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Abstract

Graph partition is a classical combinatorial optimization and graph theory problem,
and it has a lot of applications, such as scientific computing, VLS| design and clustering
etc. In this paper, we study the partition problem on large scale directed graphs under
a new objective function, a new instance of graph partition problem. We firstly propose
the modeling of this problem, then design an algorithm based on multi-level strategy
and recursive partition method, and finally do a lot of simulation experiments. The
experimental results verify the stability of our algorithm and show that our algorithm
has the same good performance as METIS. In addition, our algorithm is better than
METIS on unbalanced ratio.

Keywords: Graph partition problem, Large scale graphs, Directed graphs, Multi-level
strategy

1 Introduction

Graph partition is a classical combinatorial optimization and graph theory problem.
Given a graph G and a parameter k, the aim of this problem is to divide the vertex set of G
into k parts, and to optimize the given objective functions. If we require the number (or
total weights) of vertices of all parts to be the same or as close as possible, this problem
is called a balanced graph partitioning problem (BGP). BGP is a standard special case of
graph partition problem, and it has a lot of applications, in scientific computing, VLSI and
chips design, image processing and clustering etc. Andreev and H. Récke [1] showed that
BGP is NP-hard even for 2-partition, and there is no constant approximation algorithm.
In particular, BPG doesn’t admit constant approximation algorithm unless NP = P, even
for trees and grids [2]. In addition, other cases of graph partition problem with application
background have also received extensive attention from researchers, such as hyper-graph
partition problem[3, 4], balanced connected graph partition problem [5, 6], and path-
partition problem [7], etc. Recently, Bulug et al. [8] surveyed the algorithms design and
applications of graph partition problem. Although there is no constant approximation
algorithm for BGP, due to its wide applications, many heuristic algorithms had been devel-
oped to solve it. Firstly, by using local search strategy, Kernighan and Lin [9] presented an
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efficient heuristic algorithm for 2-BGP with time complexity O(#? log n). Then, Fiduccia
and Mattheyses [10] developed a linear heuristic algorithm. Spectral method [11] is also
an important method to solve BGP. This method divides the given graph into two parts,
by using their eigenvalues and eigenvectors of its adjacency matrix or Laplacian matrix.
At present, there are many graph partition algorithms based on spectral method [12, 13],
which can solve 2-BGP or general k-BGP iteratively.

On the other hand, with the increasing of the problem scale and improvement of the
computing power, the size of the graph to be partitioned is becoming larger and larger, and
the number of vertices of the graph reaches 100,000,000 or more. Thus, it is impractical
to use the previous algorithms to solve large scale graph partition problem. Therefore,
researchers proposed multi-level method and streaming algorithms to solve this problem.
The main idea of multi-level method is to convert the original graph into a small scale
resulting graph by multiple contraction firstly, then divide the new graph into k-parts, and
finally back map and modify the partition of the contracted graph to become a partition of
the original graph. The popular software and software package of graph partition, METIS
[14] and KaHIP [15] were designed based on this method. The main idea of the streaming
algorithm is to assign each vertex of the graph into the suitable part one by one, through
a specific potential function. The advantage of streaming algorithm is fast and memory-
saving, and it is very suitable for large-scale graph partition problem. The graph partition
software FENNEL is based on streaming algorithm [16].

Although a lot of theoretical results and algorithms on graph partition have been
obtained, there are still some problems that have not been explored. The first problem
is partition on directed graph. Most of the previous works are on undirected graphs, but
for some practical applications, such as multi-subject coupling problem, the correspond-
ing models should be directed graph. Therefore, it is necessary to study the partition on
directed graphs. The second one is about the objective function. In the past, researchers
often considered the vertex-weight and the edge-weight separately, that is, to optimize
some edge-weight objective functions under some vertex-weight constraints. There are
few works on objective functions combining the two weights together. Based on the above
two points, we study the directed graph problem with combined weight function.

The organization of this paper is as follows. Some basic conceptions of graph theory and
the mathematical modeling of this problem will be presented in Section 2. In Section 3,
we introduce the main idea and process of our algorithm. The experimental results are
exhibited in Section 4. In detail, we will verify the stability of our algorithm, determine
some parameters and compare our algorithm with METIS. Finally, the conclusion and
future work are given in Section 5.

2 Basic conceptions and mathematical modeling
In this section, we will introduce some conceptions in graph theory and develop the
mathematical programming for the new balanced graph partition problem.

A (undirected) graph G is an ordered pair (V(G), E(G)) consisting of a set V(G) of
vertices, and a set E(G) of edges. Each edge of G is an unordered pair of vertices. If an
edge e joins vertices # and v, then u and v are called the ends of e. A directed graph D is
an ordered pair (V' (D), A(D)) consisting of a set V(D) of vertices, and a set A(D) of arcs
(directed edges). Each arc of D is an ordered pair of vertices. If an arc a joins vertices u to
v, then u is the tail of a, v is the head of a, and u and v are the ends of a. For any graph,
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if we regard each edge e = uv as two arcs (, v) and (v, u), then this graph becomes a
directed graph. Thus, undirected graphs can be considered as a special class of directed
graphs. For any vertex v in D, the notation A ({v}) is the sets of arcs whose heads are v,
and the notation Aﬁ({v}) is the sets of arcs whose tails are v. Furthermore, for any vertex
subset X, A (X) (AJB (X)) is the sets of arcs whose heads (tails) are in X, but tails (heads)
are not in X. A set M of independent arcs (no common ends) in a digraph D is called a
matching. Given a matching M of D, a vertex v is called matched (by M) if v is an end of
some arc of M; otherwise, v is called unmatched. A matching M of G is maximal if for any
arc a not in M, M U a is not a matching of D.

Given a directed graph D = (V, A) with a weighted function w on V' U A, a k-partition
P is a decomposition (V1, V3,. .., Vi) on vertex set V, such that V; # ¢, V; N V; = @ for
anyl <i<j<kand ViUV,oU-. UV, = V.Given a specific k-partition P, for any part
j, we define its load

L} = w(V)) + w(AR(V)),
wherew(V)) = >~ w(v)and wA,(V))) = ) w(a).Let Lf\)/[ and Lfn be the maximum
vevj aeAp (V)
load and minimum load among all parts in P, that is,

P = max I and Lf = min L?.
1<j<n / 1<jsn /

Thus, we model the balanced graph partition problem as the following unconstrained
two-objective programming,
i P _ P P
=L,/L, —1
min o” = L/ L,
i
where P is the set of all k-partitions of G and p” is the unbalanced ratio of the partition P.
As mentioned in Section 1, our problem differs from the one in METIS in two points.
The first is that METIS only deals with undirected graphs, but our problem is defined
on directed graphs. The second is the different objections. The optimization problem of
METIS is as follows,
min ) w(e)

ecEc

st.w(V)) <p-WW/kj=12,...,k

where E is the set of edges whose ends are in distinct parts, and p > 1 is the unbalanced
ratio of the vertex weights. That is to say, the model of METIS considers vertices and
edges separately, but we consider them together.

3 Algorithm

Since the scale of the graphs we’re going to deal with is very large (up to 100,000,000
vertices), and the number of parts is also large (up to 100,000), our algorithm is designed
by combining the classical multi-level method and the recursive partition method.

3.1 Multi-level stage
Recently, the popular method to partition the large scale graph is the multi-level method.
The multi-level method contains three phases: iterative contraction, initial partition and
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modification, and backward mapping. We will introduce the detail of each phase in the
following.

PHASE 1: Iterative Contraction. In this phase, we will construct a sequence of
directed graphs (Do, D1, . . ., Dy,) with |Diy1| < |D;| for 0 < i < m — 1, where Dy is the
original directed graph. To do this, we use the standard strategy for any current graph D;.
We compute a maximal matching M; and contract every arc of M; into a new vertex to
obtain the next graph D,y ;. In detalil, for any arc a = (u, v) of M;, the process of contrac-
tion is removing a and @’ = (v, u) and identifying u and v as a new vertex x so that it is
incident with whose arcs (other than 4 and a’) that were originally incident # or v or both.
The weight of new vertex x is the sum of weights of vertices u and v, and the weight of
each new arc (x,y) is equal to w(u, y) or w(v,y) or w(x,y) = w(u,y) + w(v,y), respectively.

This phase ends when one of the following occurs: (i) the number of vertices of the
current graph is less than ck, where k is the number of parts of the partition and ¢ = 90 is
the contracted parameter chosen by our experiments in the next section; (ii) the ratio of
contraction |V (D;41)|/|V(D;)] is larger than 80%, that is |M;| < 20%|V (D;)|. To compute
the maximal matching, we will use the following two random methods.

Random Maximum Weight Matching (RMWM). This classical method is used in
METIS [14] and other multi-level algorithms [15]. The process of RMWM is as follows.
The vertices of the graph are chosen by a random order. For a chosen vertex u, if u is
already matched by other vertex or its in-neighbors are all matched, we choose the next
vertex. Otherwise, u is matched with its unmatched in-neighbor v with the maximum

weight of arc (v, u), that is,
v = arg max{w(v, &) | v is an unmatched in-neighbor of u}.

When all vertices are chosen, we can obtain a maximal matching.

Random Maximum Ratio Matching (RMRM). The motivation to use this matching
is the new objective functions. The only difference between the processes of RMRM and
RMWM is the way to choose a vertex to match a vertex u, from its in-neighbors. Since the
objective function considers the weights of vertices and arcs together, u is matched with
its unmatched in-neighbor v with the maximum ratio of arc-weight to vertex-weight, that
is,

wv,u) L
v = arg max {W(V) | vis an unmatched in-neighbor of u} .

PHASE 2: Initial Partition and Modification. After iterative contraction, the final
graph D,, has at most ck vertices. Thus, we can fast obtain a good initial partition by
greedy strategy. In detail, we will use the best fit decreasing (BFD) algorithm similar to
that of solving the bin-packing problem. Firstly, we set every part P; = { for any j =
1,2,...,k and reordering the vertices with decreasing vertex-weight. For each stage, if we
put the current vertex v into the j-th part, then the load of the j-th part will become

L=Li+w+ Y  wvy;
ueN~— (V)NP;,i#j
and the load of other part i (# j) will become
Li=L;+ Z w(v, u).
ueN+v)NP;
Thus, we put v into the part so that the maximum load is minimum. When all the vertices
are visited, the initial partition P is obtained.
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The aim of modification is to make the initial partition a local optimum. The main
strategy is local search, that is, move a vertex of the maximum load part into another part
to reduce the maximum load, iteratively. In detail, for current iteration, we firstly choose a
part P; with the maximum load. Then, for any vertex v in P;, we calculate its in-arc-weight
w; (v) and out-arc-weight w;r (v) with respect to each part P; (1 < i < k) as follows,

w; (v) = Z w(u,v), w;” ) = Z w, u).
ueN-(v)NP; ueN+()NP;
Now, if we move vertex v from part P; into part P;, then the load of any part other than P;
and P; has not changed, and the new loads Ll’« and L} become

L]" =L —w) —w; (v) + wj+(v), Li=Li+wy) —wl@) + w; ().

For every pair (v, P;), we can calculate the maximum load and the sum of loads of the
swapped partition.

If there exist some swapped partitions whose maximum load is less than that of the
current partition, then we choose the swapped partition with minimum maximum load
to replace the current one, and repeat this operation. Otherwise, if there are some
swapped partitions whose maximum load is equal to that of the current partition, but
the sum of loads is less than that of the current partition, we choose the partition with
minimum sum of loads instead of the current one, and repeat this operation; else, the
current partition achieves a local optimum, and the process of modification is finished.

PHASE 3: Back Mapping. The complete process of back mapping should be mapping
the partition of D;1; back to D;, and modify the partition of D; to be a local optimum
recursively fori = m—1,m—2,...,0. But since the original graph is huge and the number
of parts is large, in order to save the memory and reduce the running time, we directly
map the partition of D,,, back to the partition of Dy.

3.2 Recursive partition stage

As stated in the former subsection, the phase of iterative contraction ends when the num-
ber of vertices of contracted graph D,, is less than 90k, where k is the number of parts of
desired partition. This implies that if k is large, the scale of D, is also large, which can
result in bad performance and long running time. Thus, we use the recursive partition
strategy to avoid this.

Table 1 The Characters of Graphs

Name of Graph No. of Vertices No. of Arcs Description

Grid-1 1,000,000 3,996,000 Theoretical Grid Graph

Grid-2 10,890,000 43,546,800 Theoretical Grid Graph

Grid-3 100,000,000 399,600,000 Theoretical Grid Graph

Copter 55,476 704,476 3D Finite Element Mesh From METIS

MDual 258,569 1,026,264 3D Finite Element Mesh From METIS

FEM-1 122,549 735414 3D Finite Element Mesh From Real Example
FEM-2 3,209,941 12,747,458 3D Finite Element Mesh From Real Example
FEM-3 3,899,018 15,476,406 3D Finite Element Mesh From Real Example
FEM-4 5,279,053 20,998,604 3D Finite Element Mesh From Real Example
FEM-5 6,636,730 26,412,712 3D Finite Element Mesh From Real Example

FEM-6 12,982,941 51,722,612 3D Finite Element Mesh From Real Example
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Table 2 The Experimental Result on Different Matchings

Graph Number of Parts Type of Matching Unbalanced Ratio Max Load
Average Maximum Average Maximum
100 RMRM 1.05% 1.36% 1399118 1400935
Grid-1 RMWM 0.36% 0.50% 1386662 1387988
1000 RMRM 1.85% 2.25% 145745 146006
RMWM 0.99% 1.27% 145043 145334
1000 RMRM 1.53% 1.74% 1527649 1531943
Grid-2 RMWM 0.75% 0.93% 1511836 1514495
10000 RMRM 247% 2.72% 159246 159435
RMWM 1.34% 1.68% 158101 158297
100 RMRM 0.89% 0.98% 380119 380562
MDual RMWM 0.67% 1.07% 379111 379689
1000 RMRM 1.71% 2.07% 41004 41056
RMWM 1.49% 1.89% 40911 41028
100 RMRM 0.89% 1.20% 760856 761381
FEM-1 RMWM 0.27% 0.40% 758603 758951
1000 RMRM 1.63% 2.08% 79113 79222
RMWM 1.22% 1.41% 78978 79050
1000 RMRM 1.28% 1.37% 568638 568961
FEM-3 RMWM 0.73% 1.01% 567277 568502
10000 RMRM 2.11% 2.30% 60369 60473
RMWM 1.60% 2.07% 60203 60358

The main idea of the recursive partition method is as follows. At the beginning, we
factorize k into several small numbers, say, k = kiky - - - k¢, with k; < 20. This can often
be accomplished, because in practice k is often chosen to be a number with many factors.
In the first step, we use the multi-level method to obtain a k;-partition P of the original
graph. Since k; is small, we can guarantee good performance and short running time.
Based on the partition P, the whole graph is decomposed into k; subgraphs, and each is
induced by a part in P. Note that the weight of arcs in the subgraphs is the same as that in
the original graph, but the weight of every vertex v needs to be changed as follows,

ERERERERRREREY

100 1000 1000 10000 100 1000 100 1000 10000
Grid-1 Grid-2 MDual FEM-1 FEM-3

u Average Unbalanced Ratio ~ ® Maximum Unbalanced Ratio

(=g (=3 — —

8 8 8 3
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—_
RBJWI'A_
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Fig. 1 The unbalanced ratios of the two types of maximal matching
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w (V) = w(v) + > w(u, v),

ueN~(v) & Plu]#P[v]

where P[v] is the part which v belongs to P. The purpose of changing vertex-weight is
to ensure that the objective value for each subgraph sums up to the one for the whole
graph. In the second step, we will divide every subgraph into k; parts, and obtain k; k2 new
subgraphs by decomposing all old subgraphs. Hence, in the last step, we have k1ky - - - ke—1
subgraphs and obtain a k¢-partition of every subgraph. That is, we obtain a partition of
the original graph with k1ky - - - k; = k parts.

How to choose a recursive partition strategy? Based on our experiments in the next
section, we find that there is little difference between different strategies. Thus, if k is a
power of some integer b < 20, that is k = b/, then we divide k into b x b x --- x b.

4 Experimental results

In this section, our experiment is mainly divided into two parts: design of algorithm and
comparison with other algorithms. In the part of design of algorithm, we will test the per-
formance of the two random matching methods, verify the stability of random method,
and determine the contracted parameter c and strategy of recursive partition. In the com-
parison part, we will compare our algorithm with the k-way partition algorithm in METIS
on unbalanced ratio, maximum load and running time to evaluate the performance of our
algorithm.

The directed graphs used in the experiment consist of two classes, theoretical and prac-
tical models. We use the grid graph as the representative of the theoretical model, which
can also be regarded as the inner dual graph of the square grid of a plane. We consider grid
graphs of three sizes, namely, Grid-1 with 1,000,000 vertices and 3,996,000 arcs, Grid-2
with 10,890,000 vertices and 43,546,800 arcs, and Grid-3 with 100,000,000 vertices and
399,600,000 arcs, each of which has a random vertex-weight of 120-150, and the weight
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1.0040
1.0020
1.0000
0.9980
0.9960
100 1000 1000 10000 100 1000 100 1000 1000 10000
Grid-1 Grid-2 MDual FEM-1 FEM-3
mmm Average Max-Load ~ wwew Maximum Max-Load =~ —— Baseline (RMWM)
Fig. 2 The ratio of the max-load of the RMRM to that of RMWM. Bars above the baseline indicate that the
performance of RMRM is worse than RMWM
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Fig. 3 The best, average and worst unbalanced ratios of all examples

of every arc is about 1/20 of the weight of its end. For practical models, we use 8 graphs
from 3D finite element meshes, two of them from the METIS and others from the real
examples. The characters of all graphs are showed in Table 1. All the experiments were
performed on a Dell T7610 graphics workstation with Intel Xeon 2.6GHz CPU (6 cores)
and 1866mhz DDR3 32 GB memory.

4.1 Matching comparison

The aim of the subsection is to test the performance of the two matching contraction
methods, RMWM and RMRM mentioned in Subsec. 3.1. We do the experiment on
five graphs, Grid-1, Grid-2, MDual, FEM-1 and FEM-3. The small-scale graphs (Grid-1,

1.1200
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1.0800
1.0600
1.0400
1.0200
1.0000
0.9800
0.9600
0.9400 I
0.9200
10000
Grid-1 Grid-2 MDual FEM-1 FEM-3
s Minimum Max-Load s Maximum Max-Load === Minimum Running Time
Maximum Running Time =====Baseline (Average)
Fig. 4 The ratios of best and worst max-load and running time to the relative average results. The baseline is
the relative average value
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Grid-2 MDual FEM-4
Hc=50 mc=70 mc=90 mc=110 mc=130 mc=150
Fig. 5 The unbalanced ratios with different contracted parameters

MDual and FEM-1) and large-scale graphs (Grid-2 and FEM-3) are partitioned into 100
and 1000 parts and 1000 and 10000 parts, respectively, where the contracted parameter
¢ = 90 and the recursive partition strategies are 102, 103 and 10*. Because of the random-
ness of the algorithm, we do each partition 10 times, and then compare the average and
maximum values of the unbalanced rate p and the max-load Ljs. The experimental and
comparative results can be seen in Table 2, Figs. 1 and 2.

Figure 1 illustrates that the unbalanced ratios of RMWM are better than that of RMRM,
except for the maximum unbalanced ratio of 100-partition on MDual. Figure 2 implies
that in term of max-load, while the performance of RMWM is better than that of RMRM,
the gap is very small and the maximum ratio is less than 1.012. Hence, we use the method

in the following.

1.035
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1.025
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1.015
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1.005
1.000
0.995
0.990
0.985
0.980
0.975 .
0.970
1000 10000 100 1000 1000 10000
Grid-2 MDual FEM-4
mEmmc=50 mmmc=70 c=110 mmmc=]30 mmmic=]50 ——Baseline(c=90)
Fig. 6 The ratios of max-load of other contracted parameters to that of parameter 90
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Fig. 7 The ratios of running time of other contracted parameters to that of parameter 90

4.2 Stability verification
In this subsection, we will test the stability of the algorithm, that is, determining whether
randomness brings a large deviation to the output. The same graphs with same parts
are used in the experiment. We compare the experiment results from three aspects:
unbalance ratio, max-load and running time. The detail can be seen in Table 3.

From Fig. 3, we can see that the gap between the best and the worst result is very small
and does not exceed 0.70%. Furthermore, the unbalance ratio in every test case is quite

Table 4 The Experimental Results of Graph_Partition and k-Way Partition

Graph Number of Parts Unbalanced Ratio Max Load Running Time (s)
Graph_P METIS Graph_P METIS Graph_P METIS
Grig1 100 0.28% 6.18% 1385877 1395467 2.03 1.18
1000 0.90% 6.47% 144877 140671 2.60 1.92
Grid-2 1000 0.72% 6.25% 1512586 1520553 30.80 10.76
10000 1.25% 22.69% 157978 166845 3691 29.72
Grid-3 10000 1.34% - 1394690 - 42231 -
100000 2.00% - 145606 - 480.40 -
Copter 100 1.88% 15.03% 115978 90908 0.26 0.19
1000 7.07% 29.37% 14316 10861 042 1.10
MDual 100 0.68% 7.26% 378894 367047 0.57 035
1000 1.52% 8.14% 40891 37684 0.87 1.21
FEM-1 100 0.18% 6.09% 758264 766101 032 1.02
1000 1.06% 6.48% 78941 77174 0.50 149
FEM-2 1000 0.81% 6.99% 467329 455296 11.05 791
10000 1.69% 9.01% 49573 46728 13.64 19.74
FEM-3 1000 0.55% 7.03% 566882 552346 13.86 8.73
10000 1.55% 8.78% 60179 56684 17.22 2262
FEM-4 1000 0.72% 6.98% 762047 746764 19.44 11.72
10000 1.94% 8.11% 80081 76280 23.15 26.62
FEMS 1000 0.71% 6.87% 957775 938615 2522 14.77
10000 1.40% 8.05% 100549 95664 30.01 31.82
FEM6 1000 1.12% 6.78% 1857835 1828265 55.19 25.87

10000 1.02% 7.88% 193703 186009 63.56 50.71
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small, less than 2.00% except the worst result of 10000-partition on FEM-3. Figure 4 illus-
trates the max-load and the running time, where the baseline is average values. For each
example, the worst max-load is almost equal to the best one; the difference of running
time is also very small, and the maximum ratio is about 1.10. Hence, the randomness of
our algorithm does not bring much deviation, and it is very stable.

4.3 Determining parameters

In our algorithm, there is a parameter and a strategy that need to be determined. Firstly,
we determine the parameter, contracted parameter ¢ mentioned in Subsec. 3.1, by com-
paring the results with ¢ = 50, 70, 90, 110, 130, 150. The experiment was conducted
by three representative graphs, Grid-2, MDual and FEM-3, with the same partitions and
same recursive partition strategies as Subsec. 4.1. The comparison results are illustrated
in the following three figures.

Figure 5 shows the unbalanced ratios with different contracted parameter c. Figure 6
and Fig. 7 exhibit the ratios of results of other parameters at maximum load and running
time to results of ¢ = 90, respectively. From these figures, we can see that the unbal-
anced ratio will basically decrease with the increase of the contracted parameters, on
the contrary, the max-load and the running time will often rise with the increase of the
parameters. Overall, good performance occurs when the parameter is selected as 70, 90,
110. Thus, we will choose the parameter ¢ = 90.

For the recursive partition strategy, by dividing the number k and doing corresponding
experiments, we find that there is little difference between these results. The deviations
of unbalanced ratio and ratio of max-load are at most 0.5% and 0.2%, respectively. Hence,
we choose the simplest strategy, that is, divide k into a power of some integer b < 20.
For example, if k = 1000, our algorithm is divided into three stages, and each stage does
10-partition.

30.00%
25.00%
20.00%
15.00%
10.00%
0.00% -4 HN = | Il A Il Il u I A Il = I =0 I ml &
(=3 (=3 (=3 (=3 (=3
2 g[8 8[2 8[= 8[= s[g 3[8 §[8 §[8 5[5 §
Grid-1 = Grid-2 Copter MDual FEM-1 FEM-2 FEM-3 FEM4 FEM-5 FEM-6
® Graph_Partition = k-Way Partition (METIS)
Fig. 8 The experimental results on unbalanced ratio
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4.4 Comparison with METIS

In this subsection, we will compare the performance of our algorithm (Graph_Partition)
with the k-way partition in METIS by carrying out the experiments on the 11 graphs of
Table 1. Since METIS can only deal with undirected graphs, we transform each directed
graph in Table 1 into an undirected graph, by modifying the weight of every edge uv as
W Then, the resulting undirected graphs are partitioned by the k-way partition.
Finally, we calculate the unbalanced ratio and max-load of each graph with respect to
the partition. The experimental results can be seen in Table 4, and the comparison can
be seen in the following figures. Note that since the graph Grid-3 is huge (100,000,000
vertices and 399,600,000 arcs), METIS does not calculate a feasible result.

Figure 8 illustrates the unbalanced ratios of partition results of the two algorithms. From
the figure, we can see that the unbalanced ratio of small part is better than that of big
part for each graph. This is a very natural phenomenon. Most of unbalanced ratios by our
algorithm are less than 2%, and most of the results by METIS are between 6% and 9%.
Clearly, our algorithm is better than METIS on unbalanced ratio. All unbalanced ratios
of graph Copter are worse, and the reason is the average degree of Copter is much larger
than others.

Figures 9 and 10 show the ratios of max-load and running time of our algorithm to that
of METIS. Figure 9 illustrates that most of all ratios of max-load are between 0.94 and
1.06. This implies that there is little difference between the two algorithms in terms of
maximum load. Moreover, we can see that the ratio increases with the number of parts,
and the main reason is that we do not use mutli-level modification in back mapping phase.
And this is also a key direction in our future work. From Fig. 10, we can see that for the
small k, our algorithm often runs longer than METIS; conversely, our algorithm often runs
less time than METIS for large k. This difference is related to the number of iterations and
the average number of vertices in each part.
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Fig. 9 The ratios of max-load of our algorithm to that of METIS
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Fig. 10 The ratios of running time of our algorithm to that of METIS

5 Conclusions and future work

In this paper, we consider the balanced partition problem on large scale directed graphs.
Firstly, we present a new mathematical modeling with new objective functions for this
problem. Then, we combine multi-level strategy and recursive partition method to design
an algorithm to solve it. Finally, by a large number of experiments, we determine the
parameters, verify the stability of the algorithm, and compare with k-way partition in
METIS in unbalanced ratio, maximum load and running time three aspects. The exper-
imental results show that comparing with METIS, our algorithm is better in unbalanced
ratio and has the same quality in maximum load. Furthermore, our algorithm can deal
with some graphs with huge scale, which METIS can not return a feasible result.

There are two possible directions for future work. The first one is adding modifica-
tion in back mapping phase, that is, map the partition of D, back to that of Dy level by
level, and modify the partition of each level to be a local optimum. The second one is to
ensure the connectivity of each part. Furthermore, finding a new good and efficient graph
contraction method is also a meaningful work.
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