
Advances in AerodynamicsChen et al. Advances in Aerodynamics             (2022) 4:4 
https://doi.org/10.1186/s42774-021-00090-x

RESEARCH Open Access

Efficient SVV stabilized triangular
spectral elementmethods for incompressible
flows of high Reynolds numbers
Lizhen Chen1, Tao Tang2,3 and Chuanju Xu4*

*Correspondence:
cjxu@xmu.edu.cn
4School of Mathematical Sciences,
and Fujian Provincial Key Laboratory
of Mathematical Modeling and
High-Performance Scientific
Computing, Xiamen University,
Xiamen 361005, People’s Republic
of China
Full list of author information is
available at the end of the article

Abstract

In this paper, we propose a spectral vanishing viscosity method for the triangular
spectral element computation of high Reynolds number incompressible flows. This can
be regarded as an extension of a similar stabilization technique for the standard
spectral element method. The difficulty of this extension lies in the fact that a suitable
definition of spectral vanishing viscosity operator in non-structured elements does not
exist, and it is not clear that if a suitably defined spectral vanishing viscosity provides
desirable dissipation for the artificially accumulated energy. The main contribution of
the paper includes: 1) a well-defined spectral vanishing viscosity operator is proposed
for non-standard spectral element methods for the Navier-Stokes equations based on
triangular or tetrahedron partitions; 2) an evaluation technique is introduced to
efficiently implement the stabilization term without extra computational cost; 3) the
accuracy and efficiency of the proposed method is carefully examined through several
numerical examples. Our numerical results show that the proposed method not only
preserves the exponential convergence, but also produces improved accuracy when
applied to the unsteady Navier-Stokes equations having smooth solutions. Especially,
the stabilized triangular spectral element method efficiently stabilizes the simulation of
high Reynolds incompressible flows.

Keywords: Navier-Stokes equations, Triangular spectral element method, Spectral
vanishing viscosity

1 Introduction
The spectral-element method is a high-order variational method which combines the
geometric flexibility of finite-elements with the high accuracy of spectral methods. It
possesses several good computational properties, such as fast evaluation due to its ten-
sor product structure, diagonal mass matrices, and suitability for parallel computation.
However, in order to use fast tensor product summation, the standard spectral-element
method is usually restricted to quadrilateral (2D) or hexahedron (3D) partitions. This par-
tition requirement is difficult to meet in certain situations like complex geometries and
adaptive meshing. One way to overcome this drawback is to allow triangular (2D) or tetra-
hedron (3D) partitions, which are more flexible in handling complex geometries. Progress
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has been made in this direction in recent years, and some triangular spectral methods of
different types have been developed based on (i) approximations by polynomials through
mapping (see, e.g., [1–5]); (ii) approximations by polynomials using special nodal points
such as Fekete points (see, e.g., [6–9]); and (iii) approximations by non-polynomial func-
tions (see, e.g., [10–12]). In this paper we will focus on the triangular spectral method
(TSM) based on approximations by rational polynomials. This type of TSM enjoys full
tensor product structure, thus allowing fast summation in matrix-vector multiplications.
It was first proposed and analyzed for elliptic problems in [12], then extended to the
Stokes problem in [13]. Subsequently, an unstructured nodal spectral-element method
for the Navier-Stokes equations was developed in [14]. This method is based on element-
wise rational approximations in triangular or tetrahedral, and can be easily implemented
using nodal basis. The aim of the paper is to investigate the applicability of the TSM to
simulate incompressible flows of high Reynolds number. This is not a trivial task from
our past experience in using standard rectangular spectral-element methods, and suitable
dissipation mechanics need to be introduced to stabilize the calculation.
Indeed, high Reynolds number flows are difficult to compute, especially when using

spectrally accurate numerical schemes as spectral methods [15]. This difficulty is linked
to the fact that spectral methods are much less numerically diffusive than low-order
methods. It has been found; see, e.g. [15, 16], that the non-artificially dissipated energy
accumulates at the high spatial frequencies may cause unstable calculation. One way
to overcome this difficulty is to use stabilization techniques, as proposed in [15, 16].
However in stabilizing the spectral element method, it is important to maintain the
spectral accuracy of the algorithm. In standard rectangular spectral element methods,
the spectral vanishing viscosity (SVV) approach has been proved to be an efficient sta-
bilization method, which possesses the properties of the inter-element continuity and
the spectral accuracy for smooth solutions. The SVV method was initially developed
for the resolution of nonlinear conservation laws using standard Fourier spectral meth-
ods [17]. This method has been extensively investigated for periodic problems [18–23]
and non-periodic problems in the framework of Legendre pseudo-spectral method [23–
29]. Attempts to apply the SVV approach in different (but all standard) spectral element
methods for simulation of incompressible flows have been made in [15, 26, 30].
The current work aims at making an attempt to apply the SVV approach in triangular

spectral element methods (TSEM). The key is to define suitable SVV operators allow-
ing fast evaluation on one side, and stabilization effect while maintaining the spectral
accuracy on the other side. This is not at all obvious since, in standard spectral element
methods, there exist several possibilities to define SVV operator in rectangular elements.
For example, as pointed out in [15, 30], some definitions of tensor product form may
induce non-desired dissipative terms, and contrastly some definitions may have no dis-
sipation effect in high frequencies at some direction. It is notable that a similar SVV
approach has been used in [31] which considered the quadrilateral and triangular grids
based on approximations by polynomials through mapping.
The purpose of this paper is first to well define the SVV operator in triangular domain.

Then we show how to implement the SVV term in the framework of TSEM. The imple-
mentation has to take into account complex multidimensional geometries and vector
valued functions, which make this point non-trivial. Finally, we will check the capabilities
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of the SVV-stabilized TSEM by simulating high Reynolds number incompressible flows
in terms of accuracy and stability.
The paper is organized as follows. In the next section, we define the SVV operator in

triangular domain and propose a new stabilized TSEM based on the SVV approach for
the unsteady Navier-Stokes equations. The implementation details of the SVV-stabilized
TSEM are given. Section 3 presents some numerical results which validate the accuracy
and efficiency of the proposed method. Finally, the paper ends with some concluding
remarks in Section 4. Extension to 3D case is presented in the Appendix.

2 Stabilized triangular spectral element method
This section is devoted to designing our SVV-stabilized triangular spectral element
method for the Navier-Stokes equations. Hereafter we use boldface letters to denote
vectors, vector functions, or vector spaces. Let � be an open, connected and bounded
domain in R

2 with boundary ∂� assumed to be Lipschitz continuous. We use L2(�)

to denote the space of square integrable functions in �. The inner product of L2(�) is
denoted by (u, v)� := ∫

�
uvd�. Let H1(�) = {v ∈ L2(�), ∂xv ∈ L2(�), ∂yv ∈ L2(�)}. The

norm and semi-norm of H1(�) are denoted by ‖u‖1,� and |u|1,� respectively. Let H1
0 (�)

be the space of all functions in H1(�) having vanishing trace on ∂�. Let us denote the
velocity vector by u, the ratio between the pressure and the (constant) density by p, and
let f be a forcing known term. The Navier-Stokes equation reads:

{
Dtu − ν�u + ∇p = f , in �,

∇ · u = 0, in �,
(1)

subject to appropriate initial and boundary conditions. In the above equations, Dtu
denotes the material (Lagrangian) derivative of u with respect to time t, which can be
expressed by ∂tu + u · ∇u. ν is the dimensionless viscosity (the inverse of the Reynolds
number).

2.1 Triangular spectral method

To clearly explain the idea, we start with a description of the spectral method in a single
triangular domain �:

� = {(x, y) : 0 < x, y < 1, 0 < x + y < 1
}
.

The weak formulation of the Navier-Stokes Eq. 1 in the triangular domain � reads: find
(u, p) ∈ H1

0 (�)2 ×L20(�), such that
{

(Dtu, v) + ν(∇u,∇v) − (p,∇ · v) = (f , v), ∀v ∈ H1
0 (�)2,

(q,∇ · u) = 0, ∀q ∈ L20(�).
(2)

In order to well define the triangular spectral element approximation in space to
the above weak problem, we will need some notations. The one-to-one transformation
between � and the square � := (−1, 1)2 is given by the Duffy mapping x = F(ξ):

x = 1
4
(1 + ξ)(1 − η), y = 1 + η

2
, ∀(ξ , η) ∈ �, (3)

with its inverse ξ = F−1(x) from � to � by

ξ = 2x
1 − y

− 1, η = 2y − 1, ∀(x, y) ∈ �. (4)
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(ξ , η) is often referred to as collapsed coordinate system or the Duffy coordinates. It is an
easy matter to compute the Jacobian determinant, denoted by J, of the mapping F :

J(ξ , η) = 1 − η

8
. (5)

We associate a function u in � with a function ũ in � through

ũ(ξ , η) = u(x, y), x = 1
4
(1 + ξ)(1 − η), y = 1 + η

2
, ∀(ξ , η) ∈ �. (6)

The following formulas for the gradient operators will be useful:

∇xu = (∂xu, ∂yu)T =
(

4
1 − η

∂ξ ũ,
2(1 + ξ)

1 − η
∂ξ ũ + 2∂ηũ

)T
.

∇ξ ũ = (∂ξ ũ, ∂ηũ)T =
(
1 − y
2

∂xu,
x

2(1 − y)
∂xu + 1

2
∂yu
)T

.

The approximation space to be used consists of the rational functions generated by
polynomials in the reference square through the Duffy transform. Define the rational
functionR(x, y) in �:

Rmn(x, y) = R̃mn

(
2x

1 − y
− 1, 2y − 1

)

, ∀(x, y) ∈ �,

where R̃mn(ξ , η) be the polynomial in � defined by:

R̃mn(ξ , η) = J0,0m (ξ)J1,0n (η), ∀(ξ , η) ∈ � (7)

with Jα,βk (ζ ), ζ ∈ � being the Jacobi polynomial of degree k. Define the approximation
spaces and their transformations as follows:

QN (�) = span
{
Rmn(x, y), 0 ≤ m, n ≤ N , (x, y) ∈ �} ,

Q̃N (�) = span{R̃mn(ξ , η), 0 ≤ m, n ≤ N , (ξ , η) ∈ �},
Q

0
N (�) = {v ∈ QN (�), v|∂� = 0

}
,

Q̃
0
N (�) = {v ∈ Q̃N (�), v|∂� = 0

}
.

(8)

Let ξp, p = 0, 1, · · · ,N , be the Legendre-Gauss-Lobatto points associated to LN , i.e.,
zeros of (1− z2)L′

N (z); ωp, p = 0, 1, · · · ,N , be the corresponding weights. We then define
the discrete inner product (·, ·)N on �:

(φ,ψ)N :=
(
Jφ̃, ψ̃

)

N ,�
:=

N∑

p,q=0
φ̃(ξp, ξq)ψ̃(ξp, ξq)J(ξp, ξq)ωpωq, ∀φ,ψ ∈ C(�), (9)

where J is defined in (5). Let XN andMN be the approximation spaces:

XN = X2
N , XN = H1

0 (�) ∩ QN (�), MN = L20(�) ∩ QN−2(�). (10)

We now consider the rational spectral approximation to (2): Find uN ∈ XN and pN ∈
MN , such that

{
(DtuN , vN )N + ν(∇uN ,∇vN )N − (pN ,∇ · vN )N = (f , vN )N , ∀vN ∈ XN ,

(qN ,∇ · uN )N = 0, ∀qN ∈ MN .
(11)
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It is notable that, similar to the standard spectral method for the Stokes problem, the
pressure approximation space used in (11) is two degrees less than the velocity approx-
imation space XN . This is to satisfy the well-known discrete inf-sup condition, which is
necessary to avoid spurious pressure modes.

2.2 SVV stabilization

Let � = (−1, 1), PN (�) is the space of polynomials of degree ≤ N . We first define the
spectral vanishing operator in PN (�), denoted by S , using the Legendre basis by

Sφ :=
N∑

n=0
Ŝnφ̂nLn, ∀φ ∈ PN (�), φ =

N∑

n=0
φ̂nLn,

where Ln is the Legendre polynomial of degree n, Ŝn = 0 if n ≤ mN and 1 ≥ Ŝn ≥ 0
if n > mN . Typical choices for mN : O(

√
N) [23], mN = N/2 [26], or N − 2 [32]. It is

desirable to use a smooth variation for Ŝn as:

Ŝn = exp
(

−
(

N − n
mN − n

)2
)

, n > mN .

Then we define the SVV term −εN∂x(S(∂xuN )), which is written in weak form as
follows:

VN (uN , vN ) = εN (S(∂xuN ), ∂xvN )L2(�), ∀uN , vN ∈ PN (�),

where εN = O(1/N). Note that the SVV term may be made symmetric:

VN (uN , vN ) = εN
(
S1/2(∂xuN ),S1/2(∂xvN )

)
L2(�)

with the following definition of S1/2:

S1/2φ :=
N∑

n=0

√
Ŝnφ̂nLn, ∀φ =

N∑

n=0
φ̂nLn.

The SVV operator in the 2D reference domain � is defined in the following way. For
uN , vN ∈ Q̃N (�)2, which is defined in (24), the SVV term reads

VN (uN , vN ) = εN
(
S1/2(∇uN ),S1/2(∇vN )

)
N ,� ,

where S1/2(∇uN ) is defined by

S1/2∇uN =
⎛

⎝
S1/2

ξ (∂ξu1,N ) S1/2
ξ (∂ξu2,N )

S1/2
η (∂ηu1,N ) S1/2

η (∂ηu2,N )

⎞

⎠

with

S1/2
ξ φ(ξ , η) :=∑N

n=0
√
Ŝnφ̂n(η)Ln(ξ), ∀φ : φ(ξ , η) =∑N

n=0 φ̂n(η)Ln(ξ);

S1/2
η φ(ξ , η) :=∑N

n=0
√
Ŝnφ̂n(ξ)Ln(η), ∀φ : φ(ξ , η) =∑N

n=0 φ̂n(ξ)Ln(η).

Now we turn to define the SVV operator in the triangular domain �. For uN , vN ∈
QN (�)2, we use the Duffy mapping (3) to associate the functions ũN and ṽN through (6).
Doing so allows to define the SVV operator by

VN (uN , vN ) = εN (JGS1/2∇ũN ,GS1/2∇ṽN )N ,�, (12)

where G is the Jacobian of the mapping (4):
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G =
⎛

⎝

∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

⎞

⎠ =
⎛

⎝
4

1−η
0

2(1+ξ)
1−η

2

⎞

⎠ .

We are now in a position to propose our SVV-stabilized TSM in single domain � as
follows: find uN ∈ XN , pN ∈ MN , such that
{

(DtuN , vN )N + ν(∇uN ,∇vN )N− (pN ,∇ · vN )N + VN (uN , vN ) = (f , vN )N , ∀vN ∈ XN ,
(qN ,∇ · uN )N = 0, ∀qN ∈ MN ,

where the stabilization term VN is defined in (12). In practice, it is highly beneficial to
have the original diffusion term and the stabilization term combined together. Thus we
propose to introduce the termTN (uN , vN ) to replace ν(∇uN ,∇vN )N+VN (uN , vN ), which
is defined by

TN (uN , vN ) = ν(JGT 1/2∇ũN ,GT 1/2∇ṽN )N ,�,

where

T 1/2∇ũN =
⎛

⎝
T 1/2

ξ (∂ξ ũ1,N ) T 1/2
ξ (∂ξ ũ2,N )

T 1/2
η (∂ηũ1,N ) T 1/2

η (∂ηũ2,N )

⎞

⎠

with

T 1/2
ξ φ(ξ , η) :=∑N

n=0

√
1 + εN

ν
Ŝnφ̂n(η)Ln(ξ), ∀φ : φ(ξ , η) =∑N

n=0 φ̂n(η)Ln(ξ);

T 1/2
η φ(ξ , η) :=∑N

n=0

√
1 + εN

ν
Ŝnφ̂n(ξ)Ln(η), ∀φ : φ(ξ , η) =∑N

n=0 φ̂n(ξ)Ln(η).

Finally, the SVV-stabilized TSM for the Navier-Stokes equations reads: find uN ∈
XN , pN ∈ MN , such that

{
(DtuN , vN )N + TN (uN , vN ) − (pN ,∇ · vN )N = (f , vN )N , ∀vN ∈ XN ,

(qN ,∇ · uN )N = 0, ∀qN ∈ MN ,
(13)

2.3 Implementation based on nodal basis

In this subsection, we give the details of the implementation of the SVV stabilization term
TN (·, ·). The approach described here follows what is usually done when a nodal basis is
chosen.
For notation convenience, we denote by u1 ∈ XN and v1 ∈ XN the first component of

uN and vN respectively, respectively. The first component of TN (uN , vN ), denoted by T1
N ,

can be written as

T1
N = ν

∑N
p,q=1

[
G1T 1/2(∂ξ ũ1)T 1/2(∂ξ ṽ1) + G2T 1/2(∂ηũ1)T 1/2(∂ηṽ1)

+G3(T 1/2(∂ξ ũ1)T 1/2(∂ηṽ1) + T 1/2(∂ηũ1)T 1/2(∂ξ ṽ1))
]
(ξpq)

ωpq
J(ξpq) ,

where ξpq = (ξp, ηq), ωpq = ωpωq. G1,G2, and G3 are three geometric factors, defined as

G1 := (∂ηx)2 + (∂ηy)2 = (1+ξ)2+4
16 ,

G2 := (∂ξx)2 + (∂ξ y)2 = (1−η)2

16 ,

G3 := −(∂ξx∂ηy + ∂ξ y∂ηx) = (1+ξ)(1+η)
16 .
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Let hi, i = 0, 1, . . . ,N be the Lagrangian polynomials associated to the Legendre-Gauss-
Lobatto points {ξp, p = 0, 1, . . . ,N}. Then it can be checked that the function set

{
hi(ξ)hj(η), 0 ≤ i ≤ M, 0 ≤ j ≤ N − 1; hN (η)

}

forms a basis of the Q̃N (�) ∩ H1(�).
Expressing u1 on this basis, i.e., u1 =∑M

i=0
∑N−1

j=0 uijhi(ξ)hj(η)+u0NhN (η), and choos-
ing the test function v1 ∈ XN to be each of the above basis functions, we arrive at the
matrix statement of T1

N , denoted still by T1
N :

T1
N (m, n) = ν

∑N
i=0

ρin|J(ξin)|G1,in(Ds)im
(∑N

p=0(Ds)ipupn
)

+ν
∑N

j=0
ρmj

|J(ξmj)|G2,mj(Ds)jn
(∑N−1

q=0 (Ds)jqumj + (Ds)jNu0N
)

+ν
∑N−1

j=0
ρmj

|J(ξmj)|G3,mj(Ds)jn
(∑N

p=0(Ds)mpupj
)

+ν
∑N

i=0
ρin|J(ξin)|G3,in(Ds)im

(∑N−1
q=0 (Ds)nquiq + (Ds)nNu0N

)

∀m = 0, . . . ,N , n = 0, . . . ,N − 1.

T1
N (0,N) = ν

∑N
j=0

(∑N
i=0

ρij
|J(ξij)|G2,ij(Ds)jN

(∑N−1
q=0 (Ds)jquiq + (Ds)jNu0N

))

+ν
∑N−1

j=0

(∑N
i=0

ρij
|J(ξij)|G3,ij(Ds)jN

(∑N
p=0(Ds)ipupj

))
.

Here Ds = T 1/2D with D being the Legendre differentiation matrix. The matrix form
of the operator T 1/2 is defined by

T 1/2 := M−1diag
(
I + εN

ν
Ŝn
)1/2M, (14)

whereM is the passage matrix from physical space to Legendre spectral space.

2.4 SVV stabilization in TSEM

We now briefly describe how to set up SVV-stabilized TSEM with triangle and rectangle
mixed partition. Let � be an open bounded polygonal domain, which is decomposed as:

� =
K⋃

k=1
�k , �i ∩ �j = ∅, i 
= j. �i is a triangular or quadrilateral element.

Let Fk denote the mapping from the reference domain� to �k . In this case, the velocity
and pressure approximation spaces are:

XN =
{
vN ∈ H1

0 (�) : vN |�k ∈ Xk
N , 1 ≤ k ≤ K

}
,

MN =
{
qN ∈ L20(�) : qN |�k ∈ Mk

N , 1 ≤ k ≤ K
}
,

(15)

where

Xk
N =

{
vN = ṽN ◦ F−1

k : ṽN ∈ Q̃N (�)
}
,

Mk
N =

{
qN = q̃N ◦ F−1

k : q̃N ∈ Q̃N−2(�)
}
.

The SVV-stabilized TSEM in this spectral element case can be written in the same way
as (13), with the SVV term taking now the element-wise sum as

TN (uN , vN ) =
K∑

k=1
Tk
N (uN , vN ), (16)
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where

Tk
N (uN , vN ) = ν

(
JkGkT 1/2∇ũN ,GkT 1/2∇ṽN

)

N ,�
, k = 1, 2, . . . ,K ,

with Gk being the Jacobian of the mapping F−1
k , and Jk the Jacobian determinant of the

mapping Fk .

3 Numerical results and discussions
In this section, we will investigate the convergence and stability property of the SVV-
stabilized TSEM. We first consider the Navier-Stokes equations with a stiff analytical
solution to verify the accuracy. For this fabricated analytical solution, we observe that
the SVV-stabilized TSEM not only keeps exponentially accurate, but also improves the
accuracy as compared to the standard SEM. Then the flow through a backward facing
step is simulated with the SVV-stabilized TSEM to show the stabilization capability of the
method.
We use the classical semi-implicit splitting scheme for the temporal discretization, in

which the non-linear convection terms are treated explicitly using third-order Adams-
Bashforth; see, e.g., [33]. The spatial discretization makes use of the C0-TSEM with SVV
stabilization, described in Section 2.4. The C0-continuity of the velocity across the spec-
tral elements is naturally enforced by using a nodal basis. Similar to C0-finite element
methods for the Navier-Stokes equations, the global matrix system can be built by assem-
bling the local matrix system, together with the continuity conditions for the velocity,
which is accomplished by requiring that the neighboring solutions share the same nodal
values at the element interfaces [14].

3.1 Unsteady Navier-Stokes equations

First we investigate the accuracy of our stabilized triangular spectral elementmethod with
ν being fixed to be 0.01. In order to demonstrate the accuracy of the SVV-stabilization
method for the Navier-Stokes Eq. (1), we fabricate the exact solution as follows:

u(x, y, t) = sin(t) sin(x) cos(y), v(x, y, t) = − sin(t) cos(x) sin(y),
p(x, y, t) = sin(t) sin(x) sin(y).

The triangular spectral element mesh with N = 8 in the computational domain � := �2

is shown in Fig. 1.
Figure 2 shows the velocity and pressure errors inH1, L∞ and L2 norms versus the poly-

nomial degree N at t = 1 obtained with the SVV-stabilized TSEM and the standard SEM
respectively. In this test we set the parameters mN = N − 2 and εN = 1/N . We observe
that the SVV stabilized-SEMnot only preserves the exponential convergence rate, but also
is more accurate than the standard SEM. This phenomenon is in contrast with what we
have obtained in the previous linear elliptic equation. The reason of this desirable result
is that finite mode approximation to the solution causes accumulation of the undissipated
energy at the high-frequency modes of the numerical solution through the nonlinear con-
vection terms. These spurious high-frequency modes resulting from aliasing effects of
the convection terms may be damped when the SVV is activated in the SVV-stabilized
TSEM, leading to more accurate results. It is worth mentioning that a similar result has
been obtained for the SVV-stabilization in the standard SEM [15].
The error history during the time integration is displayed in Fig. 3, in which the errors
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Fig. 1 The triangular spectral element mesh with N = 8 for the second example

Fig. 2 Errors of u (left) and p (right) in the L2, L∞ , and H1 norms versus the polynomial degree N in semi-log
scale at t = 1 with ν = 0.01,m = N − 2, εN = 1/N

Fig. 3 Errors on u (left) and p (right) of the L2, L∞ and H1 norms versus the time t in semi-log scale. Fixed
parameters ν = 0.01,m = N − 2, εN = 1/N
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Fig. 4 Errors on u (left) and p (right) of the L2, L∞ and H1 norms versus the time t in semi-log scale. Fixed
parameters ν = 0.001,m = N − 2, εN = 1/N

Fig. 5 Configuration of the backward facing step flow

Fig. 6 Domain partitions and spectral-element meshes with N = 8 for the backward facing step flow. The
domain is broken into mixed triangular/quadrangular elements

Fig. 7 Enlarged view of some elements near the step
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Fig. 8 Vector of the velocity (up), streamline contours (middle), and pressure contours (down) obtained
respectively from the triangular spectral-element method with Re = 10000

are compared between the SVV-stabilized TSEM and the standard SEM. It is observed
that the accuracy of the SVV-stabilized TSEM is higher than the standard SEM during all
time. The similar result is observed in Fig. 4 with ν = 0.001.

3.2 Flow through a backward facing step

In this example, we apply the SVV-TSEM to simulate the flow through a backward facing
step by solving the Navier-Stokes Eq. 1 in the domain shown in Fig. 5.
The Dirichlet boundary condition g and initial condition u0 in (1) for the backward

facing step flow are specified as follows:

g =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(0, 0), on �0
(
1 − (1 − 5y)2, 0

)
, on �1

(
2
3

[
1 − (1 − 10

3 (y + 0.2)
)2] , 0

)
, on �2,

(17)

Fig. 9 Same as Fig. 8 but Re = 50000
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Fig. 10 Enlarged view of vector of the velocity with Re = 10000 (up) and Re = 50000 (down) respectively

u0 =
(
2
3

[

1 −
(

1 − 10
3

(y + 0.2)
)2
]

, 0
)

.

The Reynolds number is defined as Re = ū(H − h)/ν, where ū is the average velocity at
the entrance,H and h are respectively the height of the outlet and the entrance. ThusH−h
is the height of the step. The expansion ratio of the step is h : H = 2 : 3. It is seen from (17)
that the profile of the inflow boundary condition is taken parabolic. The outlet boundary
is taken far away from the step (22 step heights) to avoid possible artificial reflection. The
mixed triangular and quadrangular spectral-element mesh is shown in Fig. 6. An enlarged
view of some elements near the step is displayed in Fig. 7.
In our calculations, we fix the element number to K = 40 and the polynomial degree

to N = 8. The simulation is performed for two Reynolds numbers: Re = 10000 and
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Fig. 11 Enlarged view of the streamline contours with Re = 10000 (up) and Re = 50000 (down) respectively

Re = 50000 (corresponding to ν = 2.666666−05 and ν = 5.333332−06 respectively).
We would like to emphasize that the calculation by the standard SEM for the flow at
Re = 50000 is unstable. Therefore we only present the numerical results obtained with
the SVV-stabilized TSEM. In Figs. 8 and 9 we present the vector of the velocity, stream-
line contours, and pressure contours captured at t = 1.42 for Re = 10000 and Re = 50000
respectively. Enlarged views of the computed solutions near the step are given in Figs. 10,
11, and 12 respectively. The well resolved flow structures can be readily observed in
these figures, and compare well with the existing results in the literature. This test con-
firms the accuracy and the stabilization effect of the proposed SVV-TSEM for simulating
incompressible flows at high Reynolds numbers.
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Fig. 12 Enlarged view of the pressure contours with Re = 10000 (up) and Re = 50000 (down) respectively

4 Conclusions
We have proposed a SVV stabilization for non-standard spectral element methods based
on triangular or triangular/quadrangular mixed meshes. The main goal is to design a
stable high order method for the spatial discretization of the Navier-Stokes equations.
The contribution of this paper is threefold: Firstly, the SVV operator is suitably defined
for a triangular domain; Secondly, we have shown how to efficiently implement the SVV
operator in the framework of triangular spectral element methods. The implementa-
tion had to take into account complex multidimensional geometries and vector valued
functions, which made this point non-trivial. Thirdly, the efficiency of the proposed sta-
bilized TSEM was verified through several numerical examples, including linear elliptic
equation, Navier-Stokes equations in simple domains, and incompressible flows at high
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Reynolds numbers. The accuracy, convergence order, and stability property of themethod
were carefully examined. Our numerical finding is: 1) the proposed SVV-stabilized TSEM
keeps the exponential convergence as standard SEM for smooth solutions; 2) the SVV-
termmay cause a loss of accuracy for linear elliptic equations, thus is not suggested to use.
In fact, SVV-stabilization is usually unnecessary for linear equations; 3) SVV-stabilized
TSEM significantly improved both the accuracy and stability of the incompressible flow
simulation at high Reynolds number. In particular, SVV-stabilized TSEM allows to stably
simulate flows of high Reynolds numbers for which the standard SEM fails. We would
like to emphasize that the method developed in the paper is directly applicable to prac-
tical flow simulations in aerodynamics, such as airfoil flows and turbulence, as one has
done with the traditional spectral element method. One more point worth mentioning
is that it was reported in [34] that the use of some SVV kernels may lead to undesirable
property. We will investigate this phenomenon in future work.

Appendix: Extension to the three-dimensional case
We describe in this appendix some basic ingredients for developing non classical 3-D
spectral-element methods for the Stokes equation.

A.1 Spectral method in tetrahedron

As in the 2-D case, we will use two coordinate systems: the Cartesian coordinate-(x, y, z)
for the tetrahedron � := {0 ≤ x, y, z; x+ y+ z ≤ 1} and the reference coordinate-(ξ , η, ζ )

for the cube � := {−1 ≤ ξ , η, ζ ≤ 1}. For ease of notation, we also denote x = (x, y, z)
and ξ = (ξ , η, ζ ).
The one-to-one transformation from � to � is given by the 3-D Duffy mapping x =

F(ξ):

⎧
⎪⎨

⎪⎩

x = (1+ξ)(1−η)(1−ζ )
8 ,

y = (1+η)(1−ζ )
4 ,

z = 1+ζ
2 ,

∀(ξ , η, ζ ) ∈ �, (18)

with its inverse ξ = F−1(x) from � to � by

Fig. 13 a Domain � with coordinate (x, y, z), b Domain� with coordinate (ξ , η, ζ )
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⎧
⎪⎨

⎪⎩

ξ = 2x
1−y−z − 1,

η = 2y
1−z − 1,

ζ = 2z − 1.
∀(x, y, z) ∈ �. (19)

We collect below some properties of the 3-D Duffy mapping:

∂x
∂ξ

= (1 − η)(1 − ζ )

8
= 1 − y − z

2
,

∂x
∂η

= − (1 + ξ)(1 − ζ )

8
= − x(1 − z)

2(1 − y − z)
,

∂x
∂ζ

= − (1 + ξ)(1 − η)

8
= − x

2(1 − z)
,

∂y
∂ξ

= 0,
∂y
∂η

= 1 − ζ

4
= 1 − z

2
,

∂y
∂ξ

= −1 + η

4
= − y

2(1 − z)
,

∂z
∂ζ

= 0,
∂z
∂η

= 0,
∂z
∂ζ

= 1
2
.

Inversely,

∂ξ

∂x
= 2

1 − y − z
= 8

(1 − η)(1 − ζ )
,

∂ξ

∂y
= 2x

(1 − y − z)2
= 4(1 + ξ)

(1 − η)(1 − ζ )
,

∂ξ

∂z
= ∂ξ

∂y
,

∂η

∂x
= 0,

∂η

∂y
= 2

1 − z
= 4

1 − ζ
,

∂η

∂z
= 2y

(1 − z)2
= 2(1 + η)

1 − ζ
,

∂ζ

∂x
= 0,

∂ζ

∂y
= 0,

∂ζ

∂z
= 2.

From the above, one easily finds the determinant of the Jacobian for (18):

det
(

∂(x, y, z)
∂(ξ , η, ζ )

)

= (1 − η)(1 − ζ )2

64
= (1 − y − z)(1 − z)

8
. (20)

Therefore, we have

∇xu = (∂xu, ∂yu, ∂zu)T

=
(

8
(1−η)(1−ζ )

∂ξ ũ, 4(1+ξ)
(1−η)(1−ζ )

∂ξ ũ + 4
1−ζ

∂ηũ, 4(1+ξ)
(1−η)(1−ζ )

∂ξ ũ + 2(1+η)
1−ζ

∂ηũ + 2∂ζ ũ
)T

,
(21)

and inversely,

∇ξ ũ = (∂ξ ũ, ∂ηũ, ∂ζ ũ)T

=
(
1−y−z

2 ∂xu, − x(1−z)
2(1−y−z) ∂xu + 1−z

2 ∂yu, − x
2(1−z) ∂xu − y

2(1−z) ∂yu + 1
2∂zu

)T
.
(22)

It follows from (21) that if u ∈ H1(�), then necessarily

∂ξ ũ(ξ , 1, ζ ) = ∂ξ ũ(ξ , η, 1) = ∂ηũ(ξ , η, 1) = 0.

A direct calculation from (21) gives

(∇u,∇v)

=
∫

�

(
2 + (1 + ξ)2

2(1 − η)

∂ũ
∂ξ

∂ ṽ
∂ξ

+ (1 + ξ)

8

(
2(1 − ζ )

1 − η
+ (1 + η)

)
∂ũ
∂ξ

∂ ṽ
∂η

+ (1 + ξ)(1 − ζ )

8
∂ũ
∂ξ

∂ ṽ
∂ζ

+ (1 + ξ)

8

(
2(1 − ζ )

1 − η
+ (1 + η)

)
∂ũ
∂η

∂ ṽ
∂ξ

+
(

(1 − ζ )2

4(1 − η)
+ (1 + η)2(1 − η)

16

)
∂ũ
∂η

∂ ṽ
∂η

+ (1 − η)(1 + η)(1 − ζ )

16
∂ũ
∂η

∂ ṽ
∂ζ

+ (1 + ξ)(1 − ζ )

8
∂ũ
∂ζ

∂ ṽ
∂ξ

+ (1 + η)(1 − η)(1 − ζ )

16
∂ũ
∂ζ

∂ ṽ
∂η

+ (1 − η)(1 − ζ )2

16
∂ũ
∂ζ

∂ ṽ
∂ζ

)

dξdηdζ .
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Moreover, we have
∫

�
u(x, y, z)dxdydz =

∫

�
ũ(ξ , η, ζ )

(1 − η)(1 − ζ )2

64
dξdηdζ .

We shall use rational functions generated by polynomials in the reference cube through
the 3-D Duffy transform. More precisely, let R̃lmn(ξ , η, ζ ) be the polynomial in� defined
by:

R̃lmn(ξ , η, ζ ) = J0,0l (ξ)J1,0m (η)J2,0n (ζ ), ∀(ξ , η, ζ ) ∈ �, (23)

we define the rational function R(x, y, z) in � by the Duffy transformation of
R̃lmn(ξ , η, ζ ), i.e.,

Rlmn(x, y, z) = R̃lmn

(
2x

1 − y − z
− 1,

2y
1 − z

− 1, 2z − 1
)

= J0,0l

(
2x

1 − y − z
− 1
)

J1,0m

(
2y

1 − z
− 1
)

J2,0n (2z − 1), ∀(x, y, z) ∈ �.

The approximation spaces and their transformations will be as follows:

QN (�) = span
{
Rlmn(x, y, z), 0 ≤ l,m, n ≤ N , (x, y, z) ∈ �} ,

Q̃N (�) = span
{
R̃lmn(ξ , η, ζ ), 0 ≤ l,m, n ≤ N , (ξ , η, ζ ) ∈ �

}
,

Q
0
N (�) = {v ∈ QN (�), v|∂� = 0} ,

Q̃
0
N (�) =

{
v ∈ Q̃N (�), v|∂� = 0

}
.

(24)

By the properties of the Jacobi polynomials, we can easily verify the following orthogo-
nality relation:
∫
� Rlmn(x, y, z)Rl′m′n′(x, y, z)dxdydz

= 1
64
∫ 1
−1 J

0,0
l (ξ)J0,0l′ (ξ)dξ

∫ 1
−1 J

1,0
m (η)J1,0m′ (η)(1 − η)dη

∫ 1
−1 J

2,0
n (ζ )J2,0n′ (ζ )(1 − ζ )2dζ

= γlmnδll′δmm′δnn′ , with γlmn = 1
(2l+1)(2m+2)(2n+3) .

Any function u ∈ L2(�) can be expressed as

u(x, y, z) =
∞∑

l=0

∞∑

m=0

∞∑

n=0
ûlmnRlmn(x, y, z)

with the coefficient ûlmn given by

ûlmn = 1
γlmn

∫

�
u(x, y, z)Rlmn(x, y, z)dxdydz. (25)

On the other hand, we have ũ ∈ L2� (�) if and only if u ∈ L2(�), where the weight
function

�(ξ , η, ζ ) := (1 − η)(1 − ζ )2

64
is the Jacobian defined in (20). Similarly, we have the following expression for ũ:

ũ(ξ , η, ζ ) =
∞∑

l=0

∞∑

m=0

∞∑

n=0
ûlmnR̃lmn(ξ , η, ζ )

with ûlmn given in (25) or equivalently in the alternative form:

ûlmn = 1
γlmn

∫

�
ũ(ξ , η, ζ )R̃lmn(ξ , η, ζ )�(ξ , η, ζ )dξdηdζ .
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Let ϕ̃lmn(ξ , η, ζ ) = hl(ξ)hm(η)hn(ζ ), ψ̃lmn(ξ , η, ζ ) = ll(ξ)lm(η)ln(ζ ), where {hk}Nk=0 and
{lk}N−1

k=1 are the Lagrange polynomials associated to the N + 1 and N − 1 Gauss-Lobatto
points respectively. We define the 3-variable Lagrangian basis functions in �:

ϕlmn(x, y, z) = ϕ̃lmn(ξ , η, ζ ), ψlmn(x, y, z) = ψ̃lmn(ξ , η, ζ ),

through the Duffy mapping. Then, the approximation spaces for the velocity and pressure
are respectively

XN = span{(ϕlmn(x, y, z), 0, 0), (0,ϕlmn(x, y, z), 0), (0, 0,ϕlmn(x, y, z)), 1 ≤ l,m, n ≤ N − 1},
MN = span{ψlmn(x, y, z), 1 ≤ l,m, n ≤ N − 1} ∩ L20(�).

The TSM for the Stokes equations reads: find uN ∈ XN , pN ∈ MN , such that
{

ν(∇uN ,∇vN )N − (pN ,∇ · vN )N = (f , vN )N , ∀vN ∈ XN ,
(qN ,∇ · uN )N = 0, ∀qN ∈ MN ,

(26)

where (·, ·)N is the natural 3D-extension of the discrete inner product defined in (9).
We can then derive the linear system from (26) by expressing uN and pN as combina-

tions of the nodal basis functions:
uN (x, y, z) = ũN (ξ , η, ζ ) =∑N−1

l,m,n=1 ulmnϕ̃lmn(ξ , η, ζ ),

pN (x, y, z) = p̃N (ξ , η, ζ ) =∑N−1
l,m,n=1 plmnψ̃lmn(ξ , η, ζ ),

where, by definition of the basis functions, ulmn = ũN (ξl, ξm, ξn) = uN (xl, ym, zn), plmn =
p̃N (ξl, ξm, ξn) = pN (xl, ym, zn), 1 ≤ l,m, n ≤ N − 1, with (xl, ym, zn) being the mapped
points in � of the Gauss-Lobatto points (ξl, ξm, ξn), i.e., (xl, ym, zn) = F(ξl, ξm, ξn).

A.2 Spectral-element method in 3D domains with tetrahedron partition

We now turn to describe the case of general 3D domains with partition. Let � be a
polyhedron which is partitioned into a number of tetrahedrons:

� =⋃K
k=1 �k , �i ∩ �j = ∅, i 
= j.

We assume that the partition is conforming in the usual sense. In this case, the velocity
and pressure approximation spaces are defined by:

XN = {vN ∈ H1
0 (�), vN = ṽN ◦ F−1

k : ṽN ∈ Q̃N (�), 1 ≤ k ≤ K},
MN = {qN ∈ L20(�), qN = q̃N ◦ F−1

k : q̃N ∈ Q̃N−2(�), 1 ≤ k ≤ K},
where Fk is the mapping from � to �k .
Then the SVV-stabilized tetrahedron spectral-element method can be constructed and

implemented in a similar way as 2D case.

Acknowledgements
Not Applicable.

Authors’ contributions
CL carried out the TSEM studies, participated in the numerical experiments, and drafted the manuscript. TT carried out
the numerical analysis. XC participated in the design of the study and revised the manuscript. All authors read and
approved the final manuscript

Funding
This research is partially supported by NNW2018-ZT4A06 project and NSFC grant 11971408.
Lizhen Chen is partially supported by Grant U1930402.

Availability of data andmaterials
The authors declare that all datasets on which the conclusions of the manuscript rely to be either deposited in publicly
available repositories or presented in the main paper or additional supporting files.



Chen et al. Advances in Aerodynamics             (2022) 4:4 Page 19 of 20

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1Beijing Computational Science Research Center, Beijing 100193, People’s Republic of China. 2Division of Science and
Technology, BNU-HKBU United International College, Zhuhai, Guangdong, People’s Republic of China. 3Guangdong
Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and
Technology, Shenzhen, People’s Republic of China. 4School of Mathematical Sciences, and Fujian Provincial Key
Laboratory of Mathematical Modeling and High-Performance Scientific Computing, Xiamen University, Xiamen 361005,
People’s Republic of China.

Received: 4 July 2021 Accepted: 13 September 2021

References
1. Braess D, Schwab C (2000) Approximation on simplices with respect to weighted Sobolev norms. J Approx Theory

103(2):329–337
2. Dubiner M (1991) Spectral methods on triangles and other domains. J Sci Comput 6(4):345–390
3. Karniadakis GE, Sherwin SJ (1999) Spectral/hp element methods for CFD. Numerical Mathematics and Scientific

Computation. Oxford University Press, New York
4. Owens RG (1998) Spectral approximations on the triangle. R Soc Lond Proc Ser A Math Phys Eng Sci

454(1971):857–872
5. Sherwin SJ, Karniadakis GE (1995) A triangular spectral element method; applications to the incompressible

Navier-Stokes equations. Comput Methods Appl Mech Engrg 123(1-4):189–229
6. Hesthaven JS (1998) From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex. SIAM

J Numer Anal 35(2):655–676
7. Pasquetti R, Rapetti F (2004) Spectral element methods on triangles and quadrilaterals: comparisons and

applications. J Comput Phys 198(1):349–362
8. Pasquetti R, Rapetti F (2006) Spectral element methods on unstructured meshes: comparisons and recent advances.

J Sci Comput 27(1-3):377–387
9. Taylor MA, Wingate BA, Vincent RE (2000) An algorithm for computing Fekete points in the triangle. SIAM J Numer

Anal 38(5):1707–1720
10. Boyd JP (2001) Chebyshev and Fourier spectral methods, 2nd ed. Dover Publications Inc., Mineola
11. Heinrichs W, Loch BI (2001) Spectral schemes on triangular elements. J Comput Phys 173(1):279–301
12. Shen J, Wang LL, Li H (2009) A triangular spectral element method using fully tensorial rational basis functions. SIAM

J Numer Anal 47(3):1619–1650
13. Chen LZ, Shen J, Xu CJ (2011) A triangular spectral method for the Stokes equations. Numer Math Theor Meth Appl

4:158–179
14. Chen LZ, Shen J, Xu CJ (2012) A unstructured nodal spectral-element method for the Navier-Stokes equations.

Commun Comput Phys 12:315–336
15. Xu C, Pasquetti R (2004) Stabilized spectral element computations of high Reynolds number incompressible flows. J

Comput Phys 196(2):680–704
16. Fischer P, Mullen J (2001) Filter-based stabilization of spectral element methods. CR Acad Sci Paris 332(1):265–270
17. Tadmor E (1989) Convergence of spectral methods for nonlinear conservation laws. SIAM J Numer Anal 26:30–44
18. Chen GQ, Du Q, Tadmor E (1993) Spectral viscosity approximations to multidimensional scalar conservation laws.

Math Comp 26:629–643
19. Schochet S (1990) The rate of convergence of spectral viscosity methods for periodic scalar conservation laws. SIAM

J Numer Anal 27:1142–1159
20. Tadmor E (1990) Shock capturing by the spectral viscosity method. Comput Methods Appl Mech Engrg 80:197–208
21. Tadmor E (1993) Super viscosity and spectral approximations on nonlinear conservation laws. In: Baines MJ, Morton

KW (eds). Numerical Methods for Fluid Dynamics IV, Proceedings of the 1992 Conference on Numerical Methods for
Fluid Dynamics. Clarendon Press, Oxford. pp 69–82

22. Tadmor E (1993) Total-variation and error estimates for spectral viscosity approximations. Math Comp 60:245–256
23. Maday Y, Kaber SMO, Tadmor E (1993) Legendre pseudospectral viscosity method for nonlinear conservation laws.

SIAM J Numer Anal 30(2):321–342
24. Tadmor E, Gelb A (2000) Enhanced spectral viscosity approximations for conservation laws. Appl Numer Math

33:3–21
25. Kaber SMO (1996) A Legendre pseudospectral viscosity method. J Comp Phys 128:165–180
26. Karamanos GS, Karniadakis G (2000) A spectral vanishing viscosity method for large eddy simulations. J Comput

Phys 163:22–50
27. Lie I (1996) On the multidomain spectral viscosity method in multidomain Chebyshev discretizations. In: Ilin AV,

Scott LR (eds). Proceedings of the Third International Conference on Spectral and High-Order Methods
(ICOSAHOM95) Journal of Mathematics, University of Houston. pp 121–130. Houston Journal of Mathematics, TX

28. Ma H (1998) Chebyshev-Legendre spectral viscosity method for nonlinear conservation laws. SIAM J Numer Anal
35:869–908

29. Andreassen Ø, Lie I, Wasberg CE (1994) The spectral viscosity method applied to simulation of waves in a stratified
atmosphere. J Comput Phys 110:257–273

30. Rong ZJ, Xu CJ (2009) Spectral vanishing viscosity for large-eddy simulations by spectral element methods. Chin J
Theo Appl Mech 41(6):155–161



Chen et al. Advances in Aerodynamics             (2022) 4:4 Page 20 of 20

31. Kirby RM, Sherwin SJ (2006) Stabilisation of spectral/hp element methods through spectral vanishing viscosity:
application to fluid mechanics modelling. Comp Meth Appl Mech Eng 195(15):3128–3144

32. Xu CJ (2006) Stabilization methods for spectral element computations of incompressible flows. J Sci Comput
27(1-3):495–505

33. Maday Y, Patera AT (1989) Spectral element methods for the incompressible Navier-Stokes equations. In: Noor AK,
Oden JT (eds). State-of-the-art Surveys on Computational Mechanics. ASME, New York. pp 71–143

34. Moura RC, Sherwin SJ, Peiró J (2016) Eigensolution analysis of spectral/hp continuous Galerkin approximations to
advection–diffusion problems: Insights into spectral vanishing viscosity. J Comput Phys 307:401–422

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Abstract
	Keywords

	Introduction
	Stabilized triangular spectral element method
	Triangular spectral method
	SVV stabilization
	Implementation based on nodal basis
	SVV stabilization in TSEM

	Numerical results and discussions
	Unsteady Navier-Stokes equations
	Flow through a backward facing step

	Conclusions
	Appendix: Extension to the three-dimensional case
	A.1 Spectral method in tetrahedron
	A.2 Spectral-element method in 3D domains with tetrahedron partition

	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

