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Abstract

Accuracy of unstructured finite volume discretization is greatly influenced by the
gradient reconstruction. For the commonly used k-exact reconstruction method, the
cell centroid is always chosen as the reference point to formulate the reconstructed
function. But in some practical problems, such as the boundary layer, cells in this area
are always set with high aspect ratio to improve the local field resolution, and if
geometric centroid is still utilized for the spatial discretization, the severe grid skewness
cannot be avoided, which is adverse to the numerical performance of unstructured
finite volume solver. In previous work [Kong, et al. Chin Phys B 29(10):100203, 2020], we
explored a novel global-direction stencil and combined it with the face-area-weighted
centroid on unstructured finite volume methods from differential form to realize the
skewness reduction and a better reflection of flow anisotropy. Greatly inspired by the
differential form, in this research, we demonstrate that it is also feasible to extend this
novel method to the unstructured finite volume discretization from integral form on
both second and third-order finite volume solver. Numerical examples governed by
linear convective, Euler and Laplacian equations are utilized to examine the correctness
as well as effectiveness of this extension. Compared with traditional vertex-neighbor
and face-neighbor stencils based on the geometric centroid, the grid skewness is
almost eliminated and computational accuracy as well as convergence rate is greatly
improved by the global-direction stencil with face-area-weighted centroid. As a result,
on unstructured finite volume discretization from integral form, the method also has
superiorities on both computational accuracy and convergence rate.

Keywords: Unstructured finite volume methods, k-exact reconstruction algorithm,
Global-direction stencil, Grid skewness, Face-area-weighted centroid
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1 Introduction
Compared with the block-structured grid, unstructured grid is highly automated in grid

generation [1–3] and convenient for the grid adaptation [4, 5], while the computational

accuracy and stabilities are hard to be guaranteed [6], especially on high-aspect-ratio

triangular grids [7–9]. Regarding the current difficulties, scholars are continued trying

to improve the discretization algorithms to break through the bottleneck of accuracy

loss and stability deterioration on highly anisotropic grids, and realize the unification of

automated grid generation and accurate numerical simulation [10, 11].

As for the research about unstructured finite volume discretization on high-aspect-ratio

triangular grids, Diskin and Thomas [12, 13] tested the accuracy of gradient reconstruc-

tion, and results show that the accuracy of reconstructed gradient on such grid is deter-

mined by both solution and grid, and the existing discretization schemes cannot meet the

requirements of grid quality and computational accuracy simultaneously. On this basis,

Diskin and Thomas et al. [14, 15], systematically compared the numerical performance of

inviscid and viscous fluxes on different node-centered and cell-centered unstructured fi-

nite volume methods. Research suggests that for high-aspect-ratio triangular grids, there

are few discretization schemes able to preserve the simulation accuracy, and after adding

disturbance to grid points, the magnitude of computational errors obtained by all schemes

is proportional to cell aspect ratios. Similar conclusions are obtained in Ref. [16].

On this basis, we notice that although there are numerous discretization approaches

for high-aspect-ratio triangular grids, studies related to the stencil selection are quite

few, and within the framework of unstructured finite volume method, both inviscid and

viscous fluxes are greatly influenced by the gradient reconstruction [17], where different

stencils play a crucial role. Commonly used stencils are face-neighbor and vertex-

neighbor stencils that consist of cells sharing faces or vertices with the central cell.

Apart from these two commonly used stencils, an ingenious stencil augmentation

method is proposed in Ref. [18], which is named as the Smart Augmentation (SA) sten-

cil. For each vertex, an extra cell closest to geometric centroid is selected from vertex-

adjacent cells and appended to the face-neighbor stencil. This method improves the

stabilities of face-neighbor stencil to a certain extent. In order to further improve stabil-

ities of the face-neighbor stencil, efficient gradient stencils are proposed by Nishikawa

[19], where the F-decreasing augmentation in combination with the symmetric aug-

mentation stencil augments a face-neighbor stencil with extra cells to attempt to in-

crease the symmetry of the stencil. On this basis, extra cells are added to decrease the

reciprocal of the Frobenius norm of a scaled least-squares matrix to minimize the lower

bound of the magnitude of the gradient. This stencil augmentation approach is much

more robust as well as efficient, and the instability of face-neighbor stencil is effectively

avoided even on extremely irregular grids.

Apart from the mentioned stencil augmentation methods, Xiong et al. [20], proposed

a local-direction stencil selection method, where stencil cells are augmented along two

local directions. In this method, characteristics of the flowfield are taken into ac-

count during the process of determining local directions. On isotropic triangles,

two local directions are close to the normal and tangential directions of the wall,

while on high-aspect-ratio triangular grids, stencil cells selected by this method will

deviate a lot from the boundary normal, and the numerical performance on such

grids will get deteriorated [21, 22].
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Compared with the local-direction stencil selection method, global direction stencil se-

lection method [22, 23] effectively overcomes the deviation on grids with high aspect ra-

tios, and cells are always selected along two global directions, that is, normal and

tangential directions of the wall. Hence, the flow anisotropy could be well reflected, and

after verification, on high-aspect-ratio triangular grids, global-direction stencil has a better

numerical performance on both computational accuracy and efficiency than commonly

used face-neighbor and vertex-neighbor stencils as well as the local-direction stencil.

Although global-direction stencil preliminary exhibits a better numerical performance,

the distribution of reference points is still much more skewed, especially on high-aspect-

ratio triangular grids. You and Mittal et al. [24], first proposed the grid skewness on such

grids, and concluded that grid skewness is adverse to the computational accuracy and stabil-

ities of CFD solvers. Regarding the grid skewness, there are various definitions of that, such

as the angle between face normal and the vector pointing form face centroid to the cell cen-

troid, the minimal internal angle of grid cell [25], ratio of the max diagonal to the minimum

[26], etc. Nevertheless, from different definitions, the same conclusion could be drawn that

on high-aspect-ratio triangular grids, the grid skewness is always quite evident [27].

Different from above skewness measures, Nishikawa [28] proposed a novel definition

of that, and it is defined at a face shared by two neighbor cells, say, A and B, as the dot

product of the unit vector pointing from the centroid of cell A to that of cell B. There-

fore, a non-skewed grid has the measure one and highly-skewed grid nearly zero. Spe-

cifically, on highly-skewed triangular grids, the reference point distribution is irregular

and exhibits deflective phenomenon. Thus, although global-direction stencil cells men-

tioned above are along the normal and tangential directions of the wall, the irregular

distribution of reference points is not changed, and it is hard to say whether flowfield

characteristics are well reflected or not. In order to reduce the grid skewness and

optimize the reference point distribution, Nishikawa proposed a novel face-area-

weighted centroid [28] for the second-order unstructured finite volume discretization

from differential form. After verification, the second-order accuracy is also achieved,

and the convergence rate is greatly improved. Besides, compared with the traditional

geometric centroid, the distribution of this novel reference point is more regular, and

the connection of that is almost parallel to the boundary normal vector.

Based on this phenomenon, in previous work, we combined this novel centroid and

global-direction stencil for the second-order unstructured finite volume method [23], and

it is verified that the global-direction stencil with face-area-weighted centroid has a lower

discretization error than stencils with the geometric centroid including face-neighbor and

vertex-neighbor stencils as well as the global-direction stencil. What’s more, this novel

method has a more stable numerical performance on high-mach-number flow. As a re-

sult, the current situation related to accuracy loss and stability deterioration on high-

aspect-ratio triangular grids is greatly ameliorated by the employment of this improved

global-direction stencil. This method is designed for the second-order differential finite

volume solver [28], where both solution and source term vectors are evaluated as point

values, and therefore, the source term integration is totally avoided. Besides, higher-

order accuracy of the differential finite volume solver is also able to be achieved, and

professor Nishikawa gave an idea in Ref. [28, 29] about the primitive function recon-

struction of the flux, by which the governing equation is higher-order accurate with-

out the second-order errors.
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Greatly inspired by the face-area-weighted centroid and efficient differential finite vol-

ume solver, we explore the novel local origin in the finite-volume discretization based on

the integral form and investigate its impact not only on a second-order method but also

on a third-order method, since on the integral form, the grid skewness is also existing and

needs to be eliminated to guarantee the accuracy and convergence rate.

In this research, the second-order accurate integral finite volume discretization is

considered at first, where the k-exact reconstruction [30–36] based on any local origins

is derived, and we combine the global-direction with the face-area-weighted centroid to

further reduce the grid skewness and capture the variation of flowfield more accurately.

In addition, four representative numerical examples are designed to examine the effect-

iveness of this extension, and on this basis, the third-order k-exact reconstruction and

finite volume discretization based on any local origins are also derived to further extend

the global-direction stencil with face-area-weighted centroid to higher-order accurate

unstructured finite volume method, and the accuracy as well as the discretization errors

is examined by a numerical example with the method of manufactured solutions.

The paper is organized as follows. In Section 2, governing equations and spatial

discretization from both differential and integral forms are given at first. And then, we

theoretically derive the second-order k-exact reconstruction process based on any local

origins. Different stencil selection methods and global-direction stencil with face-area-

weighted centroid are presented in Section 3. In Section 4, numerical examples governed

by linear convective, Euler and Laplacian equations are employed to verify the effective-

ness, feasibilities as well as superiorities of the method on the second-order integral un-

structured finite volume solver. The third-order k-exact reconstruction and finite volume

discretization based on any local origins, as well as the accuracy analysis are given in Sec-

tion 5. Concluding remarks and future work will be summarized in Section 6.

2 Unstructured finite volume method
As mentioned in introduction, the finite volume method from differential form and the

discretization base on the face-area-weighted centroid [28] give us great inspirations,

and in this paper, to further extend the applicable scope of this novel local origin, we

promote it on unstructured finite volume method from integral form, since when un-

structured finite volume discretization from integral form is employed, the grid skew-

ness is existing and needs to be eliminated as well.

As a result, in this section, we give unstructured finite volume discretization from in-

tegral form at first. In addition, the k-exact reconstruction method based on any local

origins is also derived in this section.

2.1 Finite volume discretization from integral form

The finite volume discretization from integral form is utilized in this paper, where the

governing equation in integral form could be written as

Z
V j

∂tu j dV þ
Z
V j

divF c
j dV ¼

Z
V j

s j dV ; ð1Þ

where, uj is a solution vector. F c
j is the convective flux and sj is a source (or forcing)
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term vector. Besides, Vj and ∂Vj are the volume and boundaries of cell j. According to

the divergence theorem, Eq. (1) is transformed asZ
V j

∂tu j dV þ ∮
∂V j

f cn dS ¼
Z
V j

s j dV ; ð2Þ

where, f cn is the convective flux along the face normal vector. On this basis, Eq. (2)

could be discretized as follows.

∂tu j þ 1
V j

X
k∈ k jf g

ΦjkAjk ¼ 1
V j

Z
V j

s j dV ; ð3Þ

where, u j is the cell-averaged solution vector and {kj} are faces of cell j. Besides, Φjk is

the numerical flux along the normal vector at the k-th face, and Ajk is the k-th face area

or length (in 2D). The diagram of unstructured finite volume discretization is shown as

follows.

As shown in Fig. 1, where uL and uR are two state vectors at the gauss point obtained

by owner and neighbor cells of the common face, and Cj, Ck are two reference points

of cell j and cell k respectively. In fact, for traditional unstructured finite volume

discretization, these two reference points are located at the geometric centroid of the

control volume, while in this paper, the discretization based on any local origins are de-

rived and it will be specifically described in the following section.

For the second-order unstructured finite volume solver, the gauss point is just located

at the face centroid and the weight is equal to 1, while for higher-order discretization,

there should be at least two points to guarantee the flux quadrature is higher-order ac-

curate. The gauss point location as well as the corresponding weights will be specific-

ally given in Section 5.2. Besides, rj and rk are two vectors pointing from the cell

centroid of owner and neighbor stencil cells to gauss point respectively. Two state vec-

tors could be interpolated by the point value uori
j and uori

k at the local origin obtained

by the k-exact reconstruction algorithm [30–36].

Usually, the reference point is chosen at the geometric centroid, while in this paper,

the point-valued solution at any local origins is derived, and the main process will be

given in the following section. As a result, uL and uR these two state vectors could be

formulated by

Fig. 1 Diagram of unstructured finite volume discretization
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uL ¼ uori
j þ ∂u

∂x

����
j

xG‐x
ori
j

� �
þ ∂u

∂y

����
j

yG‐y
ori
j

� �
;

uR ¼ uori
k þ ∂u

∂x

����
k

xG‐x
ori
k

� �þ ∂u
∂y

����
k

yG‐y
ori
k

� �
;

8>><>>: ð4Þ

where point value solution of uori
j and uori

k , as well as the solution gradients are all derived

and obtained by the k-exact reconstruction algorithm at the local origins Cj and Ck, which

will be specifically described in Section 2.2, and ðxorij ; yorij Þ , ðxorik ; yorik Þ are local origins

coordinates of cell j and face-adjacent cell k in Cartesian-coordinate system. Besides,

(xG, yG) is the gauss point coordinate at per face. On this basis, the numerical flux

along the face normal vector could be formulated as

Φjk uL; uRð Þ ¼
ρun

ρunvþ Pnjk

ρunH

0@ 1A; ð5Þ

where un = v ⋅ njk is computed by the Roe flux [37], and H = (γp/(γ – 1) + ρv2/2)/ρ is the

specific total enthalpy.

The above content is the second-order accurate unstructured finite volume

discretization from integral form, which is employed in this paper and in Section 5, we

will specifically exhibit the higher-order, i.e., the third-order accurate discretization

process.

2.2 k-exact reconstruction based on any local origins

Least Square (LSQR) gradient reconstruction [38–40] is commonly used in the second-

order unstructured finite volume methods [13, 14, 18, 41].

As shown in Fig. 2, when calculating the gradient of cell Ci, three stencil cells C1, C2

and C3 are employed to compose the reconstructed equations.

Fig. 2 Diagram of reconstructed triangular stencil cells
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ωi1 x1 - xið Þ ωi1 y1 - yið Þ
ωi2 x2 - xið Þ ωi2 y2‐yið Þ
ωi3 x3 - xið Þ ωi3 y3‐yið Þ

0@ 1A ∂u
∂x

����
i

∂u
∂y

����
i

0BB@
1CCA ¼

u1 - ui
u2 - ui
u3 - ui

0@ 1A; ð6Þ

where ωi1, ωi2 and ωi3 are weights set to emphasize geometrically nearby data.

ωij ¼ 1

xi - x j

�� �� ; ð7Þ

and, xi and xj are two position vectors from the origin to geometric centroid of cell i

and its stencil cell j respectively.

As demonstrated in Eq. (6), solution utilized for the least-square reconstruction is the

point value at the geometric centroid, and for second-order finite volume methods, this

point value is always written in terms of the cell average: u j→u j , but if the reference

point is moved anywhere, the point value used for the least-square reconstruction

could not be given by the cell average again, and therefore, the reconstruction process

could not be implemented, since the point value uori
j is unknown at any local origins in

every time step. Besides, least-square reconstruction is second-order accurate and con-

sidering the method extension to higher-order accuracy, the k-exact reconstruction

method is employed in this manuscript.

Besides, compared with LSQR, the point value at the reference point could be obtained

by the k-exact reconstruction, and this point value is utilized for the flux construction. As

a result, although this research is focused on the second-order unstructured finite volume

discretization, we also employ the k-exact reconstruction method to solve the solution

gradient and obtain the point value at the corresponding reference point. The specific

process is shown as follows.

In order to obtain the point value at any local origins, the expansion should be for-

mulated based on any local origins as well,

Rj x - xorij
� �

¼ uori
j þ ∂u

∂x

����
j

x - xorij
� �

þ ∂u
∂y

����
j

y - yorij
� �

; ð8Þ

where uori
j is the point valued solution recovered at a local origin from cell averaged so-

lutions as we will describe later. Integrating Eq. (8) over the control volume, we obtain

1
V j

Z
V j

R jðx − xorij Þ dV ¼ uori
j þ ∂u

∂x
j j
Z
V j

ðx − xorij Þ dV þ ∂u
∂y

j j
Z
V j

ðy − yorij Þ dV ; ð9Þ

where, xorij and yorij are the coordinate of any local origins. Replacing ðx - xorij Þ and

ðy − yorij Þ with ðx − xgcj Þ þ ðxgcj − xorij Þ and ðy − ygcj Þ þ ðygcj − yorij Þ respectively, Eq. (9) could
be written as

1
V j

Z
V j

R j x − xorij
� �

dV ¼ uori
j þ ∂u

∂x

����
j

Z
V j

x − xgcj
� �

dV þ ∂u
∂y

����
j

Z
V j

y − ygcj
� �

dVþ ∂u
∂x

����
j

Z
V j

xgcj − xorij
� �

dV þ ∂u
∂y

����
j

Z
V j

ygcj − yorij
� �

dV ;

ð10Þ

which could be further transformed as
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1
V j

Z
V j

R jðx − xorij Þ dV ≡ �u j ¼ uori
j þ ∂u

∂x
j j�x j þ ∂u

∂y
j j�y j þ

∂u
∂x

j jΔx j þ ∂u
∂y

j jΔy j; ð11Þ

where, Δxj and Δyj are abbreviations of ðxgcj − xorij Þ and ðygcj − yorij Þ , and if the recon-

structed function is expanded based on any local origins, there are another two terms

in its integral average, and the mean constraint is rewritten as

u j ¼ uori
j þ ∂u

∂x

����
j

x j þ ∂u
∂y

����
j

y j þ
∂u
∂x

����
j

Δx j þ ∂u
∂y

����
j

Δy j: ð12Þ

On this basis, if the reconstructed function is integrated over a stencil cell k, we

obtain

uk ¼ uori
j þ ∂u

∂x

����
j

Z
Vk

x − xorij
� �

dV þ ∂u
∂y

����
j

Z
Vk

y − yorij
� �

dV : ð13Þ

Similarly replace ðx − xorij Þ, ðy − yorij Þ by ðx − xgck Þ þ ðxgck − xorij Þ and ðy − ygck Þ þ ðygck − yorij Þ
respectively, and reconstructed equation on stencil cell k could be written as

uk ¼ uori
j þ ∂u

∂x

����
j

xk þ xgck − xorij
� �� �

þ ∂u
∂y

����
j

yk þ ygck − yorij
� �� �

: ð14Þ

This equation is written for every stencil cell, of which there should be more than the

number of derivatives to be solved to create an overconstrained system. If we write the

novel mean constraint together with the Eq. (12) for each stencil cell, we have

1 x y
ω j1 ω j1x̂ j1 ω j1ŷ j1
ω j2 ω j2x̂ j2 ω j1ŷ j2
⋮ ⋮ ⋮

ωjN ωjN x̂jN ω j1ŷjN

0BBBB@
1CCCCA�

uori
j

∂u
∂x

����
j

∂u
∂y

����
j

0BBBBB@

1CCCCCA ¼

u j −
∂u
∂x

����
j

Δx j þ ∂u
∂y

����
j

Δy j

 !
ω j1u1

ω j2u2

⋮
ωjNuN

0BBBBBBB@

1CCCCCCCA; ð15Þ

where the first row is the mean constraint, and geometric terms could be expressed as

dxnym jk ≡
1
Ak

Z
Vk

ððx − xgck Þ þ ðxgck − xorij ÞÞnððy − ygck Þþðygck − yorij ÞÞmdA

¼
Xm
p¼0

Xn
q¼0

m!

p!ðm − pÞ!
n!

q!ðn − qÞ! ðx
gc
k − xorij Þqðygck − yorij Þpxn − qym − p

k ;

ð16Þ

and the weights are set to emphasize the geometrically adjacent data,

ωjk ¼ 1

x j − xk
�� �� ð17Þ

where xj and xk are local origins of central and stencil cells. When solving the Eq. (15),

the unconstraint reconstructed equations are solved at first,
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ω j1 ω j1x̂ j1 ω j1ŷ j1
ω j2 ω j2x̂ j2 ω j1ŷ j2
⋮ ⋮ ⋮

ω jN ω jN x̂ jN ω j1ŷ jN

0BBBB@
1CCCCA�

uori
j

∂u
∂x

����
j

∂u
∂y

����
j

0BBBBB@

1CCCCCA ¼

ω j1�u1

ω j2�u2

⋮

ω jN �uN

0BBBB@
1CCCCA:

ð18Þ

Assuming that the current reconstructed problem is A∗x = b, transposition matrix A∗T

is multiplied at both sides of the equation as A∗TA∗x =A∗Tb at first, and then, since the

matrix A∗TA∗ is the square matrix, we obtain x = (A∗TA∗)−1A∗Tb.

On this basis, solution gradients as well as point-valued solution uori
j could be obtained.

Note, however, that the mean constraint is not satisfied currently, and therefore, the

point-valued solution uori
j should be recalculated as

uori
j ¼ u j −

∂u
∂x

����
j

x j −
∂u
∂y

����
j

y j −
∂u
∂x

����
j

Δx j −
∂u
∂y

����
j

Δy j: ð19Þ

Thus, the mean constraint is always exactly satisfied and the obtained uori
j , as well as ∂u

∂x j j
and ∂u

∂y j j is utilized for calculating the pointwise solution at per gauss point as shown in

Eq. (4).

In short, we perform the solution reconstruction at a Gauss point over a face (i.e., obtain

uL and uR) by first computing the point valued solutions and gradients at the local origins

with the LSQR method and then use Eq. (4) or a higher-order variant to be presented

later. It sets a stage for the employment of novel reference points on unstructured finite

volume discretization from integral form without degrading the design accuracy.

3 Global-direction stencil based on the face-area-weighted centroid
In Section 2.2, we theoretically derive the feasibility of k-exact reconstruction based on

any local origins. In this section, some commonly used stencil selection methods are in-

troduced at first. And then, we briefly discuss the grid skewness on high-aspect-ratio

triangular grids as well as the effect of skewness reduction by the employment of face-

area-weighted centroid. Finally, to reduce the grid skewness and achieve a better reflec-

tion of flow anisotropy, the global-direction stencil with this novel centroid is intro-

duced. The main content in this section has been analyzed in Ref. [23], while

considering the completeness of the article, it is also discussed here.

3.1 Stencil selection methods

Commonly used stencils are vertex-neighbor and face-neighbor stencils. As Fig. 3 ex-

hibits, face-neighbor stencil includes entire neighbor cells that share faces with the cen-

tral cell, and vertex-neighbor stencil is similarly constructed by cells that share vertices

with the central cell. Besides, both of them are topological-dependent, and therefore

are limited by the original mesh topology. Furtherly, the stencil size of them is hard to

accurately control, especially for vertex-neighbor stencil, and characteristics of flowfield

cannot be well reflected.
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Apart from two commonly used stencils, in 2018, Xiong et al. [20], put forward the

local-direction stencil selection method, by which selected stencil cells are along two

local directions. As shown in Fig. 4a, on isotropic grid, two local directions are close to

the normal and tangential directions of the wall, while on high-aspect-ratio triangular

grids, as Fig. 4b displays, one of the local directions has severely deviated from the nor-

mal direction of the wall, and flow anisotropy is not well reflected. Besides, it is verified

that on this grid type, accuracy loss and stability deterioration cannot be avoided [22],

and the implementation process of this stencil selection method is quite complicated.

In previous work, based on the existing problems on local-direction stencil, a novel

global-direction stencil selection method [22, 23] was proposed. Compared with the local-

direction stencil, problems mentioned above are well solved by this novel stencil. Specific-

ally, for this method, two global directions, that is normal and tangential directions of the

wall, are determined at first. And then, for each central cell, two lines which are parallel to

global directions respectively and pass the cell centroid are generated. Finally, cells in a

given set, such as the vertex-adjacent cells that intersect with these two lines are selected to

construct the new stencil, and the stencil size is governed by layer of vertex-adjacent cells.

As Fig. 5 demonstrates, stencil cells selected by this method are always along two global

directions no matter the grid with high aspect ratio or not. Therefore, flow anisotropy can

(a) Vertex-neighbor stencil (b) Face-neighbor stencil

Fig. 3 (a) Vertex-neighbor and (b) face-neighbor stencils, where different numbers represent stencil layers
(e.g., for face-neighbor stencil, the first layer stencil is composed of all cells that share faces with the central
cell, and the second layer stencil consists of cells that share faces with the first layer stencil)

(a) Minor-aspect-ratio (b) High-aspect-ratio

Fig. 4 Local-direction stencil cells on (a) minor and (b) high-aspect-ratio triangular grids
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be well reflected, and in corresponding numerical examples [23], global-direction stencil

has a better numerical performance than commonly used vertex-neighbor and face-

neighbor stencils as well as local-direction stencil. Besides, on cases with simple shapes,

two global directions could be easily determined, while for complex surface, there are no

analytical expressions to obtain the normal and tangential directions of the wall. Hence,

in this situation, we can refer to the method of computing wall distance to get the corre-

sponding normal vector [42], and construct the global-direction stencil.

But after analysis, although global-direction stencil cells are always along the normal

and tangential directions of the wall, no matter on grid with high aspect ratio or not,

the only data obtained by k-exact reconstruction and required for the flux evaluation

are solution vectors at the reference point rather than stencil cells themselves, and it is

hard to guarantee whether flow anisotropy is well reflected or not. In the next section,

we will focus on different locations of reference points.

3.2 Face-area-weighted centroid and global-direction stencil

In this section, we give a brief analysis about grid skewness and face-area-weighted cen-

troid on triangular mesh, and explain the reason as well as the idea of the combination

of global-direction stencil and this novel reference point in detail.

3.2.1 Grid skewness measure and face-area-weighted centroid

In introduction, we have analyzed that although there are various definitions of grid skew-

ness, the same conclusion could be drawn that on high-aspect-ratio triangles, the grid

skewness is always evident. Here, a typical skewness measure is taken into account.

As shown in Fig. 6, the grid skewness is defined at common face shared by two

neighbor cells, where êjk is a unit vector pointing from centroid of cell j to that of cell

(a) Minor-aspect-ratio (b) High-aspect-ratio

Fig. 5 Global-direction stencil cells on (a) minor and (b) high-aspect-ratio triangular grids

Fig. 6 Grid skewness measure on grids with different aspect ratios
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k, n̂jk is the unit outward normal vector of common face. The grid skewness is mea-

sured by jêjk � n̂jk j , and from Fig. 6, it could be easily found that the non-skewed grid

has the measure one, and with the increase of cell aspect ratio, the skewness measure

of highly-skewed grid is close to zero. On this basis, the most direct intuition is using

isotropic or minor-aspect-ratio triangles to ensure the computing process is carried out

on non-skewed grids, while for some typical flows, such as boundary-layer-type flow,

solutions in boundary layer are changed dramatically, particularly along the normal dir-

ection of the wall. Therefore, to enhance the resolution in this local field, highly-

anisotropic grids cannot be avoided, and we can only rely on a novel local origin to re-

duce the grid skewness and improve the numerical performance.

For high-aspect-ratio triangular grids, a novel face-area-weighted centroid was pro-

posed by Nishikawa [28] on the second-order differential unstructured finite volume

solver. By the employment of this reference point, the grid skewness is almost elimi-

nated. In the following analysis, we will briefly summarize the face-area-weighted for-

mula and the effect about skewness reduction. The specific derivation has been given

in Ref. [28], and the main results are listed in this section.

A typical choice for the local origin is the geometric centroid that could be written

for a triangle by the arithmetic average of face midpoints,

x j; y j
� �

¼ 1
3

X3
k¼1

xmk ; ymk

� �
; ð20Þ

where, (xmk, ymk) is coordinate of the k-th face centroid. Besides, we generalize Eq.

(20) to the face-area-weighted centroid formula [28]:

x j; y j
� �

¼

X3
k¼1

Â
p
jk xmk ; ymk

� �
X3
k¼1

Âjk

; Âjk ¼ Ajk

max
k∈ 1;2;3f g

Ajk
; ð21Þ

where, Ajk is the area or length (in 2D) of the face shared by two neighbor cells, and p

(> 0) is a real value that controls the skewness degree. Note when p = 0, face-area-

weighted centroid is just consistent with the geometric centroid.

As shown in Fig. 7, where h is the grid spacing in y-direction and R is cell aspect ra-

tio. For a typical triangular grid in Cartesian-coordinate system, skewness measure

along the x-direction approaches one, while in y-direction is nearly zero. Thus, in the

Fig. 7 A typical high-aspect-ratio triangular grid in Cartesian-coordinate system
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following analysis, we will focus on common faces shared by cell 1 and cell 2 as well as

cell 2 and cell 3.

For these two common faces, if the geometric centroid is utilized, the grid skewness

measure is [28]

d12 ¼ 2R

R2 þ 1
; d23 ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ 4
p : ð22Þ

With the increase of cell aspect ratio, both measures nearly equal to zero. Hence the

grid is highly skewed. But if we employ the face-area-weighted centroid and when par-

ameter p is equal to 2, the skewness measure becomes [28]

dp¼2
12 ¼ 1; dp¼2

23 ¼ 1 −
1

2R2 : ð23Þ

As a result, for high-aspect-ratio triangular grid, the grid skewness could be elimi-

nated, and note, moreover, that with the increase of cell aspect ratio, the grid skewness,

at the face like between cell 2 and cell 3, could be further reduced. Besides, it is demon-

strated in Fig. 8 when the face-area-weighted centroid is employed, line connecting the

novel local origins is almost parallel to the normal direction of the wall, and the ser-

rated phenomenon exhibited on geometric centroid is effectively avoided.

This special distribution just coincides with our original motivation of designing the

global-direction stencil, and in previous work, we combined the global-direction stencil

and face-area-weighted centroid on the second-order unstructured finite volume solver

in differential form to capture the flow anisotropy more accurately. After verification,

better computational accuracy and stabilities are obtained by this novel method. In this

work, we further investigate feasibilities of extension to the integral form.

3.2.2 Combination of global-direction stencil and face-area-weighted centroid

In Section 3.1, we have demonstrated that compared with commonly used vertex-

neighbor and face-neighbor stencils, although global-direction stencil cells are along the

normal and tangential directions of the wall, the only data obtained by k-exact reconstruc-

tion and required for the flux evaluation are solution vectors at cells local origins, rather

than stencil cells themselves, and if we still use the geometric centroid, grid skewness is

unable to be eliminated. Therefore, it is hard to guarantee whether the flowfield character-

istics are well captured or not. But when face-area-weighted centroid is employed, the

distribution of reference points is more regular, and the line connecting them is almost

along the normal direction of the wall.

(a) Geometric centroid (b) Face-area-weighted centriod

Fig. 8 (a) Geometric and (b) face-area-weighted centroids on high-aspect-ratio triangular grids
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Besides, in Section 2.2, we have derived the k-exact reconstruction process based on

any local origins, and therefore, in this section, we give the method of combining the

global-direction stencil and face-area-weighted centroid in detail to realize the unified

direction of both stencil cells and local origins. Global-direction stencils with geometric

and face-area-weighted centroids on grids with straight and curved boundaries are dis-

played in Figs. 9 and 10.

From these two figures, we can easily find although same stencil cells are selected,

geometric centroids are deflective and exhibit serrated phenomenon. Particularly on

high-aspect-ratio triangular grids, the mentioned phenomenon is much more evident.

By comparison, when face-area-weighted centroids are employed, line connecting them

is close to the normal direction of the wall no matter on grid with straight or curved

boundaries, and it is consistent with one of the global directions. As a result, the flow

anisotropy could be well reflected, and the grid skewness is reduced.

On unstructured finite volume method from differential form, both computational

accuracy and stabilities are greatly improved by this novel method, and in the next sec-

tion, four representative numerical examples are designed to verify the effectiveness

and superiorities of this novel method on integral unstructured finite volume solver.

4 Numerical examples
To examine the effectiveness of global-direction stencil with face-area-weighted centroid

on unstructured finite volume method from integral form, in this section, numerical ex-

amples governed by linear convective, Euler and Laplacian equations are utilized. For

comparison, these numerical examples are simulated with four different stencils, including

vertex-neighbor and face-neighbor stencils, as well as the global direction stencil with geo-

metric centroid and face-area-weighted centroid. Note that from Section 3.2.1, we can

find the face-area-weighted centroid could be further distinguished by different p values,

and when p = 2, skewness has been almost eliminated. Hence, the face-area-weighted cen-

troid in this section refers to the result of p = 2. In addition, to simplify the presentation in

the following analysis, different stencils are abbreviated as follows (Table 1).

More importantly, in this section, we make a discussion about the result exhibition of

unstructured finite volume method from integral form, and notice that the point-

(a) Geometric centroid (b) Face-area-weighted centriod

Fig. 9 Global-direction stencil cells combined with (a) geometric centroids and (b) face-area-weighted
centroids on grid with the straight boundary
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valued solution uori
j at the face-area-weighted centroid obtained by the mean constraint

of k-exact reconstruction algorithm with global-direction stencil is more accurate than

the cell-averaged solution u j. The specific discussion will be given in Section 4.1.3.

4.1 Manufactured boundary layer (governed by linear convective equation)

In this section, we first use the Method of Manufactured Solutions (MMS) [43–46] on

linear convective equation to verify feasibilities of the employment of face-area-

weighted centroid on unstructured finite volume discretization from integral form, and

examine the numerical performance of global-direction stencil with this novel reference

point. The model equation can be written as

∂u
∂t

þ α � ∇u ¼ 0; ð24Þ

where, α ¼ ðcos π
16 ; sin π

16Þ is the constant convective velocity, and to simulate charac-

teristics of boundary layer, the manufactured solution is

u x; yð Þ ¼ 1 − e

− y − y0ð Þffiffiffiffiffiffiffiffiffiffiffiffi
cμ x − x0ð Þ

p
; ð25Þ

where c = 0.59 is a constant, and parameter μ is utilized to control the thickness of

boundary layer. Flowfields corresponding to different μ values are shown in Fig. 11, and

in the following test, μ is set as 10− 6.

By bringing the manufactured solution to Eq. (24), the modified equation with source

term could be written as

(a) Geometric centroid (b) Face-area-weighted centriod

Fig. 10 Global-direction stencil cells combined with (a) geometric centroids and (b) face-area-weighted
centroids on grid with the curved boundary

Table 1 Abbreviation of different stencils

Different stencils Abbreviation

Vertex-neighbor stencil V-Stencil

Face-neighbor stencil F-Stencil

Global-direction stencil (With cell centroid) G-Stencil (Cell centroid)

Global-direction stencil (With face-area-weighted centroid) G-Stencil (F-a-w centroid)
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∂u
∂t

þ α � ∇u ¼ ayðy − y0Þe
− ðy − y0Þffiffiffiffiffiffiffiffiffiffiffiffi
cμðx − x0Þ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cμðx − x0Þ

p −
axðy − y0Þe

− ðy − y0Þffiffiffiffiffiffiffiffiffiffiffiffi
cμðx − x0Þ

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cμðx − x0Þ3

q : ð26Þ

On this basis, the manufactured solution represents the analytical solution of this modi-

fied governing equation, and we can calculate both L2 and L∞ errors of different stencils.

L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j¼1 ~uj − uanaly

� �2 � Aj

h i
PN

j¼1Aj

vuuut ;

L∞ ¼ max ~uj − uanaly
�� ��

j¼1;N ;

8>>><>>>: ð27Þ

where ~uj , uanaly and Aj are numerical and analytical solutions and area of cell j respect-

ively. Note, however, that errors are computed for the point valued solutions recovered

at the local origin from the cell averaged solutions stored at cells rather than for the

cell-averaged solutions for the reason explained in Section 4.1.3. Therefore, the exact

solution used to compute the error is a point value evaluated at the local origin. Be-

sides, as shown in Fig. 12, both regular and randomly perturbed triangular grids are

used in this numerical example, and two levels of grid stretching, including 103 and 104

these two wall cell aspect ratios (AR), are tested. In each level, five sets of triangular

grids from the coarsest to finest are generated within x, y ∈ [0.05, 1.05] × [0, 0.001].

During the grid generation process, nodes in x-direction are equidistantly distributed,

while the y-coordinates of different nodes are determined by

y jþ1 ¼ y j þ ĥyβ
jþ1
���
j¼1;2;…;Ny

; ð28Þ

where ĥy is the first layer vertical spacing, and β is the stretching factor that could be

(a) µ = 10-6 (b) µ = 10-8

Fig. 11 (a) μ = 10-6 (b) μ = 10-8. Flowfields with different μ values

(a) Regular (b) Randomly perturbed

Fig. 12 (a) Regular and (b) randomly perturbed triangular grids
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computed by the known condition yN = 10−3. Besides, distribution of five sets of back-

ground quadrilateral grids from the coarsest to finest is shown in Table 2.

On this basis, computational accuracy and discretization errors of four different sten-

cils on integral unstructured finite volume solver are counted and given in Figs. 13 and

14.

4.1.1 Computational results on regular grids

From Figs. 13 and 14, we can easily find the second-order accuracy is achieved by all stencils

we tested for both L2 and L∞ errors. Therefore, the effectiveness of employing face-area-

weighted centroid on unstructured finite volume method from integral form is verified. In

addition, it is also proved that the derivation of k-exact reconstruction based on any local

origins is feasible, and its correctness has been well demonstrated by computational results.

Besides, combining the specific data listed in Table 3, we find both L2 and L∞ errors

of G-Stencil (F-a-w centroid) are the lowest among all stencils we tested, and when

AR = 104, computational accuracy of L∞ errors could be obviously improved. What’s

more, from Table 3, we notice that G-Stencil requires the least number of stencil cells,

and the efficiency can also be improved.

4.1.2 Computational results on randomly perturbed grids

On randomly perturbed triangular grids, we also test the case of AR = 103 and 104. For

simplicity, results of AR = 104 are given here.

From Fig. 15, we find errors on randomly perturbed grids demonstrate the similar

trends to results on regular grids, and when face-area-weighted centroid is employed

on the global-direction stencil, both L2 and L∞ errors are greatly reduced. As a result,

on linear convective governing equation, the effectiveness as well as superiorities of this

novel method is well verified.

4.1.3 Discussion about results exhibition of finite volume discretization from integral form

In this work, we also realize that no matter what numerical scheme is adopted, the

main target is obtaining a more accurate result or flowfield, and as mentioned above,

for unstructured finite volume method from integral form, the obtained solution vector

is the cell-averaged value. Consequently, the result is also exhibited by the cell average,

and there is no relevant research to further find the point-valued solution and compare

it with the cell average, since the point-valued solution could not be obtained by solv-

ing the integral governing equation directly. But we notice that by k-exact

Table 2 Distribution of background quadrilateral grids in x and y directions

Grid
name

Distribution in x and y directions

AR = 103 AR = 104

vcoa 45 × 15 15 × 10

coa 60 × 20 30 × 20

med 80 × 30 45 × 30

fin 120 × 40 60 × 40

vfin 180 × 60 90 × 60
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reconstruction, the solution at the local origin could be obtained by the mean con-

straint shown as follows,

uori
j ¼ u j −

∂u
∂x

����
j

x j −
∂u
∂y

����
j

y j −
∂u
∂x

����
j

xgcj − xorij
� �

−
∂u
∂y

����
j

ygcj − yorij
� �

; ð29Þ

and computational results shown in Sections 4.1.1 and 4.1.2 are just counted at the

current local origin. In order to further contrast with the result counted by the cell

average, we additionally test the discretization errors counted by the cell-averaged value

for the second-order finite volume solver, where the spatial discretizations are based on

both geometric centroid and face-area-weighted centroid, and compare it with errors

counted at the geometric centroid and face-area-weighted centroid respectively.

(a) L
2
errors (b) L∞errors

Fig. 13 (a) L2 and (b) L∞ errors. Errors of different stencils on regular grids with AR = 103

(a) L
2 
errors (b) L∞ errors

Fig. 14 (a) L2 and (b) L∞ errors. Errors of different stencils on regular grids with AR = 104
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Besides, when counting the cell-averaged errors, the source term and analytical solu-

tion need to be integrated over the control volume, and in this section, three-point

quadrature rule is employed [34, 35]. For a triangular cell, the integral point is just per

face centroid and the corresponding weights are all equal to 1
3.

For the convenience of analysis, the cell average and point value at the geometric

centroid and face-area-weighted centroid are all based on the identical global-direction

stencil, i.e., G-Stencil. Besides, “Avg” and “Ref” these two labels in Figs. 16 and 17 rep-

resent the cell-averaged and point-valued errors respectively.

Combining the results shown in the two figures and Table 4, we notice that no matter

the spatial discretization is based on the geometric centroid or face-area-weighted cen-

troid, cell averages are almost identical and both of them are close to point value

at the geometric centroid.

In addition, both cell-averaged errors and errors at the geometric centroid are always

higher than that at the face-area-weighted centroid. On this basis, we wonder whether

the computational result could be exhibited by the value at a certain local origin, that is

uori
j , which could be obtained by the k-exact reconstruction.

By further consideration, we realize there may be three requirements that should be sat-

isfied if the computational result exhibited by the value at a certain local origin. The first

Table 3 Computational errors and average stencil size of different stencils on the finest grid

Different stencils AR = 103 AR = 104 Average
stencil
size

L2 errors L∞ errors L2 errors L∞ errors

V-Stencil 7.287 × 10−5 4.183 × 10−4 1.982 × 10−4 9.499 × 10−4 11.779

F-Stencil 6.317 × 10−5 4.259 × 10−4 1.704 × 10−4 9.439 × 10−4 8.861

G-Stencil (Cell centroid) 6.273 × 10−5 3.599 × 10−4 1.688 × 10−4 8.635 × 10−4 6.917

G-Stencil (F-a-w centroid) 3.31 × 10−5 2.67 × 10−4 9.833 × 10−5 4.007 × 10−4 6.917

(a) L
2 
errors (b) L∞ errors

Fig. 15 (a) L2 and (b) L∞ errors. Errors of different stencils on randomly perturbed grids with AR = 104
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one is that, in every time step, the point value at the local origin could be obtained. Sec-

ondly, the designed order of accuracy is achieved by the point-valued evaluation. Finally,

solution at the local origin should be more accurate than the cell-averaged value, and it

means errors counted at this specific local origin are lower than the cell-averaged errors.

If these three requirements are all satisfied, we believe the result could be evaluated by the

point value at this special local origin.

(a) L
2
errors (b) L∞errors

Fig. 16 (a) L2 and (b) L∞ errors. Cell-averaged and point-valued discretization errors of G-Stencil with the
geometric centroid and face-area-weighted centroid on grids with AR = 103

(a) L
2
errors (b) L∞errors

Fig. 17 (a) L2 and (b) L∞ errors. Cell-averaged and point-valued discretization errors of G-Stencil with the
geometric centroid and face-area-weighted centroid on grids with AR = 104
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Firstly, we derive the k-exact reconstruction algorithm based on any local origins, and

the corresponding point-valued solution uori
j in reconstructed polynomial at every time

step is obtained by the mean constraint. Hence, the first requirement is satisfied. Be-

sides, as results shown in Sections 4.1.1 and 4.1.2, where point values are computed at

the geometric centroid and face-area-weighted centroid, the second-order accuracy is

always achieved. More importantly, when the global-direction stencil is utilized, cell av-

erages are close to point value at the geometric centroid, and both of them are not as

accurate as the point value at the face-area-weighted centroid. Consequently, both the

second and third requirements are satisfied.

Therefore, combining the analysis and numerical verification, we notice that com-

pared with the traditional finite volume scheme from integral form, result exhibited at

the specific face-area-weighted centroid with the global-direction stencil is more accur-

ate, and the designed order of accuracy could also be achieved.

In short, although the spatial discretization is from integral form, it is not necessary to

exhibit the result by the cell average, and the point value at the face-area-weighted cen-

troid is more appropriate to reflect the computational result. Hence, in the following test,

errors are all computed for the point-valued solutions recovered at the local origin.

4.2 Supersonic vortex flow (governed by Euler equations)

To further test the effectiveness and feasibilities of this novel method on Euler equa-

tions, in this section, the supersonic vortex flow is introduced. Computational domain

is two concentric circular arcs with radius ri = 1 and r0 = 1.384 located in the first quad-

rant. These two circular arcs represent the inviscid wall boundary, and the flow at both

inlet and outlet is supersonic. Analytical solution [47] of this numerical example could

be derived by isentropic relation and is given as follows,

ρ ¼ ρi 1þ γ − 1
2

M2
i 1 −

ri
r

� �2� 	� 	 1= γ − 1ð Þð Þ
;

P ¼ ργ

γ
; vk k ¼ ciMi

r
;

8>><>>: ð30Þ

where the value of Mach number at the inner radius is Mi = 2.25 and the density ρi = 1.

Besides, the sound speed is calculated as

Table 4 Computational errors on the finest grid and L2, L∞ accuracy between the last two grids of
different stencils on the second- and third-order unstructured finite volume solver

Results AR = 103 AR = 104 L2
accuracy
(103/104)

L∞
accuracy
(103/104)

L2 errors L∞ errors L2 errors L∞ errors

G-Stencil-Avg (Cell centroid) 5.976 × 10−5 3.624 × 10−4 1.683 × 10−4 8.659 × 10−4 2.098/2.158 1.781/1.718

G-Stencil Avg (F-a-w
centroid)

5.974 × 10−5 3.623 × 10−4 1.679 × 10−4 8.657 × 10−4 2.104/2.164 1.783/1.719

G-Stencil-Ref (Cell centroid) 6.273 ×
10−5

3.599 ×
10−5

1.688 ×
10−4

8.635 ×
10−4

2.066/
2.157

1.768/
1.719

G-Stencil-Ref (F-a-w
centroid)

3.31 × 10−6 2.67 × 10−5 9.833 ×
10−5

4.007 ×
10−4

2.041/
2.178

1.839/
1.992
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ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γPi=ρi

q
¼ 1; ð31Þ

Flow structure of this numerical case is shown in Fig. 18.

For this numerical example, both regular and randomly perturbed triangular grids

are utilized. As shown in Fig. 19, where the regular grid is generated by splitting the

background quadrilateral grid with right diagonals, and randomly perturbed grid is gen-

erated by introducing the random node perturbation to the regular grid with topology

and the number of cells unchanged. Besides, two levels of grid aspect ratios are

employed, and in each level, five sets of grids from the coarsest to finest are generated.

Considering that the aspect ratio of grid with the curved boundary is not a fixed

value, similarly, the wall cell aspect ratio is utilized, and two aspect ratios are approxi-

mately equal to 4 and 8 respectively. The distribution of background quadrilateral grids

in the radical and circumferential is shown in Table 5.

4.2.1 Computational errors on regular grids

As shown in Figs. 20 and 21, for three stencils with the geometric centroid, both L2
and L∞ errors of global-direction stencil are the lowest. On this basis, we employ the

face-area-weighted centroid, and discretization errors are further reduced. Besides, ac-

cording to the specific data listed in Table 6, higher-order accuracy on both L2 and L∞
errors is achieved by G-Stencil (F-a-w centroid). Particularly, L2 errors can reach 2.418

and 2.472 order accuracy. As a result, the employment of face-area-weighted centroid

on unstructured finite volume method from integral form will not deteriorate the de-

signed order of accuracy but greatly improve the computational accuracy of the finite

volume solver after being introduced in global-direction stencil.

4.2.2 Computational errors on randomly perturbed grids

In order to adequately illustrate the numerical performance of different methods, errors

on randomly perturbed grids are also counted. For simplicity, results of AR ≈ 8 are given

in Fig. 22.

(a) Mach number (b) Density

Fig. 18 (a) Mach number (b) density. Flowfields of supersonic vortex flow
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From Fig. 22, errors exhibit the similar trends to that of regular grids, and both average

and max errors of G-Stencil (F-a-w centroid) are the lowest among all stencils we tested.

Therefore, correctness of k-exact reconstruction based on any local origins as well as the

effectiveness and superiorities of the global-direction stencil with face-area-weighted

centroid is verified on Euler equations as well.

4.3 Subsonic flow over a NACA0012 airfoil (governed by Euler equations)

In Section 3.1, we give a brief introduction about the determination of global di-

rections based on wall distance [42], and in this section, the subsonic flow over a

NACA0012 airfoil governed by Euler equations is simulated to examine the effect-

iveness of the mentioned method. The angle of attack is α = 0∘, and the initial con-

dition is Ma = 0.5.

Regular and randomly perturbed triangular grids with both O-type and C-type top-

ologies are utilized in this numerical example. For O-type regular grid, the first layer

spacing in normal direction is 10−3, and there are 201 and 71 grid points distributed in

circumferential and normal directions respectively. Besides, for C-type regular grid, the

background quadrilateral grid is split with random diagonals, and the distribution is

226 × 66 (129 points on airfoil surface). Regular and randomly perturbed grids with

both O-type and C-type grids near the airfoil are shown in Figs. 23 and 24.

(a) Regular (b) Randomly perturbed

Fig. 19 (a) Regular and (b) randomly perturbed triangular grids

Table 5 Distribution of background quadrilateral grids in radical and circumferential directions

Grid
name

Distribution in x and y directions

AR ≈ 4 AR ≈ 8

vcoa 10 × 10 20 × 10

coa 20 × 20 40 × 20

med 40 × 40 80 × 40

fin 60 × 60 120 × 60

vfin 80 × 80 160 × 80
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Besides, to intuitively contrast the effect of geometric centroid and face-area-

weighted centroid on cells adjacent to the airfoil, we display these two reference points

on randomly perturbed grid with O-type respectively.

From Fig. 25, we can easily find that compared with the geometric centroid, the distribu-

tion of face-area-weighted centroid is more regular, and the reference points are almost

spread along the normal direction of the wall, especially on grid adjacent to the airfoil sur-

face. On this basis, we count lift and drag coefficients as well as the residual of different

stencils with O-type and C-type grids respectively. Before calculating these two coefficients,

pressures at the per gauss point of airfoil boundary face are needed at first, and they are

(a) L
2 
errors (b) L∞ errors

Fig. 20 (a) L2 and (b) L∞ errors. Errors of different stencils on regular grids with AR ≈ 4

(a) L
2 
errors (b) L∞ errors

Fig. 21 (a) L2 and (b) L∞ errors. Errors of different stencils on regular grids with AR ≈ 8
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interpolated by the point value at the local origin, and the corresponding formula is given

as follows,

piG ¼ porii þ ∂p
∂x

����
i

xiG − xorii

� �þ ∂p
∂y

����
i

yiG − yorii

� �
; ð32Þ

where, piG is the pressure at the gauss point of wall-adjacent face. Similarly, for the

second-order accurate unstructured finite volume discretization, the gauss point is just

the face centroid. Besides, (xiG, yiG) is the coordinate of the current gauss point, and

ðxorii ; yorii Þ is the coordinate of the local origin Ci.

4.3.1 Results on regular and randomly perturbed O-type grid

From results of lift and drag coefficients shown in Figs. 26 and 27, we can easily find

from local amplifications of both regular and randomly perturbed grids that the lift co-

efficient of G-Stencil (F-a-w centroid) is the lowest among four different stencils, and

in the same time steps, there is almost no oscillations on V-Stencil and G-Stencil (Cell

centroid) as well as G-Stencil (F-a-w centroid). However, compared with these three

stencils, oscillations of the F-Stencil are quite evident, and have not yet converged.

Table 6 Computational errors on the finest grid and L2, L∞ accuracy between the last two grids of
different stencils

Different stencils AR ≈ 4 AR ≈ 8 L2 accuracy
(4/8)

L∞
accuracy
(4/8)

L2 errors L∞ errors L2 errors L∞ errors

V-Stencil 2.474 × 10−4 1.368 × 10−3 2.564 × 10−4 1.299 × 10−3 2.117/2.16 1.978/1.995

F-Stencil 1.665 × 10−4 1.31 × 10−3 1.776 × 10−4 1.243 × 10−3 2.242/2.28 1.974/1.991

G-Stencil (Cell centroid) 1.432 ×
10−4

1.052 ×
10−3

1.561 ×
10−4

1.077 ×
10−3

2.283/
2.337

1.982/
2.006

G-Stencil (F-a-w
centroid)

1.076 ×
10−4

7.039 ×
10−4

1.158 ×
10−4

7.393 ×
10−4

2.418/
2.472

1.968/
1.997

(a) L
2 
errors (b) L∞ errors

Fig. 22 (a) L2 and (b) L∞ errors. Errors of different stencils on randomly perturbed grids with AR ≈ 8
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Similar phenomenon could be concluded on drag coefficient, where the result of G-

Stencil (F-a-w centroid) is lower than V-Stencil and G-Stencil (Cell centroid) but slightly

higher than F-Stencil. Nevertheless, oscillations of F-Stencil are quite obvious, and the

convergence property of this stencil is much poorer than another three stencils.

Conclusions related to lift and drag coefficients mentioned above can be better illus-

trated by residuals of different stencils. As exhibited in Fig. 28, we can easily find that

for three stencils with geometric centroid, the convergence speed of G-Stencil is close

to the commonly used V-Stencil, and in the same time steps, residuals of these two

stencils are decreased by 7 orders of magnitude, while only 4 orders of magnitude is de-

creased on F-Stencil. On this basis, with the introduction of face-area-weighted cen-

troid on global-direction stencil, the residual is further decreased, and therefore, the

convergence property of integral unstructured finite volume solver is greatly improved

by global-direction stencil with face-area-weighed centroid. In the following section, we

will further examine the numerical performance on C-type grids.

4.3.2 Results on regular and randomly perturbed C-type grid

From the results shown in Figs. 29 and 30, we can easily find on C-type grid, more accur-

ate lift and drag coefficients are obtained by the global-direction stencil with face-area-

weighted centroid as well. However, oscillations of the face-neighbor stencil are extremly

evident compared with another three stencils we tested, and the result does not converge

at all. It could be well illustrated by the residual shown in Fig. 31.

As shown in Fig. 31, vertex-neighbor and global-direction stencils have a similar con-

vergence rate, and it is improved by the global-direction stencil with face-area-weighted

(a) Regular (a) Randomly perturbed

Fig. 23 (a) Regular and (b) randomly perturbed triangular grids with O-type over a NACA0012 airfoil

(a) Regular with random diagonals (b) Perturbed with random diagonals

Fig. 24 (a) Regular and (b) randomly perturbed triangular grids with C-type over a NACA0012 airfoil
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centroid. However, the result of face-neighbor stencil is almost diverged within the

same time steps.

In short, feasibilities as well as superiorities of global-direction stencil with face-area-

weighted centroid on unstructured finite volume method from integral form are dem-

onstrated again. And according to results displayed in Sections 4.1, 4.2 and 4.3, we can

easily find computational accuracy, efficiency and convergence speed are all improved

by this novel method.

4.4 Dissipative term evaluation (governed by Laplacian equation)

From Section 4.1 to 4.3, three numerical examples govern by linear convective and Euler

equations are simulated, and the correctness of k-exact reconstruction based on any local

origins is verified. Moreover, on unstructured finite volume method from integral form,

the global-direction stencil with face-area-weighted centroid also has a better computa-

tional accuracy, efficiency as well as convergence rate for convective flux evaluation.

But, the numerical performance on dissipative term also needs to be further tested to

set stage for the extension to viscous problems. In this section, the MMS method is

also used on Laplacian equation to examine discretization errors and convergence

speed of different stencils. Laplacian model equation could be formulated as

∂ϕ
∂t

− ∇ � ν∇ϕð Þ ¼ 0; ð33Þ

where ν is a constant equaling to 1. Integrating this model equation over the control

volume, we obtain

(a) Geometric centroid (b) Face-area-weighted centroid

Fig. 25 (a) Geometric centroid and (b) face-area-weighted centroid of perturbed triangular grid over a
NACA0012 airfoil

(a) C
l 
 on regular grid (b) C

l 
 on perturbed grid

Fig. 26 Cl on (a) regular and (b) perturbed triangular grids
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∂ϕ j

∂t
−

1
V j

Z
V j

∇ � ν∇ϕ j

� �
dV ¼ 0: ð34Þ

According to the divergence theorem, Eq. (34) could be transformed as

∂ϕ j

∂t
þ 1
V j

∮∂V j
ν∇ϕ j

� �
n
dS ¼ 0: ð35Þ

From Eq. (35), we can clearly find the difference between convective term and dissi-

pative term. For dissipative term computation, what we need to compute at the face in-

tegral point is not two state vectors obtained by owner and neighbor cells, but solution

gradient, which could be evaluated by the arithmetic average of left and right cells for

the second-order unstructured finite volume method,

∇ϕ f
int ¼

1
2

∇ϕL
int þ ∇ϕR

int

� �
: ð36Þ

On this basis, in order to improve the stability and reduce the truncation errors, the aver-

age face gradient is always added a solution jump term [28, 48, 49]. Here are many different

schemes for adding the jump term, such as the edge-normal (EN) and face-tangent (FT)

schemes [50]. Based on the FT scheme, a novel α-damping scheme is proposed by Nishi-

kawa [51–54]. The accuracy as well as robustness of second-order unstructured finite

volume solver is greatly improved by this scheme, and it could be formulated as

∇ϕ f
int ¼

1
2

∇ϕL
int þ ∇ϕR

int

� �þ α

êjk � n̂jk

�� ��Ljk ϕ�
R − ϕ�

L

� �
n̂jk ; ð37Þ

(a) C
d 
 on regular grid (b) C

d 
 on perturbed grid

Fig. 27 Cd on (a) regular and (b) perturbed triangular grids

(a) Residual on regular grid (b) Residual on perturbed grid

Fig. 28 (a) Residuals on regular and (b) randomly perturbed grids
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where, α is a damping coefficient, and here, a special value is α = 4/3, which has been

known to provide superior accuracy and robustness [28, 48, 51]. n̂jk is the unit face

normal vector, and êjk is the unit vector between two cell centroids. Ljk is the length

from one centroid to another.

êjk ¼ xk − x j

Ljk
; Ljk ¼ xk − x j

�� ��: ð38Þ

Besides, ϕ�
L and ϕ�

R are solutions linearly reconstructed at integral point,

ϕ�
L ¼ ϕ j þ

1
2
∇ϕ j � xk − x j

� �
; ϕ�

R ¼ ϕk þ
1
2
∇ϕk � x j − xk

� � ð39Þ

On the basis of determining the discretization method of dissipative term, the manu-

factured solution of Eq. (33) is

ϕ ¼ cos ωxð Þ sin 10ωyð Þ; ð40Þ

where ω = 2π is a constant, and the source term could be derived as

s ¼ 102 þ 1
� �

ω2 cos ωxð Þ sin 10ωyð Þ: ð41Þ

As shown in Fig. 32, the simulation is carried out on five sets of triangular grids gen-

erated by splitting the quadrilateral grids with regular or random diagonals, and the cell

aspect ratio is AR = 10. The distribution of these five sets of grids is from 10 × 10 to

80 × 80, and the computational domain is x, y ∈ [−0.5, 0.5] × [−5 × 10−2, 5 × 10−2].

(a) C
l 
 on regular grid (b) C

l 
 on perturbed grid

Fig. 29 Cl on (a) regular and (b) perturbed triangular grids

(a) C
d 
 on regular grid (b) C

d 
 on perturbed grid

Fig. 30 Cd on (a) regular and (b) perturbed triangular grids
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From Eq. (37), we notice that the damping term is greatly influenced by the grid

skewness measure. On this basis, we first count it on both two grid types, and list the

results in Table 7.

As a result, superiorities of face-area-weighted centroid are illustrated again, and

with the employment of this novel centroid, the grid skewness is almost eliminated.

In order to reflect the relative position of two different centroids on grid with

regular and random diagonals, the distribution of these two local origins is shown

in Fig. 33.

From Fig. 33, we can easily find that face-area-weighted centroids are almost distrib-

uted along y-axis no matter on grid with regular or random diagonals, but the distribu-

tion of geometric centroid is irregular, and according to the data listed in Table 7, it

has been demonstrated that the evident skewness will be introduced by this traditional

centroid. Based on above analysis, we count discretization errors of four different sten-

cils, and corresponding results are shown in Figs. 34 and 35 and Table 8.

From Figs. 34 and 35 and combining the specific data listed in Table 8, we find that

discretization errors of G-Stencil (F-a-w centroid) are the lowest among all stencils we

tested no matter on grid with regular or random diagonals, and the computational accuracy

is greatly improved by this novel method.

On this basis, residuals on the coarsest and finest regular grids of different stencils

are shown in Fig. 36.

From Fig. 36, we can easily find that among three stencils with the geometric cen-

troid, the G-Stencil (Cell centroid) has a faster convergence speed than two commonly

used V-Stencil and F-Stencil. What’s more, when face-area-weighted centroid is

employed, the convergence rate is further promoted. Hence, except for convective

term, on dissipative term, a better computational accuracy and faster convergence rate

(a) Residual on regular grid (b) Residual on perturbed grid

Fig. 31 (a) Residuals on regular and (b) randomly perturbed grids

(a) Random diagonals(a) Regular diagonals

Fig. 32 Quadrilateral grids split by (a) regular and (b) random diagonals
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are also realized by this novel method. In short, feasibilities and superiorities of employ-

ing face-area-weighted centroid on unstructured finite volume discretization from inte-

gral form are verified again on Laplacian model equation.

5 Accuracy analysis of the method on the third-order discretization
In Section 2.2, the k-exact reconstruction based on any local origins is derived,

and from Section 4.1 to 4.4, we notice that on the second-order finite volume

solver, the result of global-direction stencil with face-area-weighted centroid is

much more accurate than two commonly used vertex-neighbor and face-neighbor

stencils, as well as the global-direction stencil with the geometric centroid. In this

section, the k-exact reconstruction and spatial discretization based on any local

origins are derived at first. On this basis, a typical numerical example based on

the Method of Manufactured Solutions (MMS) [43–46] is employed for the ac-

curacy analysis.

5.1 Derivation of higher-order k-exact reconstruction based on any local origins

For higher-order k-exact reconstruction, e.g., the third-order, the reconstructed

polynomial based on any local origins could be formulated as

Table 7 Grid skewness measure of geometric centroid and face-area-weighted centroid on two
grid types

Different
grids

Grid with regular diagonals Grid with random diagonals

Cell centroid Face-area-weighted centroid Cell centroid Face-area-weighted centroid

vcoa 0.4597 0.9980 0.5173 0.9985

coa 0.4613 0.9980 0.4918 0.9983

med 0.462 0.9980 0.4796 0.9982

fin 0.4628 0.9980 0.4867 0.9982

vfin 0.4632 0.9980 0.4860 0.9982

(a) Regular diagonals (a) Random diagonals

Fig. 33 Geometric and face-area-weighted centroids on grids with (a) regular and (b) randomly diagonals
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Rj x − xorij
� �

¼ uori
j þ ∂u

∂x

����
j

x − xorij
� �

þ ∂u
∂y

����
j

y − yorij
� �

þ 1
2
∂2u
∂x2

����
j

x − xorij
� �2

þ ∂2u
∂x∂y

x − xorij
� �

y − yorij
� �

þ 1
2
∂2u
∂y2

����
j

y − yorij
� �2

;

ð42Þ

where ðxorij ; yorij Þ is the coordinate of the current local origin, which is not a necessary

geometric centroid, and if the ðx − xorij Þ and ðy − yorij Þ are replaced by ðx − xgcj Þ þ ðxgcj −

xorij Þ and ðy − ygcj Þ þ ðygcj − yorij Þ respectively, we obtain

(a) L
2 
errors (b) L∞ errors

Fig. 34 (a) L2 and (b) L∞ errors. Errors of different stencils on grids with regular diagonals

(a) L
2 
errors (b) L∞ errors

Fig. 35 (a) L2 and (b) L∞ errors. Errors of different stencils on grids with random diagonals
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Rj x − xorij
� �

¼ uori
j þ ∂u

∂x

����
j

x − xgcj
� �

þ ∂u
∂y

����
j

y − ygcj
� �

þ 1
2
∂2u
∂x2

����
j

x − xgcj
� �2

þ ∂2u
∂x∂y

x − xgcj
� �

y − ygcj
� �

þ 1
2
∂2u
∂y2

����
j

y − ygcj
� �2

þ ∂2u
∂x2

����
j

xgcj − xorij
� �

x − xgcj
� �

þ ∂2u
∂x∂y

ygcj − yorij
� �

x − xgcj
� �

þ ∂2u
∂x∂y

xgcj − xorij
� �

y − ygcj
� �

þ ∂2u
∂y2

����
j

ygcj − yorij
� �

y − ygcj
� �

þ∂u
∂x

����
j

xgcj − xorij
� �

þ ∂u
∂y

����
j

ygcj − yorij
� �

þ 1
2
∂2u
∂x2

����
j

xgcj − xorij
� �2

þ ∂2u
∂x∂y

xgcj − xorij
� �

xgcj − xorij
� �

þ 1
2
∂2u
∂y2

����
j

ygcj − yorij
� �2

:

ð43Þ

For k-exact reconstruction, no matter the reconstructed function is formulated based

on which reference point, the mean constraint requires [34, 35]

1
V j

Z
V j

R j x − xorij
� �

dV ¼
Z
V j

u xð Þ dV ¼ u j; ð44Þ

Besides, integrating the reconstructed polynomial over the control volume, we have

Computational errors on the finest regular grid and L2, L∞ accuracy between the last two grids of
different stencils

Different stencils L2 errors L∞ errors L2 accuracy L∞ accuracy

V-Stencil 8.586 × 10−4 3.164 × 10−3 1.991 2.063

F-Stencil 8.386 × 10−4 2.626 × 10−3 1.986 1.984

G-Stencil (Cell centroid) 3.617 × 10−4 5.405 × 10−4 1.993 1.971

G-Stencil (F-a-w centroid) 2.831 × 10−4 4.617 × 10−4 1.992 1.986

(a) Residual on the coarsest regular grid (b) Residual on the finest regular grid

Fig. 36 Residuals on the (a) coarsest and (b) finest regular grids
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Z
V j

R j x − xorij
� �

dV ≡ u j ¼ uori
j þ ∂u

∂x

����
j

Z
V j

x − xgcj
� �

dV þ ∂u
∂y

����
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Z
V j

y − ygcj
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2
∂2u
∂x2

����
j

Z
V j

x − xgcj
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∂x∂y

����
j

Z
V j
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y − ygcj
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dV þ 1
2
∂2u
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����
j

Z
V j

y − ygcj
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þ∂2u
∂x2

����
j
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V j
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dV þ ∂2u
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j
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V j
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dV

þ ∂2u
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V j

y − ygcj
� �

dV þ ∂2u
∂y2

����
j

ygcj − yorij
� �Z

V j

y − ygcj
� �

dV

þ∂u
∂x

����
j

xgcj − xorij
� �

þ ∂u
∂y

����
j

ygcj − yorij
� �

þ 1
2
∂2u
∂x2

����
j

xgcj − xorij
� �2

þ ∂2u
∂x∂y

����
j

xgcj − xorij
� �

xgcj − xorij
� �

þ 1
2
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j

ygcj − yorij
� �2

:

ð45Þ

This mean constraint could be simplified as

u j ¼ uori
j þ ∂u

∂x

����
j

x j þ ∂u
∂y

����
j

y j þ
1
2
∂2u
∂x2

����
j

x2 j þ ∂2u
∂x∂y

����
j

xy2 j þ
1
2
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����
j

y2 j

þ ∂2u
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����
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;

ð46Þ

which is utilized for calculating the point value uori
j , and after that, the mean constraint

is always satisfied. If we take Tj to represent the sum of some terms

T j ¼ ∂2u
∂x2

����
j

xgcj − xorij
� �

x j þ ∂2u
∂x∂y

����
j
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ð47Þ

we have

u j ¼ uori
j þ ∂u

∂x

����
j

x j þ ∂u
∂y

����
j

y j þ
1
2
∂2u
∂x2

����
j

x2 j þ ∂2u
∂x∂y

����
j

xy2 j þ
1
2
∂2u
∂y2

����
j

y2 j þ T j: ð48Þ

To achieve kth-order accuracy requires that we compute the kth derivatives by min-

imizing the error in predicting the mean value of the reconstructed function for the

stencil k, that is, by minimizing the difference between the actual cell average uk and

the average of Rjðx − xorij Þ over stencil cell k. The mean value for a single cell Vk of the

reconstructed function Rj is
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2
∂2u
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Z
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dV :

ð49Þ

Likewise, ðx − xorij Þ and ðy − yorij Þ could be written as ðx − xgck Þ þ ðxgck − xorij Þ and

ðy − ygck Þ þ ðygck − yorij Þ respectively,

Z
Vk

R j x − xorij
� �

dV ¼ uori
j þ ∂u

∂x

����
j

xk þ xgck − xorij
� �� �

þ ∂u
∂y

����
j

Z
Vk

yk þ ygck − yorij
� �� �
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þ 1
2
∂2u
∂x2

����
j

x2k þ 2xk xgck − xorij
� �

þ xgck − xorij
� �2� 	

þ ∂2u
∂x∂y

����
j

xyk þ xk ygck − yorij
� �

þ yk xgck − xorij
� �

þ xgck − xorij
� �

ygck − yorij
� �� �

þ 1
2
∂2u
∂y2

����
j

y2k þ 2yk ygck − yorij
� �

þ ygck − yorij
� �2� 	

:

ð50Þ

Combining the mean constraint given in Eq. (48) and writing Eq. (50) for every sten-

cil cell, we obtain

1 x j y j x2 j xy j y2 j ⋯

ω j1 ω j1x̂ j1 ω j1ŷ j1 ω j1
bx2 j1 ω j1 bxy j1 ω j1

by2 j1 ⋯

ω j2 ω j2x̂ j2 ω j2ŷ j2 ω j2
bx2 j2 ω j2 bxy j2 ω j2

by2 j2 ⋯

ω j3 ω j3x̂ j3 ω j3ŷ j3 ω j3
bx2 j3 ω j3 bxy j3 ω j3

by2 j3 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

ωjN ωjN x̂jN ωjN ŷjN ωjN
bx2 jN ωjN bxyjN ωjN

by2jN ⋯

0BBBBBBBB@

1CCCCCCCCA

uori
��
j

∂u=∂xj j
∂u=∂yj j

1
2
∂2u=∂x2

����
j

∂2u=∂x∂y
��
j

1
2
∂2u=∂y2

����
j

⋮

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
¼

u − T j

ω j1u1

ω j2u2

ω j3u3

⋮
ωjNuN

0BBBBBB@

1CCCCCCA;

ð51Þ

where, the first row is the mean constraint, and the unconstraint equations are solved

at first. After that, the point value at any local origins should be computed by the mean

constraint to ensure Eq. (48) is exactly satisfied,

uori
j ¼ �u j −

∂u
∂x

j j�x j −
∂u
∂y

j j�y j −
1
2
∂2u
∂x2

j j �x2 j −
∂2u
∂x∂y

j j �xy2 j −
1
2
∂2u
∂y2

j j �y2 j − T j; ð52Þ

which is utilized to calculate the solution at per gauss point of cell face. Eventually, the

k-exact reconstruction based on any local origins is derived, and in the next section,

higher-order spatial discretization will be specifically described.

5.2 Higher-order finite volume spatial discretization

In Section 2.1, the second-order finite volume discretization has been introduced, and

as shown in Fig. 1, we mentioned that only one gauss point, i.e., the face centroid, is re-

quired for the second-order accurate discretization, while there should be at least two

gauss points to guarantee the flux integration is higher-order accurate. The required
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order of accuracy, gauss point location as well as corresponding weights are given in

Table 9, where A and B represent two edge points of a certain cell face.

As a result, for the third-order accurate discretization, two gauss points are employed, and

the left and right state vectors at per gauss point could be interpolated by the point value uori
j

and uori
k , and both of them are obtained by the mean constraint of k-exact reconstruction.

uL ¼ uori
j þ ∂u

∂x

����
j

xG − xorij
� �
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∂y

����
j
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þ 1
2
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����
j

xG − xorij
� �2

þ ∂2u
∂x∂y

����
j

xG − xorij
� �

yG − yorij
� �

þ 1
2
∂2u
∂y2

����
j

yG − yorij
� �2

;

uR ¼ uori
k þ ∂u

∂x

����
k

xG − xorij
� �

þ ∂u
∂y

����
k

yG − yorij
� �

þ 1
2
∂2u
∂x2

����
k

xG − xorij
� �2

þ ∂2u
∂x∂y

����
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xG − xorij
� �

yG − yorij
� �

þ 1
2
∂2u
∂y2

����
k

yG − yorij
� �2

:

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð53Þ

Accordingly, the numerical flux could also be obtained by the Roe flux [37].

5.3 Accuracy analysis

In the first two sections, the third-order k-exact reconstruction as well as the spatial

discretization is presented in detail. In this section, a numerical example, which is governed

by the Euler equations, based on the Method of Manufactured Solutions (MMS) [43–46] is

employed for the accuracy analysis. The manufactured solution [28] is shown as follows,

ρ ¼ 1:12þ 0:15 sin π 3:12xþ 1895:92yð Þ½ �;
u ¼ 1:32þ 0:06 sin π 2:09xþ 2099:21yð Þ½ �;
v ¼ 1:18þ 0:03 sin π 2:15xþ 2001:32yð Þ½ �;
p ¼ 1:62þ 0:31 sin π 3:79xþ 1973:98yð Þ½ �;

8>><>>: ð54Þ

Taking the analytic solution to Euler equations, the source term is obtained

s ¼ ∇ � F ¼

u
∂ρ
∂x

þ ρ
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þ v
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þ ρ
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� 	
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� 	
þ uv
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∂u
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þ v
∂ ρHð Þ
∂y

þ ρH
∂v
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0BBBBBBBBBB@

1CCCCCCCCCCA
; ð55Þ

Table 9 Required order of accuracy and the gauss point location as well as the corresponding
weights

Required order of accuracy Gauss point location weights

Second order 1
2 ðAþ BÞ 1

Third order 3 −
ffiffi
3

p
6 Aþ 3þ ffiffi

3
p
6 B 0.5

3þ ffiffi
3

p
6 Aþ 3 −

ffiffi
3

p
6 B 0.5

Fourth order 5 −
ffiffiffiffi
15

p
10 Aþ 5þ ffiffiffiffi

15
p
10 B

5
18

1
2 ðAþ BÞ 8

18

5þ ffiffiffiffi
15

p
10 Aþ 5 −

ffiffiffiffi
15

p
10 B

5
18
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where H = (γp/(γ − 1) + ρv2/2)/ρ is the specific total enthalpy. For higher-order unstruc-

tured finite volume discretization, the source term should be integrated over the control

volume rather than being evaluated at the reference point to avoid the second-order error.

Three-point quadrature [34, 35] is utilized again for the source term integration.

Besides, regular and randomly perturbed triangular grids with 5 × 102 and 103 these two

aspect ratios are employed, and in each cell aspect ratio, five sets of triangular grids from

the coarsest to finest are utilized to count the discretization errors and computational ac-

curacy. The coarsest regular and randomly perturbed triangular grids and the distribution

of background quadrilateral grids in x and y directions are shown in Fig. 37 and Table 10.

Computational results on both regular and randomly perturbed triangular grids are

shown as follows.

5.3.1 Computational results on regular triangular grids

As shown in Figs. 38 and 39, the third-order accuracy is achieved by employing the global-

direction stencil with face-area-weighted centroid. Therefore, correctness as well as feasibil-

ities of k-exact reconstruction and spatial discretization based on any local origins is demon-

strated. Besides, combining the result given in Table 11, we can easily find that

discretization errors of global-direction stencil with face-area-weighted centroid are always

the lowest among all methods we tested, no matter on grids with AR = 5 × 102 or 103.

But note that errors are also counted at the local origin rather than the cell-averaged

result, and for higher-order accurate finite volume method, the comparison between

the cell-averaged result and that counted at the local origin is listed in Section 5.3.3.

5.3.2 Computational results on randomly perturbed triangular grids

From Figs. 40 and 41, we find that on randomly perturbed triangular grids, there is a

similar trend to results on regular grids, that is, the global-direction stencil with face-

area-weighted centroid is lower than another three stencils. As a result, computational

accuracy is improved, which is beneficial for obtaining a more accurate flowfield. In

short, feasibilities and superiorities of extending the face-area-weighted centroid and

the combination of global-direction stencil with this novel local origin to higher-order

unstructured finite volume method from integral form are verified.

5.3.3 Discussion about results exhibition of higher-order discretization from integral form

In Section 4.1.3, it is verified by analysis and numerical example that for the second-order

unstructured finite volume discretization, the point value at the face-area-weighted cen-

troid is more appropriate for the result exhibition, since errors at this certain local origin

(a) Regular grid (a) Randomly perturbed grid

Fig. 37 (a) Regular and (b) randomly perturbed triangular grids
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are lower than the cell average. In this section, cell averages are also utilized to further

contrast with the mentioned point values at the local origin.

According to the three requirements mentioned in Section 4.1.3, firstly, the point value

at any local origins uori
j could be obtained by the mean constraint. In addition, as shown

in Sections 5.3.1 and 5.3.2, the third-order accuracy is always achieved by the point-value

solution at both geometric centroid and the face-area-weighted centroid, and more im-

portantly, as shown in Fig. 42, errors counted at the face-area-weighted centroid are obvi-

ously lower than that counted at the geometric centroid as well as the cell-averaged value.

In summary, for higher-order accurate unstructured finite volume method from integral

form, when the global-direction stencil is utilized, we find the result counted at the face-

area-weighted centroid is more accurate than the cell-averaged solution. Hence, feasibilities

as well as the superiorities of the face-area-weighted centroid are demonstrated not only on

the second-order finite volume method, but on discretization with higher-order accuracy.

6 Concluding remarks
Inspired by the novel face-area-weighted centroid utilized for unstructured finite vol-

ume discretization from differential form, in this paper, we have shown that the refer-

ence point used in the integral form does not have to be the geometric centroid as

Table 10 Distribution of background quadrilateral grids in x and y directions

Grid
name

Distribution in x and y directions

AR = 5 × 102 AR = 103

vcoa 30 × 10 15 × 10

coa 45 × 15 30 × 20

med 60 × 20 45 × 30

fin 80 × 30 60 × 40

vfin 120 × 40 90 × 60

(a) L
2 
errors (b) L∞ errors

Fig. 38 (a) L2 and (b) L∞ errors. Errors of different stencils on regular triangular grids with AR = 5 × 102
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well, and the face-area-weighted centroid is a better choice, which effectively reduces

the grid skewness. Besides, we combine the global-direction stencil with this novel ref-

erence point trying to improve the computational accuracy and convergence rate of un-

structured finite volume solver.

Specifically, we first illustrate in detail that the traditional LSQR reconstruction method is

unable to obtain the point-value solution located at any local origins, and that is the reason

why we focus on k-exact reconstruction algorithm. On this basis, the k-exact reconstruction

based on any local origins is analytically derived, and during the reconstruction process, the

mean constraint can always be satisfied. Besides, we extend the global-direction stencil with

novel face-area-weighted centroid from unstructured finite volume method in differential

form to the integral form for the grid skewness reduction and a better reflection of flow an-

isotropy. More importantly, it sets stage for the promotion on higher-order accuracy.

Four representative numerical examples governed by linear convective, Euler and

Laplacian equations are simulated to examine the correctness of k-exact derivation and

the effectiveness of global-direction stencil with face-area-weighted centroid on the

unstructured finite volume discretization from integral form. After verification, in nu-

merical cases governed by linear convective and Euler equations, when the face-area-

(a) L
2 
errors (b) L∞ errors

Fig. 39 (a) L2 and (b) L∞ errors. Errors of different stencils on regular triangular grids with AR = 103

Table 11 Computational errors on the finest grid and L2, L∞ accuracy between the last two grids
of different stencils

Different stencils AR ≈ 5 × 102 AR ≈ 103 L2
accuracy
(5 × 102/
103)

L∞
accuracy
(5 × 102/
103)

L2 errors L∞ errors L2 errors L∞ errors

V-Stencil 8.706 × 10−5 1.984 × 10−4 1.039 × 10−4 2.002 × 10−4 2.94/2.947 2.773/2.871

F-Stencil 7.489 × 10−5 2.261 × 10−4 8.234 × 10−5 1.981 × 10−4 2.952/2.968 2.851/2.86

G-Stencil (Cell centroid) 2.946 ×
10−5

9.303 ×
10−5

5.065 ×
10−5

8.56 × 10−5 2.973/
2.966

2.94/2.925

G-Stencil (F-a-w
centroid)

7.961 ×
10−6

8.831 ×
10−5

5.651 ×
10−6

6.063 ×
10−5

3.057/
3.378

2.937/
2.913
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weighted centroid is utilized on finite volume discretization, the second-order accuracy

also could be achieved, and the global-direction stencil with this novel reference point

has the lowest discretization errors among all stencils we tested, where, the result is ex-

hibited by the point value rather than the cell average, since we realize when the

global-direction stencil is utilized, the point-value solution uori
j obtained by the mean

constraint of k-exact reconstruction at the face-area-weighted centroid is more accurate

than the cell average, and this conclusion is also demonstrated on the third-order finite

volume discretization. On this basis, the result exhibition of unstructured finite volume

method could be replaced by this point value at the face-area-weighted centroid.

(a) L
2 
errors (b) L∞ errors

Fig. 40 (a) L2 and (b) L∞ errors. Errors of different stencils on randomly perturbed triangular grids with AR= 5× 102

(a) L
2 
errors (b) L∞ errors

Fig. 41 (a) L2 and (b) L∞ errors. Errors of different stencils on randomly perturbed triangular grids with AR= 103
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Besides, in subsonic flow over NACA0012 airfoil, pressure values utilized to compute

the lift and drag coefficients at the gauss point of wall-adjacent face are also interpo-

lated by the point-valued solution at the local origin, and we find this novel method

has a better numerical performance on calculating lift and drag coefficients, and has a

faster convergence speed than commonly used stencils based on the geometric cen-

troid. On this basis, a Laplacian model equation is utilized to further test its effective-

ness on dissipative term evaluation. From the result, similar conclusions are

demonstrated that errors of the global-direction stencil with face-area-weighted cen-

troid are still lower than another three stencils, and the convergence rate is also greatly

promoted by this novel method. As a result, this conclusion sets stage for the further

extension to viscous flows.

Finally, the accuracy analysis is implemented on the third-order unstructured finite vol-

ume discretization from integral form as well, where the third-order k-exact reconstruc-

tion as well as the spatial discretization based on any local origins is derived. After

verification, it is illustrated that the third-order accuracy is also achieved by the global-

direction stencil with face-area-weighted centroid, and discretization errors of this method

are lower than another three stencils we tested.

In conclusion, the computational accuracy of the second and third-order unstructured

finite volume method from integral form will not get deteriorated by the employment of

face-area-weighted centroid, and it is feasible to extend the global-direction stencil with

face-area-weighted centroid from differential finite volume solver to the integral form. Fu-

ture work will be carried out from two aspects. Firstly, we will not only further compare

the computational accuracy of point-valued solution at the certain local origin with the

abstract cell-averaged solution, but figure out the specific approach to display the

flowfield by this point value. In addition, extensions of the global-direction stencil

selection method and face-area-weighted formula to three dimensions are also quite

necessary for practical applications.

(a) L
2 
errors (b) L∞ errors

Fig. 42 (a) L2 and (b) L∞ errors. Cell-averaged and point-valued discretization errors of G-Stencil with the
geometric centroid and face-area-weighted centroid on grids with AR = 103
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