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Abstract

This review attempts to elucidate the physical origin of aerodynamic lift of an airfoil
using simple formulations and notations, particularly focusing on the critical effect of
the fluid viscosity. The evolutionary development of the lift problem of a flat-plate
airfoil is reviewed as a canonical case from the classical inviscid circulation theory to
the viscous-flow model. In particular, the physical aspects of the analytical
expressions for the lift coefficient of the plate-plate airfoil are discussed, including
Newton’s sine-squared law, Rayleigh’s lift formula, thin-airfoil theory and viscous-flow
lift formula. The vortex-force theory is described to provide a solid foundation for
consistent treatment of lift, form drag, Kutta condition, and downwash. The
formation of the circulation and generation of lift are discussed based on numerical
simulations of a viscous starting flow over an airfoil, and the evolution of the flow
topology near the trailing edge is well correlated with the realization of the Kutta
condition. The presented contents are valuable for the pedagogical purposes in
aerodynamics and fluid mechanics.

Keywords: Lift, Drag, Airfoil, Circulation, Kutta condition, Taylor-Sears condition,
Viscosity, Boundary layer, Vorticity, Vortex, Lamb vector, Boundary enstrophy flux

1 Introduction
The recurring questions on how aerodynamic lift is generated might have arisen when

people wonder how birds and bats could fly effortlessly. Since modern aviation has be-

come relatively mature, people might think that how lift is generated seems such a triv-

ial question that they could find a standard answer by just searching on the Internet.

Unfortunately, people who are interested in flight are still misled by some misconcep-

tions and even wrong “theories” in non-technical literature. This is evidenced by the

widely popularized myth that the laws of aerodynamics prove that the bumblebee can-

not fly [1]. There are various popular explanations for lift generation [2]. These expla-

nations capture certain physical aspects of lift generation at different levels of fidelity,

but they fail to reconstruct a complete and consistent picture with all the main phys-

ical processes. Therefore, it is still required to elucidate the physical mechanisms of lift

generation.

The aerodynamic force (lift and drag) of an airfoil is generated as a result of inter-

action between the incoming flow and airfoil. To understand the physical mechanisms

of lift generation, the phenomenological aspects of the flow over an airfoil should be

described based on flow visualizations and computational fluid dynamics (CFD)
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simulations. Figure 1 illustrates the flow over an airfoil with streamlines, marker lines

and aerodynamic force vectors. Streamlines are significantly influenced by the airfoil,

and the cross sections of streamline tubes are pinched. The cross sectional area of

streamline tubes on the upper surface is reduced near the leading edge and enlarged

downstream. A direct evidence on the faster motion of fluid particles can be obtained

in flow visualizations. As illustrated in Fig. 1, the flow field around the airfoil is visual-

ized by vertical maker lines (oil-smoke lines or dye lines in experiments) generated up-

stream at sequential times. The two pieces of a marker line separated at the leading

edge never meet at the trailing edge, and the marker line on the upper surface moves

much faster. It is also observed that the incoming flow is deflected downward in the

wake of the airfoil, while the incoming flow near the leading edge is induced upward.

Of course, the well-known empirical fact is that surface pressure on the upper surface

is lower than that on the lower surface, and the pressure difference between the upper

and lower surfaces is the main source of lift. Since the above observed flow phenomena

are related to lift, a good explanation of lift should naturally incorporate all these inter-

related physical aspects into a unified framework. There are two classes of popular ex-

planations of lift: one based on Bernoulli’s equation relating pressure to velocity and

another based on Newton’s second and third laws applied to the flow momentum

deflected downward [2]. Here, a brief review of the popular explanations is given to

show why they are incomplete.

Bernoulli’s equation along a streamline gives a relation between static pressure p and

fluid velocity u, i.e., p + ρ |u|2/2 = const.. When velocity at the upper surface is larger

than that at the lower surface, the pressure difference between the upper and lower sur-

faces generates positive lift in the upward direction. However, a critical question is why

air on the upper surface moves faster. Bernoulli’s equation itself cannot provide an an-

swer. It is tempting to find a more intuitive answer to this question. A naive assump-

tion is that two fluid particles that separate at the leading edge of an airfoil have to

meet again at the trailing edge, inferring higher velocity on the upper surface due to

the longer traveling distance. However, as illustrated in Fig. 1, this so-called “equal

transit time” assumption is not supported by the experimental facts. Therefore, this in-

terpretation may be called the “equal-transit-time” fallacy [2]. An alternative is that

higher flow velocity on the upper surface could be achieved by compressing streamline

tubes due to the so-called “obstacle effect” or the Venturi effect [3, 4]. When the cross

section of a streamline tube is pinched, local velocity is increased just like an incom-

pressible flow in a flexible pipe. An interesting historical footnote is that this pipe-flow

Fig. 1 Flow over an airfoil illustrated with streamlines, marker lines and force vectors
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analogy was once adopted by the physicist Albert Einstein to design an airfoil called

“cat’s-back” [5]. However, how the compression process of streamline tubes is related

to the airfoil geometry is unknown. The Bernoulli-based explanations imply that a vel-

ocity field is the cause of the corresponding pressure field. It is conceptually question-

able to assume that the velocity field comes first and the pressure field is established as

a result. In fact, there is a reciprocal (or circular) cause-and-effect relationship between

pressure and velocity [2]. Therefore, the Bernoulli-based explanation is not complete

and satisfactory.

Another Bernoulli-based explanation uses Bernoulli’s equation in the normal direc-

tion of a streamline, i.e., ∂p/∂n = ρ |u|2/R, where ∂p/∂n is the gradient normal to a

streamline and R is the radius of streamline curvature [6, 7]. On the upper surface with

the larger curvature, the normal pressure gradient is larger, and thus pressure decreases

more rapidly when approaching the surface. Since the upper surface is more curved

than the lower surface, if streamlines are attached on the surface, it is inferred that

pressure on the upper surface is lower than that on the lower surface and as a result lift

is generated. Although this conjecture seems conceptually correct, several questions re-

main unclear. First, it is not justified why the flows are attached on the upper surface

with a large curvature (someone may consider the Coanda effect as an answer to this

question). Further, to calculate the surface pressure distribution of an airfoil, the inte-

gration along a path normal to streamlines depends on the whole velocity field. There-

fore, the familiar reciprocal cause-and-effect question remains: why the velocity field

comes first and the pressure field is established as a result.

In the momentum-based explanation, it is argued that an airfoil acts like a turning

vane deflecting the incoming flow downward, and thus lift is generated due to the de-

flection of the flow momentum flux according to Newton’s second and third laws.

However, a question is what the physical mechanism is for the deflection of the fluid

stream. On the lower surface at the positive angle of attack (AoA), the fluid flow could

be pushed down by the inclined surface. To explain the flow turning on the upper sur-

face, the Coanda effect was proposed as a physical mechanism, originally describing the

tendency of a powered jet flow to attach to the adjacent solid surface [7, 8]. The appli-

cation of the Coanda effect to this case where no jet exists could be problematic. In

particular, the two different unrelated mechanisms are proposed for the downward de-

flection of the fluid stream on the upper and lower surfaces, which fails to provide a

unified consistent physical explanation [2]. In fact, the deflection of the fluid stream in

the momentum-based explanation is intrinsically associated with a vortex system gen-

erated by an airfoil/wing [9, 10].

On the other hand, the mathematical theory of lift must be quantitative and pre-

dictive, unlike the popular explanations of lift. In classical aerodynamics textbooks,

the two-dimensional inviscid potential flow theory of airfoils is developed, in which

lift is calculated by using the Kutta-Joukowski theorem (the K-J theorem) and the

Kutta condition is applied to the airfoil trailing edge to determine the airfoil circu-

lation [11–18]. The potential-flow theory has generated some neat and insightful

results in some simple lift problems. The potential-flow methods have been widely

used to design various airfoils before CFD methods become available in the era of

computers. Interestingly, the effects of the fluid viscosity have been discussed

mainly in the drag problem. However, the critical role of the fluid viscosity in lift
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generation is not sufficiently addressed, which could be attributed to the very sub-

tle nature of lift itself.

In this paper, to clarify the physical mechanisms of lift generation as a viscous-flow

phenomenon, we consider a flat-plate airfoil as an example to review the evolution of

our understanding of lift generation. Although a flat-plate airfoil is the simplest from a

perspective of geometry, the flow over it is non-trivial, exhibiting a singular behavior

with very large velocity and low pressure at the sharp leading edge. Thus, the popular

explanations have some difficulties for a flat-plate airfoil. For example, a flat-plate air-

foil is a clear counterexample for the “equal transit time theory”. The Venturi effect of

pinched streamline tubes for higher velocity is not solidly grounded on most upper sur-

face of the plate (except near the leading edge) since the cross section of streamline

tubes is expanded there. The application of the Coanda effect is questionable at the

sharp leading edge where the flow exhibits a singular behavior. Furthermore, the ex-

planation based on Bernoulli’s equation along the normal direction to a streamline has

a difficulty since both the upper and lower surfaces have zero curvature and a singular-

ity with |∂p/∂n|→∞ as R→ 0 occurs at the leading edge.

The objective of this paper is to elucidate the physical origin of aerodynamic lift of an

airfoil using simple formulations and notations, particularly focusing on the critical ef-

fect of the fluid viscosity. The content will be valuable as a supplementary material for

teaching in aerodynamics and fluid mechanics. From a theoretical standpoint, the ana-

lytical expressions for the lift coefficient of a flat-plate airfoil are available for compari-

son, and the underlying assumptions of these lift models are examined. Newton’s sine-

squared law is discussed as the direct application of the Newtonian mechanics of solid

particles, and then Rayleigh’s lift formula is described based on the potential-flow solu-

tion for a prescribed flow pattern over a flat-plate airfoil. Thin-airfoil theory is dis-

cussed as a classical model of the inviscid circulation theory of lift. Further, an

expression for the aerodynamic force of a flat-plate airfoil in an incompressible viscous

flow is given, which explicitly elucidates the critical role of the fluid viscosity in gener-

ating aerodynamic force (lift particularly). To explore the origin of lift from a general

perspective, the viscous vortex-force theory is briefly described, in which the relevant

concepts such as the circulation, downwash, form drag and Kutta condition are natur-

ally incorporated. The vorticity generation at the surface is discussed based on Light-

hill’s viscous coupling equations. The formation of the circulation and generation of lift

in a starting viscous flow over an airfoil are described, elucidating the relationship be-

tween the trailing-edge flow topology and the Kutta condition.

2 Newton’s sine-squared law
In the direct application of classical Newtonian mechanics of solid particles, fluid

is modeled as a collection of individual non-interacting solid particles that impinge

on a surface and then slide frictionlessly along the surface after collisions. Thus,

the momentum transferred from the impinging particles to the surface is in the

normal direction to the surface. As shown in Fig. 2a, we consider a flat-plate airfoil

with the area S (a product of the chord length and the unit span) and angle of at-

tack (AoA) α at the freestream velocity U∞. The momentum flux impinging onto

the plate is U∞(ρU∞S sin α). According to Newton’s second law, the normal force
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per unit span to the plate is FN ¼ ρU2
∞S sin2α, and the normal force coefficient is

CN ¼ FN

q∞S
¼ 2 sin2α ð1Þ

where q∞ ¼ ρU2
∞=2 is the dynamic pressure, and ρ is the fluid density. The sectional lift

and drag coefficients are expressed as

Cl ¼ L0

q∞S
¼ FN cosα

q∞S
¼ 2 sin2α cosα ð2aÞ

Cd ¼ D0

q∞S
¼ FN sinα

q∞S
¼ 2 sin3α ð2bÞ

where L' and D' are the sectional lift and drag, respectively. The lift-to-drag ratio

(L/D) is Cl/Cd = cot α. It is noted that Newton first found that the force of a seg-

ment of a curved surface was proportional to the squared sine function of the inci-

dence angle [19].

Figure 3a shows Cl as a function of α for Newton’s sine-squared law. Newton’s sine-

squared law indicates that the lift coefficient at small AoA is so small that lift is not suf-

ficient enough to air vehicle in flight. In order to increase lift, the wing area S must

Fig. 2 Flow patterns over a flat-plate airfoil: (a) Newton’s version, (b) Rayleigh’s version, and (c) thin-airfoil
model, and (d) viscous-flow model
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increase proportionally such that the wing would be too large for practical flight. Fur-

thermore, when the AoA is large for increasing lift, as shown in Fig. 3b, the drag coeffi-

cient increases significantly such that L/D becomes too small for practical flight.

Therefore, Newton’s sine-squared law gave a pessimistic prediction for aircraft flight

before modern aerodynamic was formulated.

Essentially, Newton’s sine-squared law is one of quantitative forms of the

momentum-based explanation. The contribution to lift and drag is solely from the mo-

mentum exchange between impinging particles and the lower surface of the plate. On

the upper surface, there is no particle interacting with the surface. Therefore, the con-

tribution to lift and drag from the upper surface is totally neglected, which is now

known as the major part of lift. This explains why Newton’s sine-squared law signifi-

cantly under-estimate both lift and drag, as shown in Fig. 3. From a physical viewpoint,

the main problem in Newton’s sine-squared law is that fluid cannot be simply treated

as a collection of individual non-interacting solid particles. Newton’s second law should

be applied to fluid as a continuum, which leads to the momentum equation in fluid

mechanics, i.e., the Navier-Stokes equations (the NS equations). In principle, lift and

drag of an airfoil in an incompressible viscous flow can be calculated by solving the NS

equations coupled with the continuity equation. However, due to the tremendous

Fig. 3 The lift and drag coefficients of a flat-plate airfoil as a function of AoA: (a) lift, and (b) drag. Adapted
from Liu et al. [20].
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mathematical difficulty in solving the NS equations for the lift problem, various approx-

imations and assumptions have to be made at different levels of fidelity to develop pre-

dictive analytical aerodynamics models. Some physical mechanisms, particularly the

viscous effect on lift generation lost in simplified aerodynamics models, are not suffi-

ciently elucidated, which could lead to misunderstandings on lift generation.

3 Rayleign’s lift formula
It has been recognized that the working lift models have to be developed based on a

cascade of suitable approximations and assumptions since the NS equations are diffi-

cult to be directly solved analytically. First, the inviscid-flow approximation is made

such that the NS equations are reduced to the Euler equations that have an integral:

Bernoulli’s equation providing an explicit relation between velocity and pressure along

a streamline. Bernoulli’s equation can be used as a useful tool to calculate a pressure

distribution on an airfoil and further airfoil lift when a velocity field around an airfoil is

given. To reconstruct a velocity field around an airfoil, a further approximation is that

the flow is potential and irrotational. Therefore, the flow is governed by the Laplace

equation of the velocity potential. Some elemental solutions of the Laplace equation

can be used as building blocks due to its linear nature to reconstruct a velocity field

around an airfoil. In particular, for a two-dimensional (2D) potential flow, a conformal

transformation can be applied to the airfoil theory.

Rayleigh [21] applied a conforming transformation (Kirchhoff’s transformation) to a

flat-plate airfoil at a given AoA to reconstruct a potential flow with two discontinuous

lines (free streamlines) originating from the leading and trailing edges. As shown in Fig.

2b, this flow pattern is consistent with the observation of a massively separated flow

around a flat plate with a large AoA, where two discontinuous lines represent two shear

layers shedding from the leading and trailing edges. The region confined by the two

free streamlines behind the plate is the so-called “dead air” or “dead water” region that

simulates the wake in a viscous flow. The pressure difference across the plate can be

calculated using Bernoulli’s equation. Rayleigh gave a formula for the normal force co-

efficient, i.e.,

CN ¼ 2π sinα
4þ π sinα

ð3Þ

The sectional lift and drag coefficients are expressed as

Cl ¼ 2π sinα cosα
4þ π sinα

ð4aÞ

Cd ¼ 2π sin2α
4þ π sinα

ð4bÞ

The lift-to-drag ratio is Cl/Cd = cot α.

Figure 3a shows Cl as a function of α for Rayleigh’s lift formula. Similar to Newton’s

sine-squared law, Rayleigh’s lift formula still predicts a smaller value of Cl than experi-

mental and CFD data of the lift coefficient of a flat-plate airfoil. Figure 3b shows the

predicted drag coefficient is more consistent with the CFD data. This underestimated

lift results from the fact that Rayleigh’s flow pattern is suitable for the drag problem ra-

ther than the lift problem. Particularly, Rayleigh’s analysis did not incorporate the
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vortex-lift mechanism that is a key in airfoil lift generation. Nevertheless, Rayleigh’s

work had a significant impact on the application of conforming transformations to vari-

ous inviscid flows [22]. Along this line, the Joukowski transformation and its extended

forms were later developed to calculate airfoil lift and design airfoils [12–14].

4 Circulation and thin-airfoil theory
The study of the vorticity, vortex and circulation has a long history in theoretical

hydrodynamics [22, 23]. However, the intrinsic connection between these apparently

abstract mathematical concepts and lift generation for flight had not been explored

until Lanchester recognized the importance of vortices in lift generation [24, 25]. Then,

the advent of the Kutta-Joukowski theorem (the K-J theorem) had formally laid a ra-

tional foundation for the circulatory lift theory [26, 27]. For a 2D flow over an airfoil,

the K-J theorem gives lift per unit span, i.e.,

L0 ¼ ρU∞Γ ð5Þ

In Eq. (5), Γ is the circulation defined as

Γ ¼ ∮Cu � ds ¼
Z

VC

ωdS ð6Þ

where u is the fluid velocity around the airfoil, C is an arbitrary closed contour enclos-

ing the airfoil, the contour integral is clockwise as shown in Fig. 1, and the vorticity ω

is clockwise. Physically, the circulation is the measure of fluid rotation around an air-

foil, which is positive when lift is an upward force (the positive lift). In the second

equality of Eq. (6), according to the Stokes theorem, the line integral of the velocity u

along C equals to the surface integral of the spanwise vorticity ω in a 2D domain VC

enclosed by C, where ω is one component of the vorticity ω = ∇ × u. In fact, the K-J

theorem is a compact expression of the total momentum flux across a far-field control

surface enclosing an airfoil. In this perspective, as illustrated in Fig. 1, the circulation is

directly proportional to the downwash momentum flux through the boundary of a do-

main and therefore lift. For a 2D flow, a direct relation between the circulation and

downwash could be found [27]. The Kutta-Joukowski theory is referred to as the circu-

lation theory of lift, bringing the vorticity and vortex dynamics to the center of classical

aerodynamics.

Thin-airfoil theory developed by Munk [15] is a classical application of the circulation

theory of lift. From a standpoint of aerodynamics, a thin airfoil is modeled as a straight

vortex sheet with the strength distribution γ(x) on the chordline from the leading edge

to trailing edge. The vortex-sheet strength is given as γðxÞ ≈ ½ue�þ ¼ uþe −u
−
e , represent-

ing the velocity difference between the upper and lower surfaces denoted by the super-

scripts + and −, respectively. From this perspective, the velocity difference between the

upper and lower surfaces of an airfoil is a natural result of the vortex sheet that is an

idealized model of the boundary layers (see Section 6). Figure 2c shows the flow over a

vortex sheet that simulates a flat-plate airfoil. Generally, this flow pattern represents a

more reasonable model for a thin airfoil.

To determine γ(x), the thin-airfoil integral equation can be derived based on the non-

penetration condition on the vortex sheet [14, 15]. A Fourier-series solution of the

thin-airfoil equation for γ(x) can be obtained, where the Kutta condition γ = 0 at the
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trailing edge is imposed (the velocity or pressure difference at the trailing edge is zero).

The circulation Γ is calculated by integrating γ(x) from the leading edge to trailing

edge, and the sectional lift is calculated using the K-J theorem. Thin-airfoil theory gives

the sectional lift coefficient

Cl ¼ 2π α−αL¼0ð Þ ð7Þ

where αL = 0 is the AoA at zero lift that represents the effect of the airfoil camber. Thin-

airfoil theory predicts the lift slope of dCl/dα = 2π, as shown in Fig. 3a. Compared to

Newton’s sine-squared law and Rayleigh’s lift formula, thin-airfoil theory gives the lift

coefficient that is more consistent with the CFD and experimental data. Although both

Rayleigh’s theory and thin-airfoil theory are based on the potential-flow theory, the suc-

cess of thin-airfoil theory in predicting airfoil lift is a result of introducing vortex (or

vortices) leading to vortex lift as a correct physical mechanism of lift generation. As

shown in Fig. 4, at large Reynolds numbers, thin-airfoil theory gives an improved pre-

diction of the lift coefficient for thin airfoils with round leading edges that avoid

leading-edge separation. However, when the Reynolds number based on the chord

length c decreases to Rec~10
2 − 103, the measured lift curve usually exhibits a non-

linear behavior and the lift slope becomes smaller, as shown in Fig. 3a.

The circulation in the K-J theorem cannot be determined in the potential-flow frame-

work alone since the vorticity cannot be physically generated in an inviscid flow. Due

to D′Alembert’s paradox, the integrated pressure force of a body is zero in a steady in-

viscid irrotational incompressible flow [12, 14]. The important implication of D′Alem-

bert’s paradox is that lift and drag of a moving body must be a result of a viscous flow

no matter how small the fluid viscosity is. To determine the circulation, the Kutta con-

dition is imposed at the trailing edge, providing a phenomenological model of the vis-

cous effect on lift generation [13, 14]. The viscous origin of lift has been recognized,

which has to be essentially found in the viscous-flow framework (see Section 6). It is

Fig. 4 The sectional lift coefficient as a function of AoA for several NACA airfoils
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noted that thin-airfoil theory gives zero drag as a consequence of D′Alembert’s paradox

although it correctly predicts lift.

5 Viscous-flow lift formula
Lift of a flat-plate airfoil can be directly evaluated as a viscous-flow result without expli-

citly using the circulation and K-J theorem in classical aerodynamics [20]. This non-

traditional attempt is based on the intrinsic relationship between the skin friction top-

ology and surface pressure structure in a viscous flow. For an incompressible viscous

flow over a stationary curved surface, an exact relation between the surface pressure

gradient ∇p and the skin-friction vector τ can be derived from the NS equations

[20, 28, 29, 30, 31]. In particular, for a flat surface where the curvature effect vanishes,

this on-wall relation is written as

τ � ∇p ¼ μ f Ω ð8Þ

where fΩ = μ ∂Ω/∂n is the boundary enstrophy flux (BEF), μ is the dynamic viscosity of

fluid, Ω = |ω|2/2 is the enstrophy,ω is the vorticity, and ∂/∂n is the derivative along the

unit normal outward vector n of the surface. The BEF is an intriguing quantity that is

particularly related to the topological features in complex flows such as isolated critical

points, separation lines, and attachment lines in a skin-friction field [28–30].

Along a skin-friction line, Eq. (8) is re-written as dp/ds = s ⋅ ∇ p = μ fΩ|τ|
−1, where

s = τ/|τ| is the unit vector along the skin-friction line. Therefore, the surface pressure is

given by the path integral along a skin-friction line, i.e.,

p xð Þ ¼ μ
Z P xð Þ

P0 x0ð Þ
f Ω τj j−1ds ¼ μ

Z P xð Þ

P0 x0ð Þ

∂ ωj j
∂n

ds ð9Þ

where P(x) and P0(x0) denote a point and a starting point on a skin-friction line, re-

spectively. In principle, since skin-friction lines are densely distributed, a set of the

starting points P0(x0) from which skin-friction lines originate could be selected such

that the points P(x) can cover densely the whole surface. According to Eq. (9), surface

pressure is related to the historical effect of the viscous diffusion flux of the boundary

vorticity magnitude (μ ∂|ω|/∂n) along a skin-friction line. At the limit of μ→ 0, the

boundary layer thickness approaches to zero, i.e., δ→ 0 while |ω| remains finite, lead-

ing to ∂|ω|/∂n→∞. Thus, μ ∂|ω|/∂n could be finite. It is noted that the viscous flow

with μ→ 0 is not equivalent to the purely inviscid flow with μ = 0.

The aerodynamic force is formally expressed as the following surface integral

F ¼
Z

S
ð−pnþ τÞdS ¼ −μ

Z
S
ndS

Z PðxÞ

P0ðx0Þ

∂jωj
∂n

ds þ μ
Z

S
ω� n dS ð10Þ

Eq. (10) explicitly describes the critical role of the fluid viscosity in generating the aero-

dynamic force. For a steady inviscid incompressible flow with μ = 0, we have F = 0 ac-

cording to Eq. (10), and thus D’Alembert’s paradox is naturally recovered. The first

term in Eq. (10) is the integrated pressure force expressed by the integral of the histor-

ical effect of the viscous diffusion flux of the boundary vorticity magnitude that is expli-

citly related to the fluid viscosity. The second term is the integrated skin-friction force.

Lift is mainly contributed by the pressure term (the first term). The main consequence

of Eq. (10) is that lift and drag (including the pressure and skin-friction drags) must
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coexist as a result of the viscous flow over an airfoil. Physically, lift cannot be generated

without the cost of generating the viscous drag at the same time.

To elucidate the connection between boundary layer and lift generation through Eq.

(10), a flat-plate airfoil at a small AoA (α) is considered. As shown in Fig. 2d, the

boundary layers with opposite vorticity are developed on the upper and lower surfaces

of the plate. To model the boundary layers of the flat plate, the Falkner-Skan flow is

used, in which the BEF and skin friction can be expressed in the analytical forms [32].

Therefore, by using Eq. (9), the pressure coefficient difference across the plate (the

non-dimensional pressure loading of the plate) is given by

ΔCp ¼ Δp=q∞ ¼ Rq x2m1− 1−ΔCp;TER
−1
q

� �
x−2m1

h i
ð11Þ

where Δ p is the pressure difference between the lower and upper surfaces of the plate,

x ¼ x=c is the chordwise coordinate normalized by the chord length c, Rq ¼
ðUref =U∞ Þ2 Re2m1

c is the ratio between the trailing-edge and freestream dynamic pres-

sures, U∞ is the freestream velocity, Uref ¼ a1ðν=U ∞Þm1 is a reference velocity, Rec =

U∞c/ν is the Reynolds number, Δ Cp, TE is the value of ΔCp at the trailing edge, and

m1 = − α/(π − α). The Δ Cp-distribution is weakly dependent of Rec since |m1| ≈ α/

π < < 1. At the leading edge, as x→0, there is a singularity of ΔCp→x2m1 with m1 =

− α/(π − α), and the singularity is weakened as α→ 0, which seems physically reasonable

in a viscous flow. In contrast, in the classical thin-airfoil theory, the stronger singularity

ΔCp→x−1=2 at the leading edge remains unchanged even as α→ 0.

Figure 5 shows the Δ Cp-distributions on the flat plate predicted by Eq. (11) for differ-

ent AoAs at Rec = 200. Eq. (11) gives the consistent profiles with the CFD data [20].

Interestingly, the profiles of ΔCp/α approximately collapse, indicating that the effect of

α on Δ Cp predicted by the viscous-flow model is essentially consistent with the distri-

bution ΔCp=α ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1−xÞ=xp

given by thin-airfoil theory. The value of Δ Cp, TE de-

creases with α, and the classical version of the Kutta condition ΔCp = 0 is not exactly

Fig. 5 The chordwise distributions of the surface pressure coefficient difference across the flat plate at
different AoAs. From Liu et al. [20]
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satisfied at the trailing edge. Nevertheless, the Taylor-Sears condition that the net vorti-

city flux is zero at the trailing edge holds in this viscous flow, which is a generalized

form of the Kutta condition (see Section 6). In this sense, the Kutta condition is a re-

duced and more restricted case of the Taylor-Sears condition.

The normal force of the flat plate is calculated by integrating Δ p from x = 0 and x =

c. Then, the sectional lift and drag coefficients are expressed as

Cl ¼ 2πα F αð Þ cos αð Þ ð12aÞ
Cd ¼ 2πα F αð Þ sin αð Þ þ Cd;0 ð12bÞ

where the non-linear factor is defined as

F αð Þ ¼ Rq

2
1−

α
π

� � 4þ ΔCp;TER−1
q π−3αð Þ

π−αð Þ2−4α2 ð13Þ

and Cd, 0 is the parasite drag coefficient (the value of Cd at zero AoA). The lift formula

Eq. (12a) is different from the linear relation Cl = 2π α given by thin-airfoil theory due

to the non-linear factor F(α) depending on the parameters Rq and ΔCp, TE. The param-

eter Rq is determined by the velocity ratio Uref/U∞ and the Reynolds number Rec. In

the limiting case as α→ 0, the asymptotic behavior of F(α)→ 2(Uref/U∞)
2/π2 = 1 is in-

ferred when Eq. (12a) is consistent with thin-airfoil theory with ΔCp, TE = 0 in this lim-

iting case. Therefore, the parameter Uref/U∞ is determined, i.e.,

Uref =U∞ ¼ π=
ffiffiffi
2

p
≈ 2:22.

Figure 3a shows the sectional lift coefficient as a function of α. The Cl-curve pre-

dicted by Eq. (12a) exhibits the non-linear behavior that is consistent with the CFD re-

sults at Rec = 200 [20] and measurement data of an aluminum (Al) foil wing with the

aspect ratio of 6 at Rec = 7500 [33]. In contrast, thin-airfoil theory gives the linear Cl-

curve with the larger lift slope. This low-Reynolds-number flow example indicates that

the nonlinear effect of the viscosity on lift generation could not be sufficiently simu-

lated by the Kutta condition imposed in a simple linear potential-flow model. Further-

more, as shown in Fig. 3b, the Cd-curve given by Eq. (12b) is in reasonable agreement

with the data given by CFD and measurements [20, 33], and Cd − Cd, 0 increases with α

mainly due to the pressure drag.

6 Viscous origin of lift
6.1 Viscous Vortex force

To provide a feasible physical explanation of lift generation, the circulation or vortex-

force theory has to be reconstructed in the viscous-flow framework, and the critical role

of the fluid viscosity in lift generation must be sufficiently addressed by incorporating

all the relevant physical features into the theory. The general force expressions have

been derived from the Navier-Stokes equations [34–37]. When the Reynolds number is

large (Re > > 1), the force of a body in the fluid control volume Vf bounded externally

by a control surface Σ is given by Wu et al. [38], i.e.,

F ¼ ρ
Z

V f

u� ωdV þ
Z

Σ
ðP∞−PÞndS ð14Þ
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where P = p + ρ |u|2/2 is the total pressure with P∞ being its constant value at upstream

infinity. The volume integral of the Lamb vector (l = u × ω) in Eq. (14) represents the

vortex force, which was first found by Prandtl in developing the finite wing theory [39].

In an inviscid flow with P∞ − P = 0 (Bernoulli’s equation), the K-J theorem can be

exactly reduced from the vortex force in 2D [40, 41]. As illustrated in Fig. 6, the bound-

ary layer on an airfoil is a key element for lift generation since the Lamb vector as the

main force constituent is concentrated in a very thin layer in the boundary layer on the

surface (within about 10% boundary-layer thickness).

In Eq. (14), since the total pressure loss measured by P∞ − P > 0 appears in the viscous

wake, the integral of P∞ − P over the wake plane represents the viscous form drag de-

noted by Dform. On the other hand, the component of the vortex force in the freestream

direction is the induced drag denoted by Din that coexists with the lift of a finite wing.

Therefore, all the force constituents, including lift, skin-friction drag, form drag, and in-

duced drag, are related to the vorticity generated at the surface in a 3D viscous flow.

6.2 Kutta-Joukowski lift and form drag

In a 2D steady viscous flow, the vortical wake must extend downstream unboundedly,

and any contour surrounding an airfoil must cut through the wake. In this case, since

Bernoulli’s equation no longer holds across the viscous wake, the original derivation of

Eq. (5) by Joukowski in an inviscid flow is not strictly applicable. The applicability of

the K-J theorem in a viscous flow was first studied experimentally by Bryant and Wil-

liams [42]. To explain the experimental findings, Taylor [43] provided a theoretical ac-

count. The main results of Taylor are stated as follows. If the downstream face of the

outer contour Σ is a wake plane denoted by of W, for Re > > 1, the sectional lift and

form drag are given by

L0 ¼ ρU∞Γ ð15aÞ

Dform ¼
Z

W
P∞−Pð ÞdS ð15bÞ

Fig. 6 Illustration of boundary layer and wake around an airfoil
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where Γ is the circulation along the outer contour Σ. The condition imposed on Eq.

(15) is that at the wake plane, the net vorticity flux must vanish, i.e.,
Z

W
uωdz ¼ 0 ð16Þ

where u is the velocity projected on the freestream direction. According to Eq. (15), the

K-J theorem naturally coexists with the form drag formula in the viscous-flow frame-

work, which resolves the dilemma in the classical inviscid circulation theory associated

with D’Alembert’s paradox.

As illustrated in Fig. 6, Eq. (16) indicates that the positive and negative advective vor-

ticity fluxes (uω) from the boundary layers on the upper and lower surfaces are can-

celled out in the wake. Therefore, Eq. (16) is necessary for the circulation Γ to be

independent of the position of the wake plane. Sears [44, 45] further proved that Eq.

(16) would be equivalent to the requirement that the pressures at the outer edges of

the boundary layers on the upper and lower surfaces must be the same at the trailing

edge. Eq. (16) is referred to as the Taylor-Sears condition providing a viscous-flow-

theoretical foundation for the empirical Kutta condition.

6.3 Thin airfoil as a reduced case

To elucidate the effectively viscous origin of lift, as illustrated in Fig. 7, thin-airfoil the-

ory is a simplified model, where the boundary layer on a thin airfoil can be idealized as

a vortex sheet on the camber line [46]. As indicated in Eq. (14), the Lamb vector (l =

u ×ω) is the sole contributor to lift. The Lamb vector is concentrated in the boundary-

layer domain Vbl that forms a folded band with the width of δ and its outer contour

CAB wrapped around the flat plate from the point A to the point B in the wake as

Fig. 7 Idealization from a boundary layer to a vortex sheet to a bound vortex
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shown in Fig. 8. The vortex lift of a body in a viscous flow is expressed as a volume in-

tegral of the Lamb vector, i.e.,

L0 ¼ ρel �
R

Vbl
l dV ð17Þ

where el is the unit vector normal to the freestream velocity. Formally, the vortex lift of

an airfoil is expressed in the K-J theorem, i.e., L ' = ρU∞Γ, where Γ is the circulation

based on the Lamb vector integral. Further, since the Lamb vector in a 2D boundary

layer is u × ω = n uω, the sectional lift of a flat-plate airfoil calculated based on pressure

at the boundary-layer edge (the contour CAB) is related to the vortex lift by

L0 ¼ ρU∞Γ−ρ χ½ �AB ð18Þ

where χ ¼ ½uω�δ0 is the advective vorticity flux across the boundary layer and ½χ�AB is the

jump of χ across the points A and B in the wake.

Eq. (18) indicates that in the viscous flow the pressure lift equals the vortex lift given

by the K-J theorem when the condition ½χ�AB ¼ ½uω�AB ¼ 0 is satisfied in the wake. In

other words, the positive and negative advective vorticity fluxes from the boundary

layers on the upper and lower surfaces should be cancelled out in the wake for the K-J

theorem to be applicable to a viscous flow. This condition is just the Taylor-Sears con-

dition. For a very thin boundary layer, as the wake plane approaches to the trailing

edge, the Taylor-Sears condition would be reduced to the requirement that pressures at

the outer edges of boundary layers of the upper and lower surfaces must be the same

at the trailing edge, which is the Kutta condition ΔCp = 0 at the trailing edge.

To examine the Taylor-Sears condition in the flow over a flat-plate airfoil, the differ-

ence of the Lamb vector integrals across the boundary layers on the upper and lower

surfaces, i.e., Δl ¼ ½uω�þ− , is evaluated based on numerical simulations [20], where “+”

and “−” denote the upper and lower surfaces, respectively. The Lamb vector difference

Δl can be interpreted as the local loading on the flat plate, and at the same time Δl

¼ ½uω�þ− represents the net advective vorticity flux across the boundary layers on the

flat plate. Figure 9 shows the chordwise distributions of 2Δl�=α ¼ 2Δl=U2
∞α on the flat

plate at different AoAs in comparison with Δ Cp/α given by thin-airfoil theory. It is

found that Δl ¼ ½uω�þ− ¼ 0 at the trailing edge, and therefore the Taylor-Sears condi-

tion holds in this viscous flow even though the Kutta condition ΔCp = 0 is not satisfied

at the trailing edge (see Section 5).

Fig. 8 Viscous flow over a flat-plate airfoil, where the color bar indicates the normalized vorticity. From Liu
et al. [28]
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In general, when a thin airfoil is divided into N segments with the length of Δxk (k =

1, 2, ⋯N), the sectional lift of the airfoil at a small AoA can be approximately

expressed as

L0 ≈
PN
k¼1

ΔpkΔxk ≈ ρU∞
PN
k¼1

γkΔxk ≈
PN
k¼1

ρΔlkδkΔxk ð19Þ

where Δp is the surface pressure difference between the lower and upper surfaces, Δl is

the difference of the Lamb vector (l = uω) between the upper and lower surfaces,

γ = Δp/ρU∞ is the strength of the vortex sheet, and δ is the characteristic thickness of

the Lamb-vector layer in a boundary layer. For the homogeneous segments, a local rela-

tion is Δpk ≈ ρU∞ γk ≈ ρ Δlkδk, indicating that the pressure loading of a segment of a

thin airfoil approximately equals the local K-J lift or the local vortex lift of the segment.

This directly elucidates the relationship between the pressure difference across the air-

foil and the boundary-layer properties (vorticity and Lamb vector). In other words, lift

is generated by the surface pressure difference that is intrinsically coupled with the

boundary-layer properties (vorticity and Lamb vector) on the upper and lower surfaces

and strained by the Taylor-Sears condition at the trailing edge. This provides the

viscous-flow foundation of thin-airfoil theory. In a similar approach, unsteady thin-

airfoil theory can be developed in the viscous-flow framework [46], in which the clas-

sical von Kárman-Sears theory of unsteady inviscid flow over a moving thin airfoil is re-

covered as a reduced case [47].

6.4 Lift, circulation and downwash

The circulation theory and the momentum-based models are related. According to

Newton’s third law, the upward lift must be balanced by the downwash of a massive

fluid body pushed by the wing. The momentum-based explanation claims that the ori-

gin of lift should be the downward turning of the flow or downwash. As pointed out by

McLean [2], however, lift and downwash are in a reciprocal causal relationship. It is

Fig. 9 The normalized chordwise distributions of the Lamb vector integral across the boundary layers on
the flat-plate airfoil. From Liu et al. [20]
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therefore of interest to examine how lift and downwash are related. The force exerted

by a wing/airfoil is proportional to the rate of change of the total momentum through

a sufficiently large control surface Σ enclosing the wing/airfoil. When the viscous effect

is neglected in the far flow field, the vertical projection of the force gives a lift-

downwash relation,

L ¼ ρ
Z

Σ
ð0:5juj2nz−vu � nÞdS ð20Þ

where nz and v are the components of the unit vector n and velocity u = (u, v) in the z-

direction normal to the incoming flow, respectively. The first and second terms in the

right-hand side (RHS) of Eq. (20) are the contributions by pressure and the downwash

momentum flux projected in the vertical direction through Σ, respectively.

For a 2D flow, a direct relation between the circulation and downwash was found by

Wu et al. [38]. A sufficiently large rectangular control surface Σ enclosing an airfoil is

considered. The front face of Σ is at far upstream with the freestream velocity U∞, and

the rear face (a wake plane W) is at xW downstream of the trailing edge. The origin of

the coordinate x is set at the leading edge. In the non-dimensional variables u ¼ u=U∞,

x = x/c and z = z/c with c being the chord length, this relation is expressed as

�Γ ¼ Γ
U∞c

¼ −
Z

W
�u �vd�z þ 1

2

Z �xW

0
½ �u2−�v2 �þ− d�x ð21Þ

The first term in the RHS of Eq. (21) is the downwash momentum flux on the wake

plane. The second term is the difference of u2−v2 between the upper and lower faces of

Σ that vanishes as these faces recede to infinity. It is clear that both the circulation the-

ory and the lift-downwash argument are on the same basis.

7 Generation of vorticity and circulation
The standard argument on the origin of the circulation was given based on flow visuali-

zations in a starting flow [11, 15, 48]. A suddenly accelerating airfoil generates a start-

ing vortex observed in experiments. According to the total circulation conservation

theorem, since the total circulation in the region enclosed by a sufficiently large control

contour is zero initially, it is inferred that a bound vortex with the opposite sign and

the same magnitude of the starting vortex should be generated in the airfoil at the same

time. However, this argument is more like logical inference than direct experimental

validation [10]. The true cause of the circulation is the boundary-layer vorticity on an

airfoil. The boundary-layer theory actually provides the physical foundations for the cir-

culation theory.

The origin of the vorticity was studied by Lighthill [49, 50]. To recapitulate his result,

we use the right-hand orthonormal frame (n, t) on a streamline, as shown in Fig. 1,

where t and n are the unit tangent and normal vectors of any streamline. Lighthill gave

a pair of equations describing the viscous coupling between the surface pressure gradi-

ent and boundary vorticity flux, i.e.,

∂p
∂s

¼ μ
∂ω
∂n

ð22aÞ
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∂p
∂n

¼ −μ
∂ω
∂s

ð22bÞ

Eq. (22a) reveals that the tangential pressure gradient can generate new vorticity at the

rate measured by the boundary vorticity flux (BVF) denoted by σ = μ ∂ω/∂n. Figure 10

illustrates a rolling-fluid-ball analogy for the vorticity-generating mechanism revealed

by Eq. (22a). Consider a small fluid ball on a solid wall. It is assumed that at t = 0 the

tangential pressure gradient (∂p/∂s < 0) suddenly occurs to push the ball to move to-

ward in the right direction. Due to the no-slip condition, the ball cannot slide but only

rolls along the wall and hence gains an angular velocity. Thus, the vorticity in the roll-

ing ball is newly created by the tangential pressure gradient, which first occurs in the

fluid layer adjacent to the wall and then diffuses into the fluid. In contrast, the second

equation in Eq. (22b) has a very minor effect since its terms in both the sides are in the

order of Re−1/2 when the Reynolds number Re is large.

It is possible to identify the causality mechanisms embedded in Eq. (22a). When an

airfoil moves in fluid, pressure p is generated as the first causal mechanism since it is a

result of molecules collisions in an equilibrium state. This is an inviscid process with

the timescale tp~c/a, where c is the chord length and a is the speed of sound. In an in-

compressible flow, tp→ 0. Since it is realized that pressure alone can by no means fully

explain lift generation, the appearance of the viscous shear stress is a necessary mech-

anism, which comes after a short relaxation time [49, 50]. Strictly, according to Eq.

(22a), the tangential pressure gradient causes the BVF, but they occur almost simultan-

eously since the molecule relaxation time can be neglected in the local equilibrium as-

sumption used throughout the continuous fluid dynamics. Then, the vorticity

generated by the BVF at the wall diffuses into the fluid and advects downstream by the

tangential pressure gradient. The advection time scale is ta~c/U∞ so that tp/ta~M,

where M is the Mach number. The diffusion time scale is tω~δ
2/ν, where δ is the effect-

ive viscous diffusion distance. If the estimated boundary-layer thickness is δ � c Re−nc ,

there is an estimate tp=tω � M Re2n−1c , where Rec =U∞c/ν is the Reynolds number and

n is a positive exponent that depends on the boundary-layer characteristics. For an in-

compressible flow with M→ 0, there must be tp/tω < < 1. Therefore, the generation of

the vorticity in a boundary layer is an accumulated effect of the BVF in both space and

time.

To study the generation of the circulation and the realization of the Kutta condition,

numerical simulations were conducted by Zhu et al. [51] on a laminar accelerating uni-

form incoming incompressible flow over a NACA-0012 airfoil at AoA of 6o. A scaling

Fig. 10 Schematic illustration of vorticity generation at a wall. Adapted from Lighthill [49, 50]
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analysis gives a generic transient process of aircraft takeoff. In the aircraft coordinate

system, takeoff can be considered as the transient flow described by the normalized vel-

ocity U(t)/Uref as a function of the normalized time t/Tref, where the reference quan-

tities Uref and Tref are the takeoff velocity and time, respectively, at which an aircraft

lifts off from the ground. Figure 11 shows the normalized velocity data in takeoff for a

Cessna 182 [52], a hybrid flight vehicle [53] and a Gulfstream American AA-5B Tiger

[54]. Interestingly, these data collapse well to the model function U(t)/Uref = sin (π t/

2Tref) if t/Tref < 1 or U(t)/Uref = 1 if t/Tref ≥ 1 used by Zhu et al. [51] in their numerical

simulations. The solution of the dynamical equation for takeoff of a Cessna 182 is also

plotted in Fig. 11 for comparison.

The major events in the formation process of the circulation and the flow patterns

near the trailing edge are shown in Fig. 12. Streamlines reveal the evolution of the flow

topology particularly in the zoomed-in views near the trailing edge. Isolated critical

points are marked in Fig. 12, where node and saddle are denoted by N and S, and semi-

node and semi-saddle by N' and S', respectively. The front stagnation point at the lead-

ing edge is a semi-saddle. The number of critical points in a 2D airfoil flow must obey

the following topological rule [55, 56].

#N−
#N 0

2

� �
− #S−

#S0

2

� �
¼ −1 ð23Þ

where # denotes the total number of nodes, saddles, semi-nodes or semi-saddles. The

number of critical points at different stages in Fig. 12 satisfies Eq. (23), confirming the

topological consistency of the computed flow patterns. Figure 13 shows the generation

of the circulation in the transient process at the corresponding moments.

To describe the flow patterns near the trailing edge, several versions of the Kutta

condition are given. From a phenomenological standpoint, Glauert [15] stated “the flow

must leave the trailing edge smoothly”; von Kármán and Burgers [40] stated “in the

final steady flow, the rear stagnation point shall coincide with the trailing edge of the

airfoil”. The physical foundation of the Kutta condition can only be found in the

Fig. 11 Scaling of transient starting flows in aircraft takeoff
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viscous-flow framework. Sears [45] gave a quantitative condition that the total vorticity

flux would be zero at the trailing edge (the Taylor-Sears condition), which can be re-

duced to the requirement that the surface pressure difference at the trailing edge van-

ishes. The statements by Glauert, Kármán and Burgers, and Sears are referred to as the

Glauert, Kármán-Burgers, and Sears versions of the Kutta condition, respectively.

The following stages (a)-(e) in the process of the generation of the circulation and lift

are summarized below.

(a) In a very short time period immediately after the flow starts up, as shown in

Fig. 12a at t/Tref = 0.002, the pressure field and the tangential pressure gradient on

Fig. 12 Illustration of the generic process of lift generation after the incoming uniform flow starts suddenly
over an airfoil: (a) t/Tref = 0.002, (b) t/Tref = 0.029, (c) t/Tref = 0.05, and (d) t/Tref = 0.1, and (e) t/Tref = 1.0.
Streamlines, pathlines and streaklines are shown in gray lines with arrows, black lines and white lines,
respectively. Adapted from Zhu et al. [51]
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the airfoil surface are instantly established, and thus the boundary vorticity flux

(BVF) is generated almost at the same time through the pressure-vorticity coupling

at the surface according to Lighthill’s local dynamic equations. However, in such a

short time period, the generated boundary vorticity is not yet diffused into the fluid

since the diffusion timescale is much larger than the molecule relaxation time.

Therefore, the flow field over the airfoil exhibits the typical topology of the inviscid

irrotational flow, in which a semi-saddle (the rear stagnation point) occurs on the

upper surface. At this moment, the circulation and lift are zero.

(b) As the generated boundary vorticity diffuses into the vicinity of the wall, a

near-wall separated bubble starts to form and grows rapidly in its size on the

upper surface. After the bubble grows to a critical size, as shown in Fig. 12b

at t/Tref = 0.029, two semi-saddles on the upper surface and upstream the trail-

ing edge merge into a single saddle that starts to lift off from the wall, so the

bubble breaks and the upper-surface transient boundary layer becomes fully at-

tached, leaving a single semi-saddle at the trailing edge. The small segment of

free vortex sheet starts to roll rapidly, which signifies the initial formation of a

starting vortex of counterclockwise vorticity. Thus, the clockwise circulation

around the airfoil and lift starts to appear. The von Kármán-Burgers version of

the Kutta condition is realized since the rear stagnation point coincides with

the trailing edge.

(c) As shown in Fig. 12c, at t/Tref = 0.050, the saddle and node have been fully lifted up

from the surface. The formation of a starting vortex continues with increasing the

circulation.

(d) As shown in Fig. 12d, at t/Tref = 0.1, critical points in the upper part of the flow

disappear, the vorticity generated in the upper and lower boundary layers with

opposite signs sheds into the wake, and the free shear layer in the wake rolls up

into a starting vortex growing and traveling downstream. The flow streams on the

upper and lower surfaces leave from the trailing edge smoothly, so that the Glauert

version of the Kutta condition is realized. The circulation and lift are increased

significantly.

Fig. 13 Growth of the airfoil circulation in the accelerated starting flow over a NACA-0012 airfoil, where the
typical moments corresponding to the flow patterns in the circulation formation in Fig. 12 are marked.
Adapted from Zhu et al. [51]
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(e) As shown in Fig. 12e, after a sufficient time of evolution, the flow field approaches

a steady state at t/Tref = 1.0. Since the net advective vorticity flux in the wake is

zero near the trailing edge, the Sears version of the Kutta condition is realized.

Therefore, the legitimacy of the application the K-J theorem to viscous attached

flows is fully established. Eventually, steady lift is generated along with the airfoil

circulation.

The evolution of the near-wall flow topological structures near the trailing edge

in the above process is possible only in a viscous flow, which is directly correlated

with the realization of the Kutta condition. In the history of airfoil’s flow evolution,

the pressure field is first established around the airfoil in a very short time before

the viscous effect becomes significant, and thus the inviscid flow pattern appears.

Then, according to Lighthill’s coupling equations, the vorticity is generated by the

tangential pressure gradient near the wall and the viscous shear layer is developed.

Eventually, interaction between the pressure field and the near-wall viscous flow

leads to a steady flow field over the airfoil where the flow leaves the trailing edge

smoothly and the corresponding pressure field. Therefore, the steady circulation

and lift are generated.

8 Conclusions
The generation of lift happens only in a viscous flow over an airfoil. The incompressible

aerodynamic force is solely related to the vorticity field and its associated velocity field. In

this sense, the boundary layer on the airfoil surface is a direct physical origin of lift. This

point is elucidated by reviewing the evolutionary development of the lift problem of a flat-

plate airfoil, including Newton’s sine-squared law, Rayleigh’s lift formula, thin-airfoil theory,

and viscous-flow lift formula. The Kutta-Joukowski inviscid circulation theory for lift, in-

cluding the Kutta condition for determining the circulation, is rationalized in the viscous-

flow framework. The viscous vortex-force theory provides more consistent interpretations

for the relevant concepts such as the circulation, form drag, Kutta condition, and

downwash. To illustrate the generation of the circulation and lift as a viscous-flow

phenomenon, the numerical simulations reveal the dynamic evolution of the trailing-edge

flow topology in a starting flow over an airfoil. The flow topological structures near the trail-

ing edge are well correlated with the realization of the different versions of the Kutta

condition.

The relevant aspects of lift are summarized below.

(1) Lift is a result of the surface pressure difference between the upper and lower

surfaces, which is intrinsically coupled with the boundary-layer development char-

acterized by the relevant physical properties particularly vorticity, Lamb vector,

and boundary vorticity magnitude flux.

(2) Lift is generated only in a viscous flow, which naturally coexists with the viscous

drag. Without the fluid viscosity, both lift and drag are zero (D′Alembert’s

paradox).

(3) The Kutta-Joukowski theorem is valid for a viscous flow over an airfoil, which is

constrained by the Taylor-Sear condition that the net vorticity flux is zero at the

trailing edge.
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(4) The generation of the circulation and lift in a viscous starting flow over an airfoil

results from a sequential development of the near-wall flow topology and the Kutta

condition at the trailing edge.

(5) The circulation is directly related to the downwash momentum flux in the wake.
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