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Abstract

Serrated leading edges are one of the most promising passive aerodynamic control
methods for the reduction of aerofoil-turbulence interaction noise. To elucidate the
possible physical mechanisms, the current paper studies the simplified set-up with
aerofoil-vortical gust interaction and proposes an analytical model by incorporating
Fourier transform into the Wiener-Hopf method. The proposed model suggests that
the serrations operate on the incident vortical gusts as convolution, which leads to the
innovative concept that models serrations as transfer functions in the wavenumber
domain. Overall, the current theoretical study could provide a unique insight of the
inherent aerodynamic noise control mechanisms of leading-edge serrations.
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1 Introduction

Aerofoil-turbulence interaction is one of the dominant broadband flow-induced noise
sources in aircraft, aeroengine and wind turbines [1-3]. Serrated leading edge, which is
one of the most promising passive aerodynamic control methods, has recently received
increasing research interests [1, 4, 5]. The serration approach has a presumed connection
to the silent flying capability of owls [6-8] and, as shown in Fig. 1, the primary feather
from an owl actually contains very long, curved and comb-like leading- and trailing-
edge serrations, which demands further studies of shape optimisations and modeling
capabilities.

Currently, most studies of trailing-edge noise control have mainly focused on sawtooth-
shaped serrations [9-12], while studies of leading-edge serrations have considered poten-
tial aerodynamic drag penalties and primarily focused on wavy (sinusoidal) profiles of
protuberances and tubercles [1, 4, 13]. More specifically, [5] has conducted experimental
studies of a leading edge with curved sawtooth-shaped serrations and reached the con-
clusion that a serration with the largest amplitude (tip-to-root length) and the largest
wavelength (period) is optimal. Kim et al. [1] and Zhong et al. [3] have conducted
computational studies by using Euler-equations-based model with injected synthetic
turbulence. The work [3] has computationally studied the interaction between the stream-
wise/transverse turbulent disturbances and a straight leading edge in transonic flows and
shown the significantly influenced sound propagation in the presence of shocks. The
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Fig. 1 The problem of interest, where (a) the sketch of a flying snowy owl, and (b) one of the primary
feathers from an eagle owl and the corresponding leading-edge image

work [1] has simulated aerofoil-turbulence interaction noise associated with wavy lead-
ing edges in low subsonic flows and found reduced levels of radiated sound pressure due
to geometric obliqueness and phase interferences.

Overall, many recent works, such as those from the groups at Brunel University and
Southampton University, have performed a series of pioneering experimental studies of
aerofoil aerodynamic noise with serrations in realistic set-ups [1, 5, 12, 14, 15], which
have provided sufficient physical insights that shall further enable the follow-up theoret-
ical studies. Then, the main focus of the current paper is the theoretical development of
an analytical model for the scattered sound waves from an infinitely thin aerofoil with
serrated leading edge in the presence of a uniform background flow.

A theoretical model could enable rapid parametric studies and offer clear physical
insights after taking reasonable simplifications and justifiable assumptions. To enable
theoretical developments, an aerofoil is usually modeled as an infinite half plane with
leading-edge serrations in the presence of uniform flows, and the incident turbulent flow
is approximated by synthetic turbulence or simply a couple of eddies. By adopting such
simplifications, the work [13] has developed an analytical model based on the modi-
fied Green’s function from [16] and found that it is still difficult to predict the optimal
serration design due to nonlinear interactions between eddies. Other than extending
Howe’s approach, [17] has adopted their previous approach [11] that combines coordi-
nate transformation, Fourier series expansion and Schwarzschild techniques to propose
an analytical model for leading-edge serrations. On the other hand, [18] has adopted the
Wiener—Hopf method to study the effect of leading-edge radius on gust and aerofoil inter-
action noise, and then incorporate non-orthogonal coordinate transformation into the
Wiener—Hopf model for leading-edge serrations [19] as well as trailing-edge serrations
[20]. All these theoretical studies have identified some limitations. For example, the work
[13] has adopted the slender body approximation from [16], which shall be unfit for long
and comb-like serrations (see Fig. 1b). The references [17] and [19] have adopted coor-

dinate transformation, which shall be most applicable to serrations with straight profiles.
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Furthermore, near-field solutions, which shall clearly illuminate the associated aerody-
namic noise control mechanisms, have not been given in [19] for unknown reason. To
address these issues, the current paper proposes a theoretical model by incorporating
Fourier transform into the Wiener—Hopf model.

The reference [21] has incorporated Fourier series expansion into the Wiener—Hopf
method to study the scattering of external sound waves due to serrations, and further
extended that model for the study of Tollmien-Schlichting pressure wave scattering from
serrated trailing-edge set-ups [10]. As argued by [19], our models are inevitably math-
ematically complicated. The current paper would endeavour to simplify our previous
model by incorporating Fourier transform into the Wiener—Hopf method. The Wiener—
Hopf method is a powerful mathematical tool and has been heavily used for two types of
classical wave problems in fluid mechanics: duct radiations [22-26] and flat plate diffrac-
tions [10, 18, 21, 27]. The current problem falls into the second type, which usually has a
much simpler Wiener—Hopf kernel than duct radiation problems. However, sound radi-
ations from a duct are always periodic in the azimuthal direction, whereas the scattered
field from a serrated flat plate could be aperiodic in the spanwise direction, which requests
delicate manipulations in Fourier series expansion [10, 11] that however result in compli-
cated models. Instead of using Fourier series, the current work utilises Fourier transform
to establish the closed-form solution and, from which, proposes a transfer function in the
chordwise—spanwise wavenumber domain to clearly elucidate the possible noise control
effect of the serrations.

2 Theoretical model

2.1 Description of the problem

Figure 2 shows the current problem set-up, which contains a semi-infinite aerofoil with
an infinite number of periodic rigid leading-edge serrations in the presence of a uniform
flow. An incident synthetic turbulence usually consists of hundreds of Fourier modes and

Fig.2 Sketch of the model problem, where the (sinusoidal-shaped) wavy serrations with the profile x (2)
(with amplitude 2hs and the wavelength A;) are shown as an example. We wish to mention that our model
also works for other shapes, such as sawtooth- and slotted-shaped profiles
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the associated velocity perturbation is given as the curl of a vector potential. For each
single eddy case, the associated pressure boundary condition (e.g., (38) in [13]) is similar
to that of an inject harmonic gust, which is

Ve (%,9,2,8) = ag(2)e™* T, w = kMo = k, (1)

where v; is the velocity in y and would be only meaningful for the current set-up at y = 0,
ag(z) is the associated amplitude with respect to z, k; is the normalised wavenumber in
the chordwise direction, w and k are normalised angular frequency and wavenumber, and
M) is the freestream Mach number. The associated scattered sound field from the leading
edge of an aerofoil at zero angle of attack is governed by

( % 0% 97

9 2
0+ i) Ve (i mog ) we=o ?

ax
where v, is the acoustic potential and all of the variables are non-dimensionalised using
appropriate reference scales. Given , the scattered sound pressure is p; = (—ik +
Mpd/0x) ;. Following the assumption of frozen turbulence, the unsteady incident gust
remains its form after convecting past the leading edge, and will then be annihilated by the
scattered sound fields from the aerofoil; in addition, the jump in the scattered field across
y = 0and x < x(z) must be zero to satisfy the far-field radiation condition and the conti-
nuity of the scattered field upstream of the leading edge, which lead to the corresponding
boundary conditions:

0 Ws (x) y; Z) ikyx

T = —ag(z)e Vx> x(2), 3)

Ws (xr 0, Z) =0, Vx < X (Z), (4)

where x (z) describes the profiles of serrations. The scattered field should also satisfy the
far-field radiation condition.

2.2 The Wiener-Hopf model

The essential concept behind this work is the incorporation of Fourier transform into
the Wiener—Hopf method. First, we define the two-dimensional Fourier transform in the
(x,z) domain as

Y@y B) = / / Vs (53, D) Pz, )
Substituting (5) into (2) yields

32

8—y2w<a,y, B) — (¢ + B — (k — Moe)*) ¥ (. 3, B) = O, (6)

)/2

1/2
where y = y_y4 and yx = [a + ((k — Moa)* — ﬂ2)1/2

points will possibly coincide at the origin when 8 = k and My = 0, which will prevent

, from which the branch

the definitions of upper- and lower analytic half-planes. Hence, for mathematical rigor,
we should mention that the current method cannot model the singular case with 8 = k at
My = 0. Physically, M = 0 means there is no flow and the gusts (or eddies, turbulence) is
not convected, and no distortion happens to produce sound. By following [22], the prin-
cipal branches of the square roots are chosen for y so that the branch cuts of y. are from
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bg = k/(Moy £ 1) to £00, respectively, when 8 is simply zero. If 8 # 0, the stating points
b§ would change along with . Figure 3 shows the two half-planes and the integral path.
To satisfy the acoustic radiation condition, the solutions of (6) should have the form:

Aa, Be V@Bl vy > 0,

7
—A(a, B’ Py, vy < 0. @

Yoy, B) = {

From (7), we can further have the following relation at y = 07:

v (o, By (Ol, 0+» ﬂ) + 1/// (O‘rOJr’ :3) =0, (8)

where (-)* denotes the upper side of (), and (-)’ represents d/dy. Next, we decompose v
into the sum of the following two parts:

0 poo o o rx( o
Ve P dxdz + / Ve eP?dxdz,

—00 J —00

(o9, B) = /

—o0 Jx(2)
=4 (,y,8) =y—(,3,8)

00 R o o
:g[eiaX<Z>]* 3[ / &s(&,y,z)emd&]Jr&[ f ws(fc,y,z)e’“xdfc] .9
—_—— 0 —00

=¢(a,B)

=4 (@y.B) =y_(@yp)

where ¥ = x— x (2), the subscripts (-)+ denote analytic on the upper and lower half-planes
R4, respectively, and the symbol §[ ()] represents the Fourier transform of (-) in the z-
direction, i.e., §[ ()] = ffooo(-)exp(iﬂz)dz, and * represents the convolution operation.

Fig. 3 Sketch of the Argand diagram of the two half-planes R4 and the overlapped strip. Two branch cuts
joining the branch points boi to o0 through the corresponding two half-planes. The integral path would
move back to the horizontal axis [22] except for a slight distortion around the origin to avoid any possible
singular point

Page 5 of 13
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Substituting (9) into (8) yields

y (@, B) | ¥ (2,07, B) + ¥— (a, 0%, 8) | + ¥y (2,07, B) + ¥ («, 0", 8) = 0. (10)
e e’

=0 from (4)

In addition, from (3), we can analytically represent

Yl (a0, 0%, 8) = /‘00 /00 —a,(2)e* %P dxdz
+ 0,00, p) = ¢

—00 Jx(2)

1 00 . 0o ,
= — / ag(z)e’ﬁzdz*f kX @ bz gy, (11)
(o +ky) J_oo 7ooh($
N e =s(a,
=Aq(B)
=6 (a.p)

where s(«,z) and &(«, B) are Fourier transform pairs and solely determine the reduc-
tion effect of scattered noise due to leading-edge serrations. In addition, it is worthwhile
to emphasise again that () represents convolution in the above formulation. Mathemat-
ically, if x(z) > 0, the term with exp(iax (z)) would grow exponentially in the lower
half-plane. Similarly, when x(z) < 0, the term with exp(ix x (z)) would grow exponen-
tially in the upper half-plane. Such algebraic behaviours at infinity in the upper and lower
halves of the complex «-plane are undesirable for the following procedure of the Wiener-
Hopf method. Furthermore, such infinity growth would violate the Dirichlet conditions
(for Fourier expansion) and thus prevents Fourier series expansions. Our previous models
[10, 21] avoided this critical issue by canceling out all those terms from the final Wiener—
Hopf equation. In this work, we further suggest that a weak expansion be considered for
expliax (2)).

Then, for periodic serrations, s(«, z) can be further represented by the following Fourier

series,
. = ;27 1 As o 27
s(a,z) = etk x (@) — Z S[K](O{)eLKTSZ’S[K] (@) = )T/ s(a,2)e “hidz,  (12)
K=—00 s JO

where A is the period of the serrations in z-direction. Then, (11) becomes

00 +00 [«] _ 2
L AB R 2\ LA s@)dg (B - %)
vy = @tk *Kzz_oos (@)8 (,3 - KM) = PR ,(13)

where § is the Dirac delta function. Substituting (13) into (10) results in

+ 1 ’ + 1 ’ + —
v+ (@, B (o0 ,ﬁ)+y_(a,ﬁ) v (2,0 ,ﬂ)+y_(a,ﬂ)w_ (@,0%,8) =0, (14)
R4 ~——~" Polein R_

R R_

where R+ in the underbrace symbol denotes the corresponding analytic half-planes, and
the multiplicative factorisation [28] of y = y;y_ is imposed. We further remove the pole
at « = —k, and re-arrange (14) to
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Y s A, (B — K2
;W, (a,0+,ﬂ)+( I 1 ) A g( M) _
y-(o, B) y—(, B)  y- (—ku, B) i(a+ky)
R_ R_
+00 [«] 2
) o sl(a)A, (,3 P )
_ + g} _ s ) _
eV 0 D) = i@+ k) =¢ 12
Ry Ry R:

The left- and right-hand sides of (15) should be regular on the positive and negative
half-planes R, respectively. According to analytical continuation in the complex analysis
theory, € is an entire function that is regular on the whole complex plane. For leading-
edge set-ups, ¥(x,0,z) is in the order of x1/2 when x approaches x (z), which leads to
V() ~ a~1/2 when || — 00 by using Abelian theorem [28]. Since ¥ (o) = ¥, () +
V_(a), where ¥_(a) = 0, ¥ (a) ~ a~1/? is equivalent to ¥4 () ~ a~1/2. In addition,

1/2) which leads to ¥, ~ «° and, finally,

from (6), it is easy to see that yi(a,8) ~ «
E(a) ~ a as |a| — oo. By using the extended form of Liouville’s theorem [28], it is
then easy to show that €(«) is a constant for all real «. In this letter, we only consider
the simplest scenario with the constant that equals zero. Such a simplification may be
not mathematically strict but could extensively simplify the following derivations and,
therefore, help to elucidate the most essential flow physics. Furthermore, a final extension
to scenarios with non-zero constants shall be straightforward.

Next, by equating the right-hand side of (15) to zero, we immediately have

¥ (a0, 07, 8) = A, B) = ¥4 (2,07 B) + ¥— (o, 07 B) (16)
—
=0 from (4)
= - Jio s¥(@)A (ﬂ —KZJT) ! . (17)
Pt ¢ hs ) i@+ ko) vy (@, B) v (—ke B)

Due to serrations P(a,B) due to straight leading edge

Lau et al. [10] have given a similar analytical solution for Tollmien-Schlichting
pressure wave scattering from serrated trailing edges, but by incorporating Fourier
series expansion into the Wiener—Hopf method. Compared to the derivations therein
(Egs. (10)—(32)), the derivations in the current paper are more succinct.

Similarly, for straight leading edges with x (z) = 0, it is easy to obtain

,0M,B) =A@, B) = —A ' 1
¥ (@07, ) = Ae, B) <P itk @ Py G B "

No serration

P(a,B) due to straight leading edge

From (7), ¥ («, y, B) is obtained. Finally, through the inverse Fourier transform, we have

the analytical solution

1 +00 +00 ) .
Vs5.0) = / (sgn(y)A(a,ﬁ)e*sg“Wy) ei@x=ibzdy 4B, (19)
—00 J—o0

Given the above solution, we can predict the far-field acoustic solutions by either fol-
lowing the approximation method given in [27] or the Amiet’s model in [29] and [10]. It
is also straightforward to establish the relation between the acoustic power spectral den-
sity and the wavenumber spectral density of incident turbulence flows by following [11]
or [10]. The related details are omitted here for brevity.
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3 Results and discussion

As Fig. 4 shows, the above analytical model enables us to study the effect of serrations
from the perspective of control system, which is one of the key contributions of this paper.
Each block in the feedforward path represents a transfer function in wavenumber domain,
that is, O(«, 8)/I(a, B), where O and I represent the output and input of each block in the
wavenumber domain. For the whole feedforward loop shown in Fig. 5, the input would
be I(at, B) = Ag(B)/i(a + ky), that is, the o — 8 Fourier transform of (3). Then, from (17),
the output with serrations is Ogerrarion (@0, 8) = I(e, B) - S(e, B) - P, B); while from (18),
the output without serrations is Osigne (o, B) = I(a, B) - P(a, B). Hence, the transfer
function of serrations, S(«, 8), can be inferred from Oserration (@, B)/Ostraignt (@, B). As a
result, given (17) and (18), the transfer function for serrations is defined as

S sty (B E) LI s @0 (B — K ZE )+ Ag(B)
A4(B) - 5B) * Ag(P)

S, B) =

’

(20)

which shall clearly elucidate the noise control effect of the serrations. More specifically,
the transfer function (20) shows that serrations operate on incident gusts (or more gen-
erally, turbulence flows) in the form of convolution. It is then straightforward to sketch a
block diagram of the whole aerofoil-gust flow system and the associated passive control
and optimisation procedure (see Fig. 4). We believe that (20) has some sort of connection
to the so-called optical transfer function in optical systems, and (20) is not a proper trans-
fer function in classical control since the input A;(8) cannot be easily isolated. Hence,
the following study will focus on the key component &(«, 8) inside S(e, B) (it should be
noted that S(«, B) # &(«, B)).

Figure 5a-b show the amplitude of &(«, 8) without and with wavy serrations, respec-
tively. First, (7) suggests that the scattered field becomes evanescent (i.e., source cutoff
in [1]) when y2 > 0, i.e. @ + B2 — (k — Moa)> > 0, which can be approximated by
o? + 8% > k? when My is small. Here k equals the nondimensional w. In other words,
when the amplitude of A(w, 8) is nonzero outside the circle, the associated scattered wave
component becomes evanescent, and when the amplitude of A(«, 8) is nonzero inside the
circle, the associated scattered wave component is progressive. Then, we call the region
outside the circle (with @ + 8% = k?) as the evanescent region, and call the region inside
the circle as the progress region.

For straight edges with x(z) = 0, it is straightforward to get S(o,8) = 1,V(«, B).
Then, the vortical gust at « = ky, V8 (see Fig. 5a) will be consistently scattered by the

Incident tur- /
b4>ulence Serrations S(«, B) —>| Straight P(a, 3) Scattered sound

min(p})

Optimisation

Fig. 4 The block diagram with the transfer functions in the wavenumber domain, where the variable S(«, 8)
is represented with the arrow, which is a common practice in classical control. In addition, various
optimisation strategies can be considered and one example can be found in [33] ((2.10) therein)
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when Ag(B) # 0 is in this region

N\ A\

NN

(4hs/Xs)kz

Evanescent region
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—(4hs/Xs)kz

C
Fig.5 Analysis by the proposed analytical model, where (a) the amplitude of S (&, ﬁ) for straight edges, and

(b) the amplitude of & (&, ﬁ) for wavy edges, where the normalised @ = «/w and B = B/, where the
nondimensional w = k. The set-ups are essentially the same as those in [13] (Fig. 2), that is, My = 0.25,w = 1,and
sinusoidal-shaped serrations with hs = 0.5 and A; = 47/3. (c) The sketch of &(«, B) for sawtooth-shaped
serrations

straight edge (as mathematically described by P(«, 8)) and those fall in the circle will
radiate to the far field. For serrated edges, it is usually difficult to separate the incident
component Ag(B) from S(a, B) in (20). Hence, we directly examine &(a, 8) and, as an
example, show the corresponding amplitude for one wavy set-up in Fig. 5b. The geo-
metrical configurations of the serrations are the same as those in [13] for comparison
purposes. Compared to the straight edge case, the value of G(w, 8) for serrated lead-
ing edge extensively decreases inside the progressive region, which corresponds to the
extensive reduction of the aerofoil-gust interaction noise.

Figure 5b shows that the value of G(w, ) is most dominant around o = —ky
and gradually spreads to the whole wavenumber domain mainly through two ridges.
Such observations can also be explained by the proposed analytical model. Take the
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sawtooth-shaped serrations as an example, where the slope of x(z) is £4#h;/As, which
leads to the following approximated relation:

—00 s

oo , +4
S(a, B) = / el thx @ gibzqy ~ (,3 + (o + ky) Ahs) ,

which is shown in Fig. 5¢c. The above relation becomes exact when the profile of serrations
approaches the sawtooth shape. It is then easy to see that narrow serrations are more pre-
ferred than wide serrations. However, the final solution of the scattered field depends on
Ag(B)*6(a, B). As aresult, when the incident gust is oblique and falls in the grayed region
shown in Fig. 5¢, the convoluted result could fall into the circle and the corresponding
scattered wave components become progressive.

Last but not least, Figs. 6 and 7 show the near-field results predicted by the proposed
model. The set-ups from [13] (Fig. 2 therein) are followed here for comparison purposes.
Compared to the previous results in [13], the predicted sound waves from the proposed
model have almost identical patterns and values across the whole domain. In this letter,
this comparison serves as the validation of the current new model. Furthermore, Fig. 7
clearly shows that the serrations induce new modes the spanwise direction, which shall
be one of the main mechanisms for aerofoil-turbulence interaction noise control.

4 Conclusion

A theoretical model has been proposed in the current paper for the study of aerofoil-gust
interaction noise with leading-edge serrations. The most essential contributions are the
analytical description and the transfer function concept based on Fourier transform and
the Wiener—Hopf method. We wish to mention that the derivation of theoretical models
is only possible by adopting justifiable simplifications and approximations. The current
model employs the frozen turbulence assumption and semi-infinite thin aerofoil in the
presence of uniform flows at zero angle of attack. It is well known that frozen turbulence
assumption is usually valid for uniform or weak sheared flows. The semi-infinite aerofoil
assumption should be valid for high-frequency gusts. It is possible to extend the current

Fig. 6 The near-field results at z = —5 from the theoretical model and the set-ups are the same as those in
Fig. 5(a) and (b), respectively. Tiny (spurious) oscillations around (x < 0,y = 0) should not affect sound fields
at the far-field




Huang Advances in Aerodynamics (2019) 1:6 Page 11 of 13

Straight 1 Sinusoid

Ir r e

0.5 0.5 5
\ 170

65

Zi X

\ 60

-0.5 -0.5
1 E8
-1 i - 50
-0.1 0 0.1 -0.1 0 0.1
X/ X/

Fig. 7 The predicted sound pressure levels (in dB) of the scattered sound field on the upper surface at

y = 0T, where the vertical axis shows the spanwise coordinate and the horizontal axis shows the streamwise
coordinate. Both coordinates are normalised by the sound wavelength at the frequency. The other set-ups
are the same as those in Fig. 6

Wiener—Hopf model for finite aerofoil set-ups by using the approximate methods in [28]
(Chap. V). Nonzero angle of attack effect has been analytically studied by [30] and [13]
based on beautiful but complicated mathematical methods. The current work tries to
provide the analytical model and the associated transfer function concept in the most
succinct way and, hence, has to adopt the above simplifications and assumptions, which
should hopefully retain the most important features of the serrated-aerofoil-flow system
that is investigated.

The proposed model shall enable one to rapidly study the noise reduction performance
of various-shaped (and even aperiodic) serrations for different incident vortical gusts. It
shall be straightforward to further extend to turbulence flow set-ups. Further, the transfer
function concept shall enable one to elucidate the associated physical mechanisms in a
systematic way. Overall, the current model extensively simplifies our previous analytical
modes for serrations [10, 21] and should be able to provide a clear physical insight of the
inherent noise control mechanisms. In particular, the innovative concept that models the
effect of serrations as transfer functions is uniquely different from other analysis in fluid
mechanics and shall be able to assist the future analysis, design and optimisation of new
low-noise aviation systems [2, 31, 32].
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