) =(1− e−�t/τ0)We(x, t)+ e−�t/τ0Wl

0(x, t),

Wr(x, t) =(1− e−�t/τ0)We(x, t)+ e−�t/τ0Wr
0(x, t).

τ0 = εdiss

∣∣∣∣
pl − pr

pl + pr

∣∣∣∣�t,

Fig. 1  A schematic of reconstruction stencils of second-order to fourth-order compact GKS. The cell with 
black edges is the reconstructed cell. The cells with blue edges are the first-level neighbor cells of the 
reconstructed cell, and the cells with green edges are the second-level neighbors of the reconstructed cell. 
For the sake of simplicity and clarity of the illustration, only two cells of the second-level neighboring cells 
are shown. In general, a first-level cell is connected with three second-level neighboring cells with common 
nodes to the reconstructed cell
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4 � Stencils and linear compact reconstruction
The compact linear reconstruction from second to fourth order of accuracy is given 
in this section. Although the second-order scheme in one- and two-dimensional cases 
is well developed, the construction of a second-order scheme on tetrahedral mesh 
is not trivial due to its characteristics of the geometry. The first-level neighbors of a 
tetrahedron may not fill up the space around it, as shown in Fig. 1, and the domain of 
influence to the central tetrahedron cannot be fully covered by the direct neighboring 
mesh cells. As a result, on tetrahedral mesh with the stability requirement a second-
order finite volume scheme should use a relatively large stencil which includes the 
first-level and second-level neighboring cells [27]. In order to present a complete pic-
ture for the reconstruction, a second-order compact reconstruction is also presented 
in this section.

4.1 � Compact reconstruction

A schematic of reconstruction stencils of second- to fourth-order compact GKS are shown 
in Fig. 1. The cell with black edges is the reconstructed cell. The cells with blue edges are 
the first-level neighboring cells of the reconstructed cell, and the cells with green edges are 
the second-level neighbors of the reconstructed cell. For the sake of simplicity and clarity of 
illustration, only two cells among the second-level neighboring cells are shown. In general, a 
first-level neighboring cell is connected to three second-level neighboring cells.

A reasonable stencil consistent with the physical domain of dependence should con-
sist of the reconstructed cell and all neighboring cells sharing common nodes with it. The 
definition of compact scheme in this study is different from that of conventional compact 
scheme. In this study, the compactness means that the reconstruction stencil is consistent 
with the physical domain of dependence. Considering the simplicity of the algorithm and 
a finite order of accuracy in reconstruction, many subset stencils with different sizes can 
be defined from the largest complete and compact stencil. In the current compact GKS, 
inside each control volume, one cell-averaged flow variable and 3 cell-averaged derivatives 
are available. The stencils and adopted data for the compact reconstruction are determined 
from the following consideration. 

1.	 The compact stencils are the subsets of the largest compact set consisting of the 
reconstructed cell and its neighboring cells with common nodes.

2.	 For the rth-order compact reconstruction, the number of adopted data is about 
Np = 2NDOF , where NDOF is the number of DOFs of the reconstructed rth-order 
polynomial.

3.	 The data for reconstruction is selected in the sequence from the reconstructed cell to 
the first-level neighbors and then to the second-level neighbors.

4.	 For the same level neighboring cells, the cell-averaged variable has a higher priority 
than the cell-averaged gradient.

For the reconstructed cell 0, the four first-level neighboring cells are denoted as 1 to 4. 
In general, each first-level cell is connected to other three second-level neighboring cells 
through the surfaces, and the numbers of the second-level cells for each first-level cell j 
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(j = 1, 2, 3, 4) are defined as 5+ 3(j − 1), 6+ 3(j − 1) and 7+ 3(j − 1) . For the third- and 
fourth-order compact reconstruction, the stencils and adopted data can be obtained from

where ∇Q0 = (Q0,x,Q0,y,Q0,z) and ∇lQj2 is the directional derivative defined by

where nl is the unit vector along the direction l . Suppose the second-level neighboring 
cell �j2 is connected to the first-level neighboring cell �j1 , and �j1 and �0 are connected 
by face Ŵ0−j1 . For ∇lQj2 , nl is taken as the unit outer normal vector of the face Ŵ0−j1.

At the boundary of the computational domain, the first-level ghost cells are constructed 
based on the boundary condition. But the next level neighboring cells of the first-level 
ghost cells are not constructed. Therefore, the reconstruction scheme based on the sten-
cils on the right figure of Fig. 1 cannot be directly applied due to the absence of cells. In 
this paper, a third-order compact reconstruction will be developed for the boundary cells 
and the scheme is stable in numerical examples.

Besides the high-order reconstruction, to get back to the second-order nonlinear 
reconstruction is critical for the flow simulation at discontinuities. Due to the use of the 
cell-averaged flow variables and their gradients, the second-order reconstruction will be 
different from the traditional methods with limiters. Biased stencils will be used instead 
of a central stencil to get second-order compact reconstruction. A total of four biased 
compact stencils for second-order reconstruction can be obtained.

Since the DOFs (zeroth-order and first-order derivatives) of a linear polynomial can be 
determined by the cell average and its cell-averaged gradient, the above biased stencils 
can fully determine linear polynomials. Then, the linear combination of the four linear 
polynomials can give a second-order compact reconstruction.

4.2 � Linear system of compact reconstruction

The polynomial function used in the compact reconstruction is written as

where ak is the DOF of the reconstruction polynomial. ϕk is the zero-mean basis defined 
by

S2 ={Q0,Qj1 ,∇Q0,∇Qj1}, j1 = 1, 2, 3, 4,

S3 ={Q0,Qj1 ,Qj2 ,∇Q0,∇Qj1 ,∇lQj2}, j1 = 1, 2, 3, 4, j2 = 5, 6, · · · , 16,

∇lQj2 ≡
∂Qj2

∂l
= ∇Qj2 · nl,

S1 = S11 ∪ S12 ∪ S13 ∪ S14 , S
1
k = {Q0,Qj ,∇Qj}, j = 1, 2, 3, 4.

pr(x) = Q0 +
NDOF−1∑

k=1

akϕk(x),

ϕk(x) =
1

l!m!n!
δxlδymδzn −

1

l!m!n!
δxlδymδzn

(0)

,

δx =
1

hx
(x − x0), δy =

1

hy
(y− y0), δz =

1

hz
(z − z0),
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where 0 ≤ l,m, n ≤ r and max{l +m+ n} = r . ϕk can make pr automatically satisfy the 
conservation condition in the reconstruction. hx, hy and hz are the characteristic scales of 
�0 along the three directions of axes, which take the values hx = hy = hz = h = |�j|1/3 
for isotropic mesh. The division by h in the expansion is to make the condition num-
ber of the matrix in the linear system of ak small. pr(x) is constrained by the following 
conditions

where l indicates the directional derivative along nl . Based on the above constraints for 
pr(x) , the linear system for ak is obtained by the least square (LS) method or constrained 
least square (CLS) method. In the CLS method, some constraints, such as the one for Qj 
( j = 1, 2, 3, 4 ), are strictly satisfied, and others are satisfied in the sense of least square.

For p1 and p2 , the CLS method is adopted, where the cell-averaged values 
Qj(j = 1, 2, 3, 4) are strictly satisfied. While the  LS method is adopted for p3 , which 
makes the fourth-order compact GKS have better stability on irregular meshes. If the 
CLS method is adopted for p3 and the cell-averaged values of the first-level neighbors 
are strictly satisfied, the linear system of ak is more sensitive to the constraints from the 
first-level neighboring cells, due to the use of a smaller effective numerical domain of 
dependence. The CLS problem in the determination of p1 and p2 can be solved by the 
Lagrangian factor method and the linear system for ak can be obtained. A general form 
of the linear system for ak has been given in [18].

The linear polynomial of the second-order reconstruction can be the linear combina-
tion of four p1k(x).

5 � Nonlinear compact reconstruction
To deal with discontinuities, nonlinear compact reconstruction with WENO method is 
adopted. WENO reconstruction can adaptively achieve high-order accuracy in smooth 
region and essentially non-oscillatory property in discontinuity region. The simpli-
fied WENO method is developed for simple implementation and good robustness on 
unstructured mesh [17, 18]. The basis of the adaptivity in the simplified WENO is the 
nonlinear combination of a high-order polynomial and several lower-order polynomials. 
The four compact reconstructions p1k(k = 1, 2, 3, 4) on the biased stencils can be used as 
the lower-order candidate polynomials in the WENO method.

5.1 � Simplified WENO reconstruction

The extension of the one-dimensional WENO reconstruction to unstructured mesh 
is difficult [28], especially for high-order (order ≥ 4 ) one. The simplified WENO 

(19)

1

|�j|

∫

�j

ϕk(x)dxak =Qj ,

h

|�j|

∫

�j

ϕk ,i(x)dxak =hQj,i,�j ∈ Sr , i = x, y, z, l,

(20)p1(x) =
4∑

k=1

1

4
p1k(x).
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reconstruction has been developed and implemented on triangular mesh [18]. The sim-
plified WENO reconstruction is given as

The nonlinear weight wk is

and the linear weight dk is

where ǫ is a small positive number and ǫ = 1× 10−15 is taken for all numerical tests in 
this paper. n is the number of the sub-stencils. A large number α improves the robust-
ness of the scheme through better identifying the less smooth polynomials from all can-
didate polynomials. α = 3 is taken in the current compact reconstruction. τZ is the local 
high-order reference value to indicate smoothness of the large stencil and it is given by 
ISk , where ISk is obtained by the conventional definition in [29, 30]. The parameters C 
and Ck are required to satisfy 

∑n
k=1 Ck = 1,C > 0 . C = n and Ck = 1/n are taken in this 

paper. The compact scheme based on the simplified WENO reconstruction is insensitive 
to the values of C and Ck.

Based on the concept for reconstruction without crossing discontinuity of the solu-
tion, the biased lower-order polynomials pk in the WENO reconstruction take four 
biased linear polynomials p1k and one zeroth-order polynomial p0 . The smooth indicator 
of p0 is obtained based on the local smoothest slope Wj,x,Wj,y and Wj,z ( j = 0, 1, 2, 3, 4 ) 
by the definition in [30]. Such a construction guarantees that the smoothness indicator 
of p0 corresponds to an auxiliary smoother linear reconstruction than linear reconstruc-
tion p1k.

The calculation of IS based on the definition in [30] will be complicated for the high-
order polynomial (order ≥ 3 ) on the tetrahedral mesh. In this paper, numerical quadra-
ture is adopted to calculate IS. For a third-order polynomial p3 , its IS can be

where x0 is the centroid of �j . |α| is a multi-index, for example, when |α| = 1 , there are 
cases (α1,α2,α3) = (1, 0, 0), (0, 1, 0) and (0, 0, 1). Apparently, two simplified calculations 
are made in Eq. (24). Firstly, the numerical quadrature with second-order accuracy is 
adopted for the integral. Secondly, terms related to the third derivative by taking |α| = 3 

(21)R(x) =
n∑

k=1

wkpk(x)+ w0

(
1+ C

C
p0(x)−

n∑

k=1

Ck

C
pk(x)

)
.

(22)
wk =

w̃k∑n
j=0 w̃j

,

w̃k =dk

(
1+

(
τZ

ISk + ǫ

)α)
,

(23)d0 =
C

1+ C
, dk =

Ck

1+ C
, k = 1, · · · , n.

(24)

IS =
3∑

|α|=1

h2|α|−3

∫

�j

(
∂ |α|p3(x)

∂xα1∂xα2∂xα3

)2

dV

≈
2∑

|α|=1

h2|α|
(

∂ |α|p3(x0)

∂xα1∂xα2∂xα3

)2

,
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in IS are ignored, and only terms related to the first and second derivatives are included. 
In smooth regions, the obtained IS approximates the analytical one as

where Ai are the parameters dependent on cell’s geometry, and Wi are three first deriva-
tives. The degradation of IS accuracy will not affect the accuracy of the final nonlinear 
reconstruction.

5.2 � WENO weight with improved adaptivity

Adaptive variation of the magnitude of τZ in WENO weight is important for the 
accuracy and robustness of the WENO scheme. τZ is required to adaptively satisfy 
τZ/ISk = O(hr)(r > 0) for the candidate polynomials for smooth solutions, and it satis-
fies τZ/ISk = O(1) for the candidates crossing discontinuities. Thus the definition of τZ is 
directly related to the accuracy and robustness of the scheme. For the current high-order 
simplified WENO reconstruction (accuracy order is higher than 2), the orders of the 
candidate polynomials include zero, one and two or three. As a result, the separation of 
order of the candidate polynomials results in a large deviation in the values of smooth-
ness indicators. For example, the fourth-order nonlinear reconstruction is obtained from 
p3 , p1 and p0 . A small first derivative of p1 or large second and third derivatives of p3 will 
lead to large deviations in the values of their ISk even in smooth region, and a small first 
derivative of p1 is common at critical point.

In this paper, τZ is defined by the hierarchical differences of ISk . τZ consists of two 
parts. The first part is the difference of two ISk which are more likely to have small devi-
ation in values in smooth region. To further identify discontinuity, the second part is 
obtained by two ISk whose values are more likely to have large deviation. τZ can be uni-
formly written as

where β is an adaptive power. For the fourth-order reconstruction, τZ can be given as

IS0 is from the candidate polynomial p0 , IS∗ is the auxiliary one with smaller 
deviation from IS0 in values, and IS∗∗ is the auxiliary one with larger devia-
tion with IS∗ in the vicinity of discontinuities. IS∗ is given by Eq. (24) based on p2 
which is obtained from the third-order compact reconstruction. IS∗∗ is taken as 
IS∗∗ = (

∑4
k=1 ISk −max1≤k≤4ISk −min1≤k≤4ISk)/2 which corresponds to smooth can-

didate polynomials (assuming only one discontinuity exists at four faces of the recon-
structed cell) but not the smoothest one whose ISk may be close to 0. The first term of 
τZ in Eq. (27) is going to be a higher-order small value, even at critical points. While the 
second term of τZ in Eq. (27) can be O(1) in the vicinity of discontinuities. For the third-
order and second-order reconstructions, the same τZ as in Eq. (27) is used, but different 
IS∗ is defined. In this case, IS∗ is taken as IS∗ = max1≤k≤4{ISk} . β is defined as

(25)IS =
3∑

i=1

Ai(Wih)
2(1+ O(h)),

(26)τZ = τHOZ + (τLOZ )β ,

(27)τZ =
∣∣IS0 − IS∗

∣∣+
∣∣IS∗ − IS∗∗

∣∣β .
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where the free-parameters are uniformly taken as C1 = 1 and 
C0 = min{sgn(ρthres − ρ0)+ 1, sgn(pthres − p0)+ 1, 1} . ρ0 and p0 are the minimum cell-
averaged density and pressure in the reconstructed cell and its first-level neighboring 
cells. ρthres and pthres are uniformly taken as ρthres = pthres = 5.0× 10−2 in this paper.

The improved adaptivity of τZ is achieved by the hierarchical difference of indicators 
and the adaptive power β . The high-order part τHOZ  of τZ can be a high-order small value 
in smooth region, and the lower-order part τLOZ  of τZ can be reduced to a high-order 
small value in smooth region by taking β = 2 . At the same time, discontinuities of vari-
ables on the stencil can be identified in the current reconstruction sensitively. The first 
part and the second part will take values of order O(1) in discontinuities, which make 
the nonlinear weights of smoother polynomials candidates have values O(1). In particu-
lar, C0 in the definition of β improves the robustness of the scheme in the regions with a 
very small value of density or pressure.

In Section 3, the S2O4 temporal discretization based on nonlinearly limited flux func-
tion is introduced, where the higher-order time derivatives of the flux function are non-
linearly limited. The nonlinear weight in Eq. (14) depends on the smoothness indicators 
in the spatial WENO reconstruction, and these indicators are given by

6 � Numerical examples
In this section, a few test cases on 3D tetrahedral meshes will be conducted. The time 
step is determined by the CFL condition. In all test cases, CFL number is taken as 
Cfl ≥ 0.5 , except Cfl = 0.35 in the Taylor-Green vortex flow. For viscous flows, the time 
step is also limited by the viscous term as �t = Cflh

2/(3ν) , where h is the cell size and ν 
is the kinematic viscosity coefficient. The collision time τ for inviscid flow at a cell inter-
face is defined by

where ε = 0.05 , εdiss = 10 , and pl and pr are the pressures at the left and right sides of a 
cell interface. For the viscous flow, the collision time is related to the viscosity coefficient,

where µ is the dynamic viscosity coefficient and p is the pressure at the cell interface. In 
smooth flow region, it will reduce to τ = µ/p . The reason for including pressure jump 
term in the particle collision time is to increase the shock wave thickness numerically to 
the order of cell size [21].

(28)β =

{
2, C0

∣∣∣ IS∗∗+ǫ
IS∗+ǫ

− 1
∣∣∣ < C1h,

1, otherwise,

(29)
ISd =IS0, ISs = IS∗∗,

τ tZ =τZ .

τ = ε�t + εdiss|
pl − pr

pl + pr
|�t,

τ =
µ

p
+ εdiss|

pl − pr

pl + pr
|�t,
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6.1 � Accuracy test

The three-dimensional advection of density perturbation is used to verify the order of 
accuracy of compact GKS. The initial condition is given by

Fig. 2  Accuracy test: the regular tetrahedral mesh with 103 × 6 mesh DOFs. The tetrahedral mesh is obtained 
by dividing each regular hexahedral cell in the Cartesian mesh into six tetrahedral cells

Table 1  Accuracy test: errors and convergence orders at t = 2 obtained by linear compact GKS on 
regular tetrahedral meshes

Scheme hre ErrorL1 OL1 ErrorL∞ OL∞

2nd-order compact GKS 10
3 × 6 2.0826e-02 3.3425e-02

20
3 × 6 5.5685e-03 1.90 8.7536e-03 1.93

40
3 × 6 1.4054e-03 1.99 2.2178e-03 1.98

50
3 × 6 8.9934e-04 2.00 2.2178e-03 2.00

3rd-order compact GKS 10
3 × 6 2.6059e-03 4.9418e-03

20
3 × 6 2.4874e-04 3.39 4.8530e-04 3.35

40
3 × 6 2.7360e-05 3.18 5.3194e-05 3.19

50
3 × 6 1.3751e-05 3.08 2.6821e-05 3.07

4th-order compact GKS 10
3 × 6 4.8439e-04 9.2211e-04

20
3 × 6 2.7104e-05 4.16 6.7724e-05 3.77

40
3 × 6 1.6770e-06 4.01 6.3761e-06 3.41

50
3 × 6 6.9290e-07 3.96 2.9498e-06 3.45
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The computational domain is [0, 2]3 . The periodic boundary conditions are applied on 
all domain boundaries. The tetrahedral mesh is used in the computation. The tetrahe-
dral mesh is obtained by dividing each regular hexahedral cell in the Cartesian mesh 
into six tetrahedral cells. The coarsest mesh used in the computation is shown in Fig. 2. 
The L1 and L∞ errors and convergence orders obtained by the compact GKS with linear 
reconstruction at t = 2 are presented in Table 1. Due to the non-uniform mesh cell, the 
accuracy order of L∞ cannot reflect the true convergence order of the scheme. From 
the numerical results listed in Table 1, it can be seen that the accuracy orders of L1 are 
almost the same as the theoretical ones.

The errors versus mesh DOFs is given in Fig.  3 for linear and nonlinear compact 
GKS, where the abscissa represents the mesh DOFs in one direction. Compared with 
the second-order scheme, the high-order scheme has a smaller error under the same 
mesh DOFs; at the same time, under the same error requirement, the mesh DOF used 

ρ(x, y, z) = 1+ 0.2 sin(π(x + y+ z)), p(x, y, z) = 1,

U(x, y, z) = V (x, y, z) = W (x, y, z) = 1.
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Fig. 3  Accuracy test: errors versus mesh DOFs in one direction by compact GKS with linear reconstruction 
(left) and nonlinear reconstruction (right)
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reconstruction (right)
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by the high-order scheme is far less than that of the  second-order one. For exam-
ple, when the error limit is 10−3 , the required mesh DOFs by the linear fourth-order 
scheme are nearly two orders of magnitude less than that by the linear second-order 
scheme, and the required mesh DOFs by the nonlinear fourth-order scheme is 1/35 of 
that by the nonlinear second-order scheme.

Figure 4 lists the relationship between error and CPU time. The computation is per-
formed by an OpenMP parallel code using 48 threads on a 2.2 GHz Intel(R) Xeon(R) 
workstation. The curves of errors versus CPU time are basically similar to the curves of 
errors versus mesh DOFs in one direction. The results indicate that the increase in CPU 
time relevant to the increase in algorithm complexity of high-order compact scheme 
accounts for a small proportion in the overall CPU time in comparison with the second-
order scheme.

6.2 � Taylor‑Green vortex flow

Taylor-Green vortex flow is a popular test to assess high-order schemes [31, 32], 
which is used to verify the accuracy of the schemes for viscous flow. Starting from a 
smooth initial flow distribution, small scale flow structure in the flow field will emerge 
and evolve continuously. The initial condition is set as

where U0 = 1 , ρ0 = 1 . The Mach number is Ma = 0.1 and it is determined by 
Ma = U0/

√
γ p0/ρ0 . The Reynolds number is Re = 280 defined by Re = ρ0U0/µ , where 

µ is the dynamic viscosity coefficient. The computational domain is [−π ,π ]3 . This test 
case is used to verify the accuracy and the linear stability of the current compact GKS, 
and only the linear compact GKS is adopted in the computation. In order to compare 
the performance of second-order and fourth-order compact GKS, a coarse mesh with 
203 × 6 cells and a fine mesh with 403 × 6 cells are used in the computation, with the 
same tetrahedral mesh used in the previous accuracy test. The averaged kinetic energy is 
defined as

where � is the computational domain. Ek is calculated by numerical quadrature. For the 
fourth-order scheme, the five-point Gaussian quadrature formula is used, where the 
values of flow variables at the quadrature points are obtained by the same fourth-order 
compact reconstruction. For the  second-order scheme, the mid-point quadrature for-
mula is adopted. The dissipation rate of kinetic energy is given by

U = U0sinxcosycosz,

V = −U0cosxsinycosz,

W = 0,

p = p0 +
ρ0U

2
0

16
(cos2x + cos2y)(cos2z + 2),

Ek =
1

ρ0|�|

∫

�

1

2
ρU ·UdV ,

ε(Ek) = −
dEk

dt
.
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ε(Ek) is calculated by the central difference method with second-order accuracy by con-
sidering the small difference in the time steps. The integrated enstrophy is defined as

where ζ is calculated by numerical quadrature, and the velocity derivative values at quad-
rature points are obtained by the compact reconstruction.

Figure 5 presents the iso-surface of the second invariant of the velocity gradient ten-
sor Qv = 0.18 at t = 15 colored by pressure. The left and right figures in Fig. 5 are the 
results from the  second-order and fourth-order compact schemes, respectively. The 
fourth-order compact GKS has a  better resolution than that from the second-order 
scheme. The time history of Ek , ε(Ek) and ζ are shown in Fig. 6. The reference solution 
is from [31]. The results of Ek and ε(Ek) obtained by the second-order compact GKS on 
the fine mesh is slightly better than that obtained by the fourth-order compact GKS on 
the coarse mesh. The results of Ek and ε(Ek) obtained by the fourth-order compact GKS 
on the  fine mesh has good agreement with the reference solution. For the enstrophy 
ζ , the result of the fourth-order scheme on the fine mesh is slightly better than that of 
the second-order scheme, but they are obviously better than that of the fourth-order 
scheme on the coarse mesh.

ζ =
1

ρ0|�|

∫

�

1

2
ρ|∇ ×U|2dV ,

Fig. 5  Taylor-Green vortex flow at Re = 280 : iso-surface of the second invariant of the velocity gradient 
tensor Qv = 0.2 colored by pressure at t = 15 . The results are obtained by the second-order (left) and 
fourth-order (right) compact GKS. The number of mesh cells is 403 × 6
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Fig. 6  Taylor-Green vortex flow at Re = 280 : time history of kinetic energy, kinetic energy dissipation rate and 
enstrophy. The numbers of mesh cells of the coarse mesh and fine mesh are 203 × 6 and 403 × 6 respectively
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6.3 � Subsonic viscous flow around a sphere

The subsonic flow around a sphere is used to test the compact GKS in capturing viscous 
flow solution. The incoming flow is a uniform flow with Mach number Ma = 0.2535 

Fig. 7  Subsonic viscous flow around a sphere: the left is the mesh distribution over half of the computational 
domain, and the right is a local enlargement of the mesh around the sphere with diameter D = 1 . The outer 
boundary of the computational domain is a spherical surface with radius 10D 

Table 2  Subsonic viscous flow around a sphere: drag coefficient CD and lift coefficient CL , and wake 
length L obtained by different schemes. The Mach number and Reynolds number of the incoming 
flow are Re = 118 and Ma = 0.2535 . T-mesh, H-mesh and M-mesh represent tetrahedral mesh, 
hexahedral mesh and hybrid mesh respectively

Scheme Computational mesh CD CL L

Linear compact GKS-4th 116308 cells, T-mesh 1.0163 < 3.0× 10
−5 0.941

WENO compact GKS-4th 116308 cells, T-mesh 1.0146 < 1.5× 10
−3 0.907

VFV-4th with AMR [33] 621440 cells, H-mesh 1.0157 – –

Direct DG-3rd scheme [34] 160868 cells, M-mesh 1.0162 – 0.96

Hybrid scheme (FR and DG-5th) [35] 68510 cells, M-mesh 1.0162 – –

Fig. 8  Subsonic viscous flow around a sphere: 3-D pressure contours (left) and 2-D streamlines on z = 0 
plane (right) obtained by the linear fourth-order compact GKS. The Mach number and Reynolds number of 
the incoming flow are Re = 118 and Ma = 0.2535
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and Reynolds number Re = 118 , where the Reynolds number is evaluated by the diam-
eter D = 1 of the sphere. At this Reynolds number, the flow is steady and there are two 
attached vortices on the downwind side of the sphere. The outer boundary of the com-
putational domain is a spherical surface with radius 10D. The tetrahedral mesh in Fig. 7 
is used. The size of the first layer cells on the sphere is hmin = 5× 10−2 , and the cell size 
at the ending point of the attached vortices is 0.2. The total number of the cells in the 
computational domain is 116308. The CFL number takes CFL = 0.6 in the computation.

The 3-D pressure contours on the sphere and z = 0 plane and the 2-D streamline dis-
tribution obtained by the linear fourth-order compact GKS are given in Fig. 8. In order to 
verify that the nonlinear scheme in this paper has similar accuracy as the linear scheme, 
the fourth-order compact GKS with WENO reconstruction is also used in this test case. 
The quantitative results of the compact GKS and other computations are given in Table 2, 
where the drag and lift coefficients, the wake length L, and the total number of mesh cells 
are listed for comparison. T-mesh, H-mesh and M-mesh represent tetrahedral mesh, hex-
ahedral mesh and hybrid mesh respectively. The linear fourth-order GKS gives the same 
value of CD as direct DG scheme [34] and 5th-order hybrid scheme of FR and DG [35], 
but uses fewer total DOFs, where (r + 1)(r + 2)(r + 3)/6 DOFs are used in each cell for 
(r + 1)th-order DG scheme. The nonlinear fourth-order GKS gives the CD with a 0.17% 
error from the linear scheme, which validates the similar high-order accuracy of nonlin-
ear fourth-order compact GKS to the linear one.

6.4 � Riemann problems and blast wave problem

To validate the robustness of the compact GKS, the scheme is applied to two 1-D Rie-
mann problems and the blast wave problem for compressible inviscid flow. The com-
putational domain is given by [0, 1] × [0, 0.025]2 . The tetrahedral mesh is used in the 
computation, and the average side length of tetrahedral cells is about 1/200. The initial 
conditions and the output times of the two Riemann problems are listed in Table 3. For 
the Lax shock tube problem [36], the fixed inflow condition and free boundary condition 
are used for the boundaries with x = 0 and x = 1 respectively, and the inviscid wall con-
dition is imposed on the other boundaries. For the large pressure ratio problem [37], the 
free boundary condition is used on both ends at x = 0 and x = 1 , and the inviscid wall 
condition is imposed on the other boundaries.

The initial condition of the blast wave problem [38] is given as

The output time is tf = 0.038 . The inviscid wall boundary condition is imposed on all 
boundaries for the blast wave problem.

(ρ,U , p) =





(1, 0, 1000), 0 ≤ x < 0.1,
(1, 0, 0.01), 0.1 ≤ x < 0.9,
(1, 0, 100), 0.9 ≤ x ≤ 1.

Table 3  Two 1-D Riemann problems for compressible inviscid flow

Test cases ρL UL pL ρR UR pR xD tf

Lax shock tube problem 0.445 0.698 3.528 0.5 0 0.571 0.5 0.16

Large pressure ratio problem 1× 10
4 0 1× 10

4 1 0 1 0.3 0.12
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The local enlargement of the mesh and the 3-D contours of density are shown in 
Fig.  9. The wave structures are accurately obtained by the fourth-order compact GKS 
on the tetrahedral meshes. The computed density and velocity profiles of these cases are 
shown in Figs. 10, 11 and 12, respectively. No numerical oscillations are observed near 
the shock fronts. The compact GKS performs well on the large pressure jump and the 
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Fig. 9  Riemann problems and blast wave problem: the local enlargement of the computational mesh and 
3-D density contours of the three test cases obtained by the fourth-order compact GKS
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Fig. 10  Lax shock tube problem: numerical results and comparison with the exact solution at t = 0.16 for 
density (left) and horizontal velocity (right). The 1-D result is the distribution along the x-direction centerline 
with y = z = 0.0125
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blast wave problems. On the current coarse mesh, especially tetrahedral one, the result 
of large pressure jump problem is reasonable in comparison with the results in [37], even 
the exact Riemann solver with shock fitting may not be helpful in this case on the tetra-
hedral mesh [39].

6.5 � 3‑D explosion and implosion problems

The 3-D Sedov problem is an explosion case to model blast wave from energy deposited 
at a singular point [40]. The computational domain is [0, 1.2]3 . The constant initial condi-
tions with ρ = 1 , p = 1× 10−4 and U = V = W = 0 are imposed in the whole domain 
except the cells containing the origin. The pressure of the cells containing the origin 
is set as p = (γ − 1)ǫ/V  , where ǫ = 0.106384 and V is the total volume of those cells. 
The inviscid wall condition is adopted along the boundaries x = 0 , y = 0 and z = 0 . The 
free boundary condition is imposed on the other boundaries. The mesh cell size is 1/40 
defined by the average side length of tetrahedral cells. The computational output time is 
t = 1.0.
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Fig. 11  Large pressure ratio problem: numerical results and comparison with the exact solution at t = 0.12 
for density (left) and horizontal velocity (right). The 1-D result is the distribution along the x-direction 
centerline with y = z = 0.0125
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The 3-D density distribution and density distribution along lines are shown in Fig. 13, 
where the reference solution is from [40]. Line 1, line 2 and line 3 are determined by 
connecting the origin to (0,  1.2,  1.2), (1.2,  0,  1.2) and (1.2,  1.2,  0). The strong robust-
ness of the 4th-order compact GKS is demonstrated by its use of a large CFL number 
CFL = 0.6 without additional limiting technique. In addition, the high resolution of the 
compact GKS for strong shock waves is verified by the high post-shock density peak, 
and the numerical shock wave remains sharp and spans only two mesh cells. The non-
compact high-order GKS gives a numerical shock wave that is wider and has a lower 
post-shock peak [41].

The 3-D Noh problem is an implosion test to model the gas compression with con-
stant radial velocity towards a spherical center, where a moving strong shock wave is 
formed [42]. The computational domain is [0, 0.3]3 . The initial density and pressure are 
ρ = 1 and p = 1× 10−4 , and the velocity is (U ,V ,W ) = (−x,−y,−z)/

√
x2 + y2 + z2 . 

The ratio of the specific heat is γ = 5/3 . The inviscid wall condition is adopted along 
the boundaries x = 0 , y = 0 and z = 0 . The supersonic inflow boundary condition is 
imposed on the other boundaries with the same pressure and velocity as the initial con-
ditions and the analytical solution of density,

r

d
en

si
ty

0 0.5 1
0

2

4

6 reference
line 1
line 2
line 3

Fig. 13  Sedov problem: 3-D density distribution (left) and density distribution along lines (right) of Sedov 
problem at t = 1 . The average side length of cells of the tetrahedral mesh is 1/40

Fig. 14  Noh problem: 3-D density distribution (left) and density distribution along lines (right) of Noh 
problem at t = 0.6 . The average side length of cells of the tetrahedral mesh is 1/100
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The mesh cell size is 1/100 defined by the average side length of tetrahedral cells. The 
final computational output time is t = 0.6.

The 3-D density distribution and density distribution along lines are shown in 
Fig. 14. Line 1, line 2 and line 3 are determined by connecting the origin to (0, 0.3, 0.3), 
(0.3, 0, 0.3) and (0.3, 0.3, 0). Again, in this test case, a large CFL number CFL = 0.6 with-
out additional limiting technique is used. The accuracy of the compact GKS for strong 
shock waves is verified by the precise post-shock density solution which is comparable 
to the result of the non-compact 5th-order GKS on structured mesh [43].

6.6 � Supersonic and hypersonic inviscid flow around a sphere

The inviscid flow at high Mach numbers around a sphere is used to verify the strong 
robustness of the fourth-order compact GKS. The incoming inviscid flows have Mach 
numbers Ma = 2 and Ma = 20 separately. The adiabatic reflective boundary condi-
tion is imposed on the wall of the sphere. The same computational mesh as shown in 
Fig. 7 is used in the current computation. The 3-D pressure and 2-D Mach number 
distributions are presented in Fig. 15 when the flow reaches a steady state. In this test 

ρ =
{
64, r < t/3,

(1+ t/r)2, r > t/3.

Fig. 15  Supersonic and hypersonic inviscid flow around a sphere: the 3-D pressure contours (left) and 2-D 
Mach contours on z = 0 plane (right) of supersonic flow with Ma = 2 (up) and hypersonic flow with Ma = 20 
(down). The fourth-order compact GKS is used. The mesh used in the computation is the same as shown in 
Fig. 7
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case, the exact same code and parameter settings are used as the nonlinear recon-
struction-based GKS in the accuracy test of Fig. 4.

6.7 � Supersonic flow over the YF‑17 fighter model

The supersonic flow over the YF-17 model is simulated by the fourth-order GKS 
under complex geometry. The mesh of the YF-17 model is provided at https://​cgns.​
github.​io/​CGNSF​iles.​html, which is shown in Fig.  16. The total number of tetrahe-
dral cells is about 1.7× 105 . The incoming Mach number is set as Ma∞ = 2.0 , and the 
angle of attack is AoA = 0 . The inviscid wall boundary condition is adopted on the 
model surface and on the symmetry plane.

Fig. 16  Supersonic flow over the YF-17 model: the mesh used in the computation

Fig. 17  Supersonic flow over the YF-17 model: the results of steady state obtained by 4th-order compact 
GKS. The pressure and Mach number contours of top view (up) and down view (down)

https://cgns.github.io/CGNSFiles.html
https://cgns.github.io/CGNSFiles.html
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Figure 17 presents the pressure and Mach number distributions on the model at a 
steady state. A low pressure area occurs in the downwind area at the extreme end of 
the model fuselage. Shock waves are generated at the nose of the model fuselage and 
the front of the wing.

7 � Conclusion
In this paper, high-order compact GKS from second- up to fourth-order have been 
constructed on three-dimensional tetrahedral mesh for compressible flow simula-
tions. The compact scheme works very well from the subsonic smooth flow to the 
hypersonic compressible flow simulations. The scheme shows the accuracy/effi-
ciency in the smooth viscous flow computation and excellent robustness for the 
complex flow with discontinuities. More importantly, a large CFL number, such as 
CFL = 0.6, can be used for the fourth-order compact GKS, even at a Mach number 
20 flow computation and Noh problem on tetrahedral mesh. The success of the com-
pact scheme is mainly coming from the following fact in the algorithm development. 
A high-order time-accurate gas evolution model at a cell interface is adopted and it 
provides the evolution solution of flow variables and fluxes at cell interfaces, which 
can be used to update cell-averaged flow variables and their gradients. More impor-
tantly, in the high-order evolution model a nonlinear limiter on the high-order time 
derivative of flux function through WENO formulation is introduced in its temporal 
evolution, which makes the status of “nonlinear limiters” on the equivalent footing 
in the spatial reconstruction and temporal evolution for capturing the propagation 
of discontinuous solution in space and time. As a result, even for the fourth-order 
compact scheme, a large CFL number can be used, such as CFL = 0.6 in the current 
scheme in comparison with the 0.14 in the DG method. At the same time, based 
on the cell-averaged flow variables and their gradients improved WENO weighting 
functions in the compact reconstruction have been developed. The extension of the 
current compact GKS to three-dimensional mixed unstructured mesh is straightfor-
ward. It is expected that the high-order compact GKS will play an important role in 
engineering applications.

Appendix
The rotational coordinate transformation for the variables and their derivatives is 
required. For example, the reconstructed flow variables are given as Q(x) and ∇Q(x) 
in the coordinate system x − y− z , then the variables in the local coordinate system 
x̃ − ỹ− z̃  are needed for the calculations of flow variables and numerical fluxes at cell 
interface, where the positive direction of x̃ is the same as the unit outer normal vector 
n of the cell interface. The two coordinate systems can be linked by a rotation transfor-
mation matrix. The rotational transformation from the coordinate system x − y− z to 
x̃ − ỹ− z̃  is defined as

(30)(x̃, ỹ, z̃)T = M(x, y, z)T,
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where M is the rotational matrix. M can be given as M = (M1,M2,M3) , where 
Mk(k = 1, 2, 3) is the row vector. A simple algorithm to determine Mk(k = 1, 2, 3) is as 
follows. 

1	 Given the unit outer normal vector n = (n1, n2, n3) of the cell interface, and find nk 
which has the smallest absolute value.

2	 Define unit vector na whose components are 0 except for nak = 1.
3	 Calculate nb = (n · na)n , and ta = na−nb

|na−nb|.

4	 Calculate tb = n × ta.
5	 M1 = n , M2 = ta , M3 = tb.

The conservative variables W̃(x̃) in the coordinate system x̃ − ỹ− z̃  can be obtained 
from W(x) in the coordinate system x − y− z by

where matrix T is the rotational matrix. T is an orthogonal identity matrix and is given 
by

∇W̃(x̃) in the coordinate system x̃ − ỹ− z̃  can be obtained from ∇W(x) in the coordi-
nate system x − y− z by

where k = x, y, z . The inverse transformation of Eqs. (31) and (33) can be easily obtained 
since T is an orthogonal identity matrix.
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

1 0 0
0 M 0

0 0 1


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