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Abstract 

The high-resolution (HR) spatio-temporal flow field plays a decisive role in describing 
the details of the flow field. In the acquisition of the HR flow field, traditional direct 
numerical simulation (DNS) and other methods face a seriously high computational 
burden. To address this deficiency, we propose a novel multi-scale temporal path UNet 
(MST-UNet) model to reconstruct temporal and spatial HR flow fields from low-resolu-
tion (LR) flow field data. Different from the previous super-resolution (SR) model, which 
only takes advantage of LR flow field data at instantaneous (SLR) or in a time-series 
(MTLR), MST-UNet introduces multi-scale information in both time and space. MST-
UNet takes the LR data at the current frame and the predicted HR result at the previous 
moment as the model input to complete the spatial SR reconstruction. On this basis, a 
temporal model is introduced as the inbetweening model to obtain HR flow field data 
in space and time to complete spatio-temporal SR reconstruction. Finally, the proposed 
model is validated by the spatio-temporal SR task of the flow field around two-dimen-
sional cylinders. Experimental results show that the outcome of the MST-UNet model in 
spatial SR tasks is much better than those of SLR and MTLR, which can greatly improve 
prediction accuracy. In addition, for the spatio-temporal SR task, the spatio-temporal 
HR flow field predicted by the MST-UNet model has higher accuracy either.

Keywords:  Super-resolution, Flow field, UNet, Deep learning

1  Introduction
The demand for HR data in the flow field has always been a major pursuit in computa-
tional fluid dynamics (CFD). Many CFD methods, such as the finite volume (FV) [1], the 
finite difference (FD) [2] and the lattice Boltzmann (LBM) [3, 4], can be performed for 
obtaining HR turbulence data. Unlike the CFD methods that directly solve the Navier-
Stokes (NS) equations on a macroscopic scale, the LBM simulates the flow field based 
on the lattice Boltzmann equation on a mesoscopic scale. Compared to FD and FV solv-
ers, LBM is simpler in modeling and implementation, has parallel processing capabili-
ties, and is more successful in processing complex boundaries [5, 6]. However, for HR 
turbulent flow data, LBM usually requires a large number of lattice numbers with a very 
small time step, which makes the acquisition of HR data time-consuming and compu-
tationally expensive [7]. Due to the high data cost of LBM results for the flow field, the 
rapid development of data-driven models provides an effective way to obtain HR flow 
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data in real-time [8–10]. In this study, we focus on obtaining HR turbulent flows from 
LR spatio-temporal data in real-time using deep learning (DL) models.

With the mushroom growth of deep learning technology, deep neural networks have 
been widely used in flow field SR and reconstruction tasks [11–13]. Various deep learn-
ing models have been applied in turbulent flow field super-resolution [14–17]. Fukami 
et  al. [18] proposed a hybrid downsampled skip-connection/multi-scale (DSC/MS) 
model to reconstruct two-dimensional homogeneous turbulence. Considering the 
multi-scale information of the flow field, Liu et al. [19] designed a multi-resolution con-
volutional autoencoder (MrCAE) SR architecture that leverages the multigrid method 
and transfer learning. MrCAE can dynamically capture different scaled flow informa-
tion at different network depths. Given the difficulty of obtaining HR label information, 
Gao et al. [20] proposed the CNN-SR model, which is trained without any high-resolu-
tion labels in a physics-driven way. Han et al. [21] proposed a novel deep learning solu-
tion that recovers temporal super-resolution (TSR) of three-dimensional vector field 
data (VFD) for unsteady flow. In addition to the CNN model, the generative adversarial 
network (GAN) [22] model is also widely used in flow field super-resolution. Güemes 
et al. [23] used the super-resolution generative adversarial network (SRGAN) to recon-
struct the turbulent flow measured by the coarse wall. The results show that SRGAN 
can obtain perfect reconstruction even at very low resolution. In addition, Deng et al. 
[24] compared the results of two models, SRGAN and enhanced-SRGAN (ESRGAN), 
on super-resolution reconstructions of complicated wake flows behind cylinders. Their 
results found that ESRGAN has better reconstruction ability than SRGAN in both mean 
and fluctuation flow fields. To reconstruct HR turbulent flow by minimal flow field data, 
Yousif et al. [25] proposed the multi-scale ESRGAN with a physics-based loss function. 
Considering the great performance of reduced-order models in flow field prediction, 
the combination of reduced-order models with deep learning can also be well applied 
to flow field super-resolution tasks. Guastoni et al. [26] combined a fully convolutional 
neural network (FCN) with proper orthogonal decomposition (POD) [27]. They pro-
posed the FCN-POD model, which has great performance in reconstructing the flow 
field from coarse wall measurements. The flow field SR technology based on deep learn-
ing can accurately obtain the HR flow field in real-time, which is of great significance for 
obtaining high-precision flow field information.

Most of the models mentioned above only use the spatial information of the low-
resolution flow field in the SR reconstruction of the flow field, which will increase the 
prediction error of the model. In order to improve the quality of the SR reconstruction, 
Liu et al. [28] proposed multiple temporal paths convolutional neural network (MTPC). 
The LR information of the current moment and two adjacent moments is adopted as the 
input of the MTPC network, and then the output of the three moments is weighted to 
predict the HR image of the current moment. The results indicate that the MTPC has a 
better reconstruction capability than only using LR information at the current moment. 
In addition, Fukami et al. [29] further proposed a spatio-temporal SR model based on 
the temporal SR task. They constructed a temporal model and a spatial model, respec-
tively, to reconstruct the HR information over a period of time, only using the LR infor-
mation at the first and last moments. Their work has made important contributions to 
reconstructing the spatio-temporal flow field.
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In this paper, to further improve the prediction accuracy of the HR flow field, we pro-
pose the MST-UNet model for flow field SR tasks with spatio-temporal combination. 
Since the flow field is usually spatially and  temporally coupled, the MST-UNet model 
not only uses the LR spatial information of the flow field at the current frame but also 
incorporates the HR information predicted at the previous frame. The information input 
of this spatio-temporal combination can further improve prediction accuracy. In addi-
tion, we apply the MST-UNet model to the spatio-temporal SR task, which can recon-
struct the HR information of a series of intermediate frames only from the beginning 
and end frames of LR information.

The remainder of this paper is structured as follows. Section 2 introduces the MST-
UNet model and spatio-temporal SR task. The construction of datasets and the results of 
the MST-UNet model in spatial SR and spatio-temporal SR tasks are presented in Sec-
tion 3. Section 4 concludes the paper.

2 � Methods
The purpose of this study is to reconstruct the spatio-temporal HR flow field from LR 
data in real time using CNN. In order to predict the HR flow field at the current frame, 
we use the LR information at the current frame and the HR information at the previous 
frame. In this way, we can obtain HR flow field information by learning the end-to-end 
mapping function F,

where PSR
t  is the result of SR reconstruction, and θ means the learnable network param-

eters in CNN, PLR
t  and PHR

t−1 represent LR information at the current frame and HR 
information at the previous frame, respectively. It should be noted that PHR

t−1 is not the 
label information but the model output result at the previous frame instead. We can 
take advantage of the LR information at the current moment only, which is a normal 
single-input-single-output situation. Compared with this case, using the previous time 
information can improve the data utilization efficiency and prediction accuracy. In this 
multiple-input-single-output case, the shared explicit redundancy from adjacent frames 
will provide more constraints.

In the current work, the MST-UNet model is first introduced for the SR tasks. Then, 
we apply the MST-UNet model in the spatio-temporal SR task.

2.1 � MST‑UNet model

In the MST-UNet model, the HR images of the previous frame ( PHR
t−1 ) and the LR images 

of the current frame ( PLR
t  ) are combined as the model input, which is multi-scale infor-

mation. To fuse this multi-scale information as model input, the PLR
t  is first up-sampled 

to the target resolution Pinter
t  using the bicubic interpolation. Then, the PHR

t−1 and Pinter
t  

are concatenated into a two-channel image as the input of the model (Fig. 1).
In this paper, the UNet model [30] is adopted as the basic model of the SR task, 

which is one outstanding image-to-image CNN model. The UNet model is an encoder-
decoder architecture consisting of a contracting path that captures global information 
(encoder) and an asymmetric expanding path to reconstruct HR information (decoder). 

(1)PSR
t = F PHR

t−1,P
LR
t , θ ,
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In addition to combining LR information during downsampling and HR information 
during upsampling, the UNet model fills in the underlying information through a feature 
fusion operation of skip connections to improve prediction accuracy. Due to this par-
ticular framework, UNet has gained great success on computer vision tasks.

The super-resolution task we deal with is a typical image-to-image regression problem, 
and the classic UNet structure is modified for better application to this assignment, as 
shown in Fig. 2. The input of the model is a two-channel image consisting of PHR

t−1 and 
Pinter
t  , and the output of the model is the HR image at the current frame. The blue arrow 

is a basic block made up of three parts, followed by a 3× 3 convolutional layer, Group-
Norm (GN) [31] and ReLU activation functions ( φ(x) = max(x, 0) ). Since the batch nor-
malization method is relatively dependent on the batch size, when the batch size is too 
small, the calculated mean and variance are insufficient to represent the entire data dis-
tribution. The GN method is employed in this problem, independent of the batch size. 
The UNet model consists of the contracting path (on the left) and the expansive path 
(on the right). As for the contracting path, four downsampling blocks (red arrow) using 

Fig. 1  Data fusion for the input of the model. The HR images of the previous frame ( PHR
t−1

 ) and the LR images 
of the current frame ( PLRt  ) are combined as the input of the model, and the interpolation method is used to 
make two inputs the same size

Fig. 2  The UNet architecture for SR tasks. The input of the model is a two-channel image consisting of PHR
t−1

 
and Pintert  , and the output of the model is the HR image at the current frame
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average pooling with 2× 2 filters and stride 2 are adopted for feature extraction. Cor-
respondingly, the expansive path consists of four identical 2× upsampling blocks, using 
bilinear interpolation instead of the transpose convolution. For our modified UNet 
model, the contracting path and the  expansive path are completely symmetric, which 
makes the input and output of the model the same size.

In the training process, in order to predict the HR image at the t frame, the LR infor-
mation of the t ( PLR

t  ) and t − 1 ( PLR
t−1 ) frames is used. As shown in Fig.  3, in order to 

obtain the HR results of the previous frame, we use interpolation to obtain an initial 
value in the first epoch of the training process. In the remaining epochs, the idea of 
the memory bank [32] is adopted. The prediction results of the previous epoch will be 
stored and used as the HR images of the previous frame. The L1 loss is chosen as the loss 
function,

Lossmst is the loss function of the MST-UNet. According to (2), the network param-
eters can be updated using the back-propagation algorithm.

2.2 � Spatio‑temporal super resolution

For reconstructing the spatio-temporal flow field, Fukami et al. [29] proposed two meth-
ods. Both methods include temporal and spatial models, but in different orders.

As shown in Fig. 4(a), for LR spatial and temporal information ( P(xLR, tLR) ), we apply 
the inbetweening temporal model ( F∗

t : RnLR×mLR → R
nLR×mHR ) to obtain ( P(xLR, tHR) ), 

which has HR temporal information. Then the spatial model ( Fx ) is employed to gain HR 
spatial and temporal information ( P(xLR, tHR)).

(2)Lossmst =
1

N

N
∑

t=1

∥

∥

∥
PSR
t − PHR

t

∥

∥

∥
.

Fig. 3  Schematic diagram of the multi-scale temporal path UNet model
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Correspondingly, we can use the spatial model as the inbetweening model to obtain 
HR spatial information ( P(xHR, tLR) ), and then use the temporal model to obtain HR spa-
tial and temporal information (Fig. 4(b)).

where n is the dimension of spatial  information and m is the dimension of tempo-
ral information. P(xLR, tLR) represents LR spatial and temporal information, which is the 
model input. P(xLR, tHR) represents HR temporal information while LR spatial informa-
tion. Similarly, P(xHR, tLR) represents HR spatial while LR temporal information, and 

(3)
P(xLR, tHR) = F∗

t (P(xLR, tLR)),

P(xHR, tHR) = Fx(P(xLR, tHR)),

P(xHR, tHR) = Fx
(

F∗
t (q(xLR, tLR))

)

.

(4)
P(xHR, tLR) = F∗

x (P(xLR, tLR)),

P(xHR, tHR) = Ft(P(xHR, tLR)),

P(xHR, tHR) = Ft
(

F∗
x (q(xLR, tLR))

)

,

Fig. 4  Spatio-temporal SR reconstruction of the flow field using deep learning. (a) shows the combine model 
using the temporal model as the inbetweening model while (b) demonstrates the combine model using 
the spatial model
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P(xHR, tHR) represents HR temporal and spatial information, which is the output of the 
model.

In this study, the first model is selected as the spatio-temporal SR model, which uses 
the temporal model as the inbetweening model. In the temporal model, we still use the 
UNet model, taking the first and last two frames of the LR image as input, and the out-
put is a series of LR images in the middle frame. In this way, the MST-UNet model pro-
posed in Section  2.1 can be used as a spatial model to improve the model prediction 
accuracy further. The loss function of the spatio-temporal SR model is as follows,

Among them, P̂(xHR, tHR) represents the label information of a series of frames.

3 � Numerical results
To evaluate the ability of the MST-UNet model to reconstruct HR flow fields, the flow 
around cylinders is used as our test [33, 34]. The entire flow field domain is shown in 
Fig. 5.

In Fig. 5, D = 0.2 m and u0 = 0.2 m/s represent the cylinder diameter and initial veloc-
ity, respectively. The LBM is applied in the construction of the data set.

3.1 � The lattice Boltzmann method

The LBM is performed on a square lattice where at each node there is a discrete number 
of directions in which the fluid particles can move. In this study, a 2D model with nine 
lattice velocities - the D2Q9, will be discussed and applied.

A general form of the LBM equation can be written as follows [35],

where fi is a discrete distribution function at position x , with average particle lattice 
velocity ei , pointing in direction i (see Fig. 6), at time t. �coll is the collision operator, and 
will be discussed later. ei =

(

ex,i, ey,i
)

 is the directional vector and it takes the following 
values:

(5)
Lossts =�P̂(xHR, tHR)− Fx

(

F∗
t (P(xLR, tLR))

)

�,

=�P̂(xHR, tHR)− P(xHR, tHR)�.

(6)fi(x + ei�t, t +�t)− fi(x, t) = �coll
i (x, t),

Fig. 5  The illustration of the flow domain around three cylinders
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The local fluid density ρ is computed as the sum of all fi on site. The expression for 
the D2Q9 lattice model is the following,

The local fluid velocity u =
(

ux,uy
)

 can be computed from the expression for 
the local momentum.

The Bhatnagar-Gross-Krook  (BGK) model has the simplest form of the presented 
collision operators, which reads as follows [35, 36],

f
eq
i  is the local equilibrium distribution function, and is computed from the local 

macroscopic velocity u , and the local density ρ.

where wi is the equilibrium weight factor in the i-th direction. Its values add up to 1, and 
in D2Q9 they equal:

w is the relaxation rate and is the inverse of the relaxation time τ = 1
ω

 . From the relaxa-
tion rate, the fluid’s kinematic viscosity v can be calculated,

(7)e =

(

ex,0, ex,1, . . . ex,8
ey,0, ey,1, . . . ey,8

)

=

(

0, 1, 0,−1, 0, 1,−1,−1, 1
0, 0, 1, 0,−1, 1, 1,−1,−1

)

.

(8)ρ(x, t) =

8
∑

i=0

fi(x, t).

(9)ρ(x, t)u(x, t) =

8
∑

i=1

fi(x, t)ei.

(10)�coll
i = −ω

(

fi(x, t)− f
eq
i (x, t)

)

.

(11)f
eq
i (u, ρ) = wiρ(x, t)

[

1+ 3ei · u(x, t)+
9

2
(ei · u(x, t))

2 −
3

2
u(x, t) · u(x, t)

]

,

(12)w = (w0,w1, . . .w8) =

(

4

9
,
1

9
,
1

9
,
1

9
,
1

9
,
1

36
,
1

36
,
1

36
,
1

36

)

.

(13)v =
1

3

(

1

ω
−

1

2

)

.

Fig. 6  D2Q9 basic lattice velocity directions
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There are three cylinders in the domain, with center coordinates 
(

x0, y0
)

 , 
(

x1, y1
)

 , and 
(

x2, y2
)

 . In our problem, the range of six coordinates is shown in Table 1. Two datasets of 
different sizes are generated to illustrate the effectiveness of our model. One is a small data-
set with the size of 5000, denoted as Datasets : 500 groups of different cylindrical positions 
are generated using the Latin hypercube sampling method. For each set of positions, we 
generate 10 frames of data at consecutive moments. The other one is a large dataset com-
pleted with the size of 19000, which has 1000 groups of different cylindrical positions and 
19 frames of data at each position, denoted as Datasetl . In each dataset, 80% of the sam-
ples are used for training, and the remaining 20% for testing. The position of the cylinder 
changes, and the flow field at each position varies with time, which increases the difficulty 
of the SR task. In our problem, the resolution of HR and LR flow fields is 128× 256 and 
16× 32 separately with an upscaling factor of 8.

In the experiments, we first investigate the spatial SR task using the MST-UNet model. 
Then, on the basis of the spatial super-resolution task, the spatial-temporal SR task is fur-
ther studied. The mean absolute error (MAE) and L2 error norms ( ε ) are adopted as the 
metrics to evaluate the performance of the MST-UNet model and spatial-temporal SR task, 
where ε is defined as

3.2 � Spatial super‑resolution task

In this task, our MST-UNet model combines the HR information of the previous 
moment with the LR information of the current moment. By contrast, models with LR 
information as inputs only are introduced,

where PLR
[t−d:t] represents a sequence of LR data and θ represents model parameters. In 

the case of d = 0 , the mapping between input and output becomes PSR = F
(

PLR
t , θ

)

 , 
which is the case of general single-input-single-output, denoted as SLR-UNet . Under 
the circumstances, the model input contains only instantaneous spatial information, not 
temporal information. When d > 0 , the model input combines LR information from 
multiple moments, as shown in Fig. 7. Besides the case of d = 0 , the two cases d = 1 and 
d = 2 are also known as our comparative experiments, denoted as MTLR1-UNet and 
MTLR2-UNet , respectively. The loss function for these models is as follows,

(14)ε =

∥

∥

∥
PHR − F

(

PLR, θ
)∥

∥

∥

2
/

∥

∥

∥
PHR

∥

∥

∥

2
.

(15)P
SR = F

(

P
LR

[t−d:t], θ

)

,

Table 1  The value range of six coordinates

Parameter Lower Bound/m Upper Bound/m

x0 0.6 0.8

y0 0.6 0.8

x1 0.2 0.4

y1 0.2 0.8

x2 0.6 0.8

y2 0.2 0.4
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It is worth noting that in order to ensure the fairness of the comparison experiments, 
the different models used for comparison only have different input information while 
with the same network structure.

We perform SR on the curl of the flow field. These models are evaluated on the test set, 
and the results of MAE and L2 error norms on two different dataset sizes are shown in 
Table 2. Where the MST-UNet model is the model proposed in this paper, SLR-UNet , 
MTLR1-UNet and MTLR2-UNet correspond to the model in (15) where d is 0, 1 and 
2 respectively. It can be seen from the results that the error decreases significantly as 
the dataset size increases. In the comparison of different models, on both datasets the 
spatial model containing time information ( MTLR1-UNet and MTLR2-UNet ) is bet-
ter than the spatial model using the LR information at the current frame ( SLR-UNet ) 
only. For models with different frames of LR information as input, i.e. MTLR1-UNet 
and MTLR2-UNet , we find that MTLR2-UNet does not perform well, compared to the 
MTLR1-UNet model with less input LR information. The main reason is that the LR 
information of multiple frames as input is redundant or invalid, which will affect the 
prediction accuracy to a certain extent. In the performance of MST-UNet model, it is 
obvious from Table 2 that the error of the MST-UNet model proposed in this paper is 
significantly lower than the rest of the models in each indicator. In addition, this advan-
tage is more obvious as the size of the dataset increases. For the results of Datasetl , it can 
be seen that the model prediction errors of the three models SLR-UNet , MTLR1-UNet 
and MTLR2-UNet , have little difference. From the results, we can find that in the case of 
sufficient data, the increase of LR temporal information has little effect on the prediction 
accuracy of the model. However, the MST-UNet model that uses the HR information of 
the previous frame can greatly improve the prediction accuracy compared to the model 
which only uses the LR  temporal information,  since the MST-UNet model uses the 
HR information of the previous frame in addition to the LR information of the current 
frame. Generally speaking, the HR information of the previous frame can contain most 
of the information before the current frame, which allows us to use the information of 

(16)LossMTLR =

∥

∥

∥
F
(

PLR
[t−d:t], θ

)

,PHR
∥

∥

∥

p
.

Fig. 7  Schematic diagram of the multi-scale time path network (MST-UNet)
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the previous frame very efficiently compared to the MTLR1-UNet and MTLR2-UNet 
models.

For the spatio-temporal flow field, since we usually pay more attention to the flow field 
of the last frame, the overall low average error does not reflect the prediction error of the 
model at a certain moment, and it is very likely that the error accumulates with time. We 
calculate the average error over 10 frames across all different cylinder positions in the test 
set, and the MAE of Datasets and Datasetl are shown in Table 3 and Fig. 8, respectively.

From the results, it can be seen that the prediction error of the MST-UNet model 
is much lower than that of the SLR-UNet , MTLR1-UNet and MTLR2-UNet models 
on both Datasets and Datasetl except for the first frame. Furthermore, the prediction 

Table 2  Results of the four models on the test set

Dataset Model MAE (×10
−4

s
−1) L2 error norms

Datasets MST-UNet 2.44 0.046

SLR-UNet 4.00 0.065

MTLR1-UNet 2.99 0.055

MTLR2-UNet 3.52 0.062

Datasetl MST-UNet 1.24 0.031

SLR-UNet 1.94 0.039

MTLR1-UNet 1.76 0.038

MTLR2-UNet 1.81 0.038

Table 3  The MAE ( ×10
−4

s
−1 ) of the four models in the test set on Dataset5000

Frame number 1 2 3 4 5 6 7 8 9 10

MST-UNet 3.53 2.49 2.34 2.31 2.31 2.29 2.28 2.27 2.29 2.32

SLR-UNet 4.03 4.41 5.53 7.16 3.82 3.06 2.98 2.97 2.97 3.04

MTLR1-UNet 3.02 2.94 2.97 2.99 3.00 2.99 2.98 2.98 2.98 3.02

MTLR2-UNet 3.61 3.58 3.45 3.46 3.48 3.49 3.49 3.50 3.53 3.61

Fig. 8  The MAE ( ×10
−4

s
−1 ) of the four models in the test set on Dataset19000
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errors eventually stabilize over time and do not increase. The reason for the high pre-
diction error of the first frame is that the HR input of the previous frame is obtained 
by interpolation. In order to improve the prediction accuracy of the first frame, we 
can also build a separate model for the first frame to improve the prediction accuracy. 
However, for the space-time flow field, we generally focus on the information at later 
moments. The errors of the last frame at one position on the test sets are shown in 
Figs. 9 and 10, respectively. The results show that the performance of MST-UNet is 
greatly improved compared to the other three models.

Fig. 9  Performance of different models in the test set on Datasets

Fig. 10  Performance of different models in the test set on Datasetl
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3.3 � Spatio‑temporal super‑resolution task

As shown in Section 2.2, the purpose of the spatio-temporal SR task is to reconstruct 
HR information of a time series from the LR information at the first and last two frames. 
As shown in Section 2, two models can be used in the spatio-temporal SR task. One is 
to obtain HR temporal information through the temporal model first, and then gain HR 
spatial and temporal  information through the spatial model, denoted as TS; the other 
model is in reverse order, taking the spatial model as the inbetweening model, which 
acquires the HR spatial information first, denoted as ST. In order to facilitate compari-
son, for different cylinder positions in Datasetl , we select the first ten frames. In our 
spatio-temporal SR task, we predict the HR information of eight frames through the LR 
information at the first and last two frames (frame 1 and frame 10).

Fig. 11  Performance of the TS model on the spatio-temporal super-resolution task
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Our model adopts the TS model. For the temporal model, we employ the UNet model 
in Fig. 2, which takes the LR images of the 1st and 10th frames as input and the output 
is a series of LR images between the two frames. Since the temporal model has output 
a series of LR images, on the spatial model, we adopt the MST-UNet model proposed 
in Section  2.1. A set of results for the TS model is shown in Fig.  11. The comparison 
model adopts the ST model. On the spatial model, since there are only two frames of 
LR images, we use the single model in Section 3.2. The temporal model in ST adopts the 
UNet model too, while the input and output are HR images. Figure 12 presents a set of 
results for the ST model.

We evaluate the results of both models on the test set, and the results of MAE and L2 
error norm are shown in Table 4. The results show that the TS model we use is lower 
than the ST model in all indicators, which shows that the TS containing the MST-UNet 
model has good performance on the spatio-temporal SR task.

Fig. 12  Performance of the ST model on the spatio-temporal super-resolution task



Page 15 of 16Bao et al. Advances in Aerodynamics            (2023) 5:19 	

4 � Conclusions
In this paper, we propose the MST-UNet model for SR reconstruction of spatio-tem-
poral flow fields. In order to obtain the HR result of the current frame, the MST-UNet 
model combines the LR information of the current moment and the HR information 
of the previous moment. In addition, we apply the MST-UNet model to the task of 
flow field reconstruction around cylinders and verify the proposed model on two 
tasks: spatial SR and spatio-temporal SR. The experimental results show that the 
MST-UNet model is much better than the other models that only use LR information 
as input in the spatial SR task. In the spatio-temporal SR task, the results of the model 
with MST-UNet are significantly improved compared with the model that only uses 
low-resolution information.

Although we explore a novel model for the spatio-temporal SR reconstruction prob-
lem, many topics still exist for further investigation. Our model adopts a data-driven 
approach, which requires a lot of label data. We will adopt a physics-informed approach 
to reduce data costs in future work.
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