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advances the moving computational domain (MCD) method in which the
computational domain itself moves in line with the motions of an object inside. The
computational domains created around each object move independently, and the
flow fields of each domain interact where the flows cross. This eliminates the spatial
restriction for simulating multiple moving objects. Firstly, a shock tube test verifies that
the overset implementation and grid movement do not adversely affect the results and
that there is communication between the grids. A second test case is conducted in
which two spheres are crossed, and the forces exerted on one object due to the other’s
crossing at a short distance are calculated. The results verify the reliability of this method
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1 Introduction

The need for computational fluid dynamics (CFD) has increased along with technologi-
cal developments and the expansion of the transportation industry. In particular, moving
boundary problems are some of the most important industrial problems. Nowadays, CFD
is required for modelling the physics of real-life transport vehicles. CFD is utilised not
only for examining the vehicles’ individual components but also for fully simulating mov-
ing vehicles that travel long distances with complex geometry and configuration, as is the
case for the flight simulations of aircraft [1]. Moreover, since drones and flying cars have
been a focus of attention, the interaction of flows between multiple moving objects has
become of interest. Considering the flow on such a global scale is more challenging due
to the limitation of the computational cost. The implication is that CFD requires reason-
able and practical methods to tackle problems in modelling multiple objects moving in a
large space.
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Various numerical methods have been developed for simulating moving boundary
problems. One category is non-boundary fitted mesh methods, where the whole compu-
tational domain is overlayed by a simple Cartesian mesh without considering the target
objects inside the field. Instead, the governing equations, discretised in the Cartesian
mesh, are adjusted to consider the presence of the internal boundary associated with
those objects by using suitable methods, for example, the immersed boundary method
[2, 3]. By virtue of employing a simple mesh, they do not require intricate mesh gen-
eration techniques and are able to utilise highly efficient solvers, such as multigrid or
FFT-based fast Poisson solvers [4, 5]. On the other hand, non-boundary fitted mesh meth-
ods normally have to struggle with the thin boundary layers as well as the external forces
exerted on the objects due to the nature of the background Cartesian meshes [6]. In addi-
tion, these methods are relatively ineffective in large distance motion problems as their
computational domain should represent the whole physical domain, which requires great
computational cost [7].

Another approach is the Chimera method [8, 9], which is widely used to represent
motions in simulations. This approach addresses moving boundary problems by interpo-
lating the flow field variables between overlapping grids at each time step. This method
has been utilised in applications such as the separation of a supersonic aeroplane and
rocket booster [9] and the manoeuvring of helicopters in a shipborne environment [10].
However, the Chimera method also constrains the size of the computational domain: the
overlapping strategy requires a background grid for the interpolation, but the background
cannot be set as an infinitely large grid due to the computational cost. Consequently, it is
also difficult to simulate objects moving in a large space (Fig. 1a).

Furthermore, Yamakawa et al. proposed a remeshing technique for unstructured grids,
which performs accurate computation without interpolating physical quantities [11].
They simulated the flow interaction of multiple moving objects by placing objects in a
single unstructured domain and moving each of them (Fig. 1b). Typically, when objects
move in a computational grid, cells that are initially almost equilateral are distorted along
with the motion and deformation of the objects, which may eventually lead to calculation
failure. Thus, the crossing of two objects was realised by eliminating the distorted cells
and splitting the stretched cells in the grid. However, although this technique was shown
to be applicable to simulations with a drastic deformation of unstructured cells, a large
domain covering the entire flow field was still necessary. Hence the applications of this
technique are restricted to objects moving only short distances. That is, for simulation of
the whole trajectory of moving objects, the spatial limit is usually the bottleneck.

To address this difficulty, we previously proposed a unique approach: the moving com-
putational domain (MCD) method [12], which is based on the moving-grid finite volume
(MGFV) method [13]. The MGFV method is an approach for solving moving boundary
problems and automatically meets the geometric conservation law (GCL) condition [14]
because it adopts the space and time unified four-dimensional (4D) control volume for the
discretisation. Since the MGFV method is one of the moving mesh methods, objects do
not necessarily move in a fixed domain. If the computational domain itself moves in line
with the motions of an object inside, the spatial restriction for modelling moving objects
can be removed; this technique is the MCD method (Fig. 2). It has been able to simulate
the flow around a single object moving in a large space, such as the flight simulation of a
tilt-rotor aircraft [15] and a swimmer performing the dolphin kick [16].
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Fig. 1 The concept of (a) the Chimera method, (b) the remeshing method, and (c) this method (illustrated in
two-dimensions)

In this paper, we extend the MCD method to multiple computational domains. In the
conventional MCD method with a single domain, it was difficult to gain information
from outside the computational domain, thus the application was limited to a single
object. We address this issue by introducing the mutual communication of independent
domains. Physically speaking, in the context of multiple moving objects, the flow around
each object does not affect the other objects when they are far away from each other.
Accordingly, we essentially need large enough computational domains in the vicinity of
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Fig. 2 Moving computational domain of the MCD method
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individual objects that follow the objects’ motion and capture the fluid flow phenomena
there (Fig. 1c), rather than a fixed large domain covering the whole physical field. These
domains only need to communicate when they are in close proximity and fluid flow inter-
action occurs. This approach represents an improved method for simulating multiple
vehicles that travel long distances, from the beginning to the end of the trajectories. The
approach is particularly suitable for the case of vehicles that are crossed or overtaken by
other vehicles at a few points along the trajectories.

This paper includes five sections. Section 1 introduced the background and motivation.
Section 2 explains the numerical scheme. Section 3 proposes the MCD method and the
approach for allowing the communication of multiple domains. The validations are pre-
sented in Section 4, which includes a demonstration of crossing two objects as well as a

discussion. Finally, Section 5 summarises the study’s findings.

2 Numerical scheme
2.1 Governing equations
The three-dimensional (3D) Euler equations for compressible flow are applied to the

governing equation:

dg OE OF 9G
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where g is a vector of conserved variables, and E, F, and G represent the inviscid flux vec-
tors. ¢, p, p, and e represent time, density, pressure, and the total energy per unit mass,
respectively, and u, v, w represent the velocity components in the x, y, z coordinates.
Equation (1) is closed with the following equation by considering the ideal gas law:

p:(y_n[e—;p@ﬁ+v?+wﬂ}

where y is the ratio of specific heats. Note that Eq. (2) is used for nondimensionalisation

in this study:
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where “”” indicates values with dimensions, and L, ¢+, and 0 denote the characteristic

length, speed of sound, and characteristic density, respectively.
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2.2 Flow solver

Equation (1) is integrated over the control volume € as follows:
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In order to solve the governing equations in a moving grid, Eq. (3) is discretised using the
unstructured cell-centred approach of the MGFV method. This method uses a unified 4D
time-space control volume, as illustrated in Fig. 3a, with a position vector R. As tetrahedra
grids are used in this study, the discrete form of the governing equation is as follows:

6
ﬁ%f—"dﬁ:/NT-‘-ﬁdE =S B =0,
Q 3% ey

where 9 is the 4D boundary surface of the control volume. As depicted in Fig. 3b, the
boundary surfaces at / = 1—4 are equivalent to the 3D solids formed by the corresponding
surfaces of a tetrahedron and the surfaces’ displacements in the ¢ dimension. For example,
the boundary surface at / = 1 is equal to the solid composed by connecting the 7%11\]—72]2\[—
T(é\[ surface and the 7111\[ H—Tlg“—ﬁg“ surface. In contrast, the boundary surfaces at/ = 5
and / = 6 are equivalent to the tetrahedra at the N step and N + 1 step, respectively. 7
represents the 4D outward normal vector 7 = [171[, Py, My, 1712]. The length of # is equal to
the volume of the corresponding solid. It should be stated that while #; to 774 comprises
[;lt, Wy, fy, itz], Ty, fly, n; = 0 at #t5 and 716, which means 75 and 7¢ only have an 7, com-
ponent. In addition, at the boundary surface [ = 1 — 4, F is evaluated by combining the
values at the N step and N + 1 step. On the other hand, Fs is evaluated only by using the
value at the N step since [ = 5 represents the tetrahedron at the N step. Similarly, Fo is
evaluated only by using the value at the N + 1 step. The details of the MGFV method can
also be found in [13].

(b) The corresponding boundary surfaces

Fig. 3 (a) The 4D control volume and (b) the corresponding boundary surfaces in the MGFV method
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From the procedure above, Eq. (4) can be obtained:

4
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H = Eii, + Fiiy + Gii, @
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where the superscript N indicates the index of the time steps. The inviscid flux vector

m\»—‘

H, is calculated by Roe’s flux difference splitting [17]. To provide second-order accuracy;,
the MUSCL (Monotonic Upstream-centred Scheme for Conservation Laws) scheme is
applied. The primitive variables of g are linearly reconstructed using the gradient com-
puted with the Green-Gauss method and Hishida’s limiter [18]. g7, in Eq. (4) is estimated
by the upwind scheme:

1. . L _
ai = 5 lat7:+aq n— il (g7 —q7)].

In the MGFV method, time stepping is represented by the following equation:
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For the 3D MGFV method, Q represents the 4D control volume, and the value can be
approximated with the corresponding 3D sixth volume Vj:

Q~ AtVs.

Here, Vg has the same value as the absolute value of the normal vector to the sixth volume

ng, but g comprises only the 71; component, then
Ve = (p)e-

Therefore, Eq. (5) finally becomes:
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A pseudo-time approach based on the Newton-iteration scheme is employed to solve
unsteady flows, and the two-stage rational Runge-Kutta (RRK) scheme [19] is applied to
pseudo-time stepping. Here, the two-stage RRK scheme can be written with pseudo-time
t* and pseudo-time step v:

g1 = —Are (g0
& =—Are (10 + oog))

83 = big; +bog,
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where
e (") = At(nt)ﬁ [qN+ (711)g + " (r)5 + Z {qN+z 7y +HN+2} ]

20 = g,
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g; - g; represents the summation of the scalar product of vectors g; and g; in all the cells.
b1, by, and c3 are coefficients which satisfy the following relations:

b1 +by =20, bycy <-—0.5.

This study uses b1 = 1.0, by = —1.0, ¢, = 2.0 to provide second-order accuracy.

3 Moving computational multi-domain method

3.1 Moving computational domain (MCD) method

The MCD method [12] is applied when objects move. In order to simulate movement
over a large space, an object is located in a computational domain which moves in line

with the object inside, as shown in Fig. 2.

3.2 Classification of the cells and their interpolation

3.2.1 Categorising vertices and cells

Inter-grid communication can be achieved by applying the overset approach [9] to imple-
ment the interpolation. Each cell is categorised as either an active cell, a nonactive cell, or
an interpolation cell, based on the positional relationship between one grid and the other
overlapping grid. Active cells are the cells where the flow field variables are calculated;
nonactive cells are the cells which are outside the calculating area; and the interpolation
cells are the cells where the variables are interpolated.

The cells are classified by following the steps below. First, whether the nodes of each
grid are included in the overlapping partner grid is determined. In 3D cases, when the
number of owner cell searches for all nodes is massive, the searching algorithm plays
a pivotal role in the efficiency of the methods. Thus, the KD-tree-based algorithm that
serves the purpose is employed. After that, all the node points are designated as either
active or nonactive based on the node classification method described in the study by
Nakahashi [9]. Since objects are represented as holes in the grids, if a node is situated
inside the object in the partner grid, the node is designated as an in-hole node. Then,
a tetrahedron cell is assigned as an active cell if all the nodes of the cell are active; as a
nonactive cell if all the nodes of the cell are nonactive or if one or more nodes of the cell are
in-hole nodes; and the remaining cells are the interpolation cells which are responsible for
inter-grid communication. If the layer of the detected interpolation cells is insufficiently
thin, the cells around the interpolation cells are also reassigned as interpolation cells,
ensuring a sufficient number of interpolated cells.

3.2.2 Finding donor cells

After the cells are classified, the donor cells are identified. The variables of the donor cells
are used for the interpolation to obtain those of the interpolation cells. First, the nodes
of each tetrahedron interpolation cell are checked to determine which overlapping part-
ner cells contain them; Fig. 4a and b illustrate this in two-dimensions. In the next step,
the distances between the centre of an interpolation cell and the centres of its detected
partner cells are calculated, and in turn, the partner cell that has the largest distance is
found, where the distance is determined as a reference length (Fig. 4c). Then, the dis-
tances between the centre of an interpolation cell and the centres of the other cells in the
overlapping partner grid are calculated. The partner cells with smaller centre-to-centre
distances than the reference length are identified as donor cells (Fig. 4d and e).
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Fig. 4 Donor cell identification procedure (illustrated in two-dimensions)

It is important to note that if any of the donor cells detected for an interpolation cell
is not active at the current or previous time step, the interpolation cell can no longer
be an interpolation cell and must be changed to an active cell. This process ensures that
variables are interpolated only from cells which have reliable values.

3.2.3 Inverse distance weighted interpolation
Inverse distance weighting is employed for the interpolation. g at the interpolation cells

q' is computed from the variables of the donor cells gd°™r:

m d
; lel qul onor
q° ===
Dl Wi
1
w; =

d (Xip, Xidonor)P :

Here, d (X ip, Xid"“"r) is the distance between the centre of an interpolation cell X'P and
the centres of the corresponding donor cells Xl.d"“"r , and m represents the total number
of donor cells found for an interpolation cell. The power parameter p = 1 is used in this
study.

3.2.4 Modification of the RRK scheme for inter-grid communication

The cells which are outside the flow field must be excluded in the process of calculating
flow. Therefore, each cell i has the following value depending on whether the cell is a
blanked cell or not:

1, if acell is not blanked

iblank (i) =
iblank() 0, ifa cellis blanked.

Multiplying this iblank(i) to the formula of the RRK scheme ensures that the solutions are
not updated in blanked cells. Since active cells are the cells that calculate the flow field
variables, interpolation cells are the cells that only perform interpolation, and nonactive
cells are the cells outside the calculating area, iblank(i) takes the form of the following
equation:
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1, ifacellisactive
iblank(i) =
0, else.

Therefore, Eq. (6) is modified with the preceding iblank:

g (g1 - 9s) — 0. (g -
qﬁ\/+l(v+1) _ qf\”l(”) + iblank(i) 21:,(81 - 83) — 83:(& g1)' @)
(g5 -83)
In the actual coding, blanked cells should be skipped for the sake of efficiency.

4 Validations

Two cases were tested to validate the reliability of this method. One is a shock tube test
including a moving grid inside. An empty grid (subgrid) was prepared in the shock tube
(main grid), and the subgrid was moved. Since the subgrid does not contain any object
inside, the purpose of this test is to confirm that the main flow is not affected by grid
movement. In addition, the results can be compared with the exact solution to verify that
the variables are accurately interpolated between the overlapping grids.

Another validation test involves crossing two spheres. This context is close to the
practical application of this method. However, in general, the simulation of real-life vehi-
cles is expensive and intricated in terms of modelling the configuration and condition
details. Therefore, to demonstrate the capability of the proposed method, we opt for a
more straightforward test case which resembles real-life problems, such as vehicles pass-
ing each other. In addition, a sphere-crossing simulation has been reported so far in
[11]. For this reason, the current study uses sphere crossing as a validation test to allow
the results to be compared with the values calculated using the method reported by
Yamakawa [11].

4.1 Shock tube test

4.1.1 Computational conditions

A gas at high pressure and a gas at low pressure are separated in a tube by the diaphragm,
which serves as a barrier. A subgrid was placed in the low-pressure region of a shock tube
(main grid), and the grid was moved in the x and z directions. The initial positions of
the main grid and subgrid are depicted in Fig. 5. Since a shock wave passes through the
low-pressure region of the main grid, the subgrid was positioned in the region in order to
verify that the interpolation does not change the shape of the shock wave. The movement
in the y direction was fixed, allowing the flow and the movement of the subgrid to be
examined at a cross section perpendicular to the y-axis in a recognisable manner. Thus,
the subgrid was moved in Eq. (8) from rest at £ = 0. The initial conditions are shown in
Table 1. The boundary conditions at the wall of the main grid were the slip conditions

Diaphragm Sub-grid
High-pressure Low-pressure
region region

y / T T~ ) sy L|
f 1
x " 05 ' E=025 905 00125

Fig. 5 Shock tube test
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Table 1 Initial conditions (shock tube test)

High-pressure region Low-pressure region
(subscript H) (subscript L)
PH 1.0 oL 0.1
Uy 0.0 up 0.0
VH 0.0 Vi 0.0
WH 0.0 wy 0.0
P pulY pr oLly

for an inviscid fluid. All the cells at the wall of the subgrid were interpolation cells. The
variables in the subgrid were calculated using the values interpolated from the outer main
grid. Conversely, the information from the subgrid was communicated to the main grid
through the interpolation cells of the main grid. The test was carried out until the shock
wave reached the right end of the main grid.

Ax = —0.0375 — 0.0375sin 27wt — 0.57)
Az = 0.075 4 0.075sin (wt — 0.57)

(8)

The two unstructured grids for the main grid with 512152 cells and for the subgrid
with 80928 cells were generated by MEGG3D (an unstructured mesh generator [20, 21]).
Figure 6 shows the cross section at the middle of the length in the y direction of (a)
the main grid and (b) the subgrid, with colouring according to the cell type. The white
cells represent active cells, the cyan cells are the interpolation cells of the main grid, the
magenta cells are the interpolation cells of the subgrid, and the yellow cells are nonactive
cells. Figure 6 implies that the region of the main grid which overlaps the subgrid was
occupied with nonactive cells, and the subgrid performed the calculation instead.

4.1.2  Results and discussion

The graph in Fig. 7 provides the density distribution at the centre of the length in the y
and z directions of the grids and compares it with the exact solution. Figure 8 presents the
flow field in the cross section at the centre of the length in the y direction. The upper side
illustrates the density distribution while the lower side illustrates the grids. The nonactive
cells are omitted, and only the active and interpolation cells are shown. The colouring
rule is the same as in Fig. 6, but the active cells of the subgrid are shown in grey tones to
emphasise the fact that they belong to the subgrid.

(a) Shock tube (main grid)

(b) Subgrid

Fig. 6 Computational grids for the shock tube test
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X
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Fig. 7 Comparison of density with the exact solution (shock tube test)

The grids in Fig. 8 show that the subgrid moved in x and z directions. In addition,
the interpolation cells of each grid did not overlap but were slightly shifted to ensure
that the donor cells were active cells, as mentioned in Section 3.2.2. It can also be seen
that the classification of each cell was dynamically updated at each time step as the sub-
grid moved. The density distribution in Fig. 8 shows that the shock propagated after the
diaphragm was removed. The shape of the shock remained after it passed through the

t=0.6
Density (p)
0.10 0.2 04 0.6 08 1.0
yva H # ‘

Active cell (main grid), Interpolation cell (main grid),

Fig. 8 Flow field at each time step (shock tube test)
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Fig. 9 Crossing test

30

subgrid. Figure 7 shows the position of the shock that was captured at each time, com-
pared with the exact solution. Therefore, these results verify that grid movement does not
affect the flow and that the flow field variables are accurately communicated between the
two grids.

4.2 Crossing test

4.2.1 Computational conditions

Two identical grids which include a sphere in the centre were prepared in the configu-
ration depicted in Fig. 9. The grids are not shifted in the y direction. To compare with
the values provided using the method described in Section 2 and 3 in [11], the spheres
were placed in exactly the same initial positions and were moved at exactly the same
speed as the ones in the literature. The comparative data were calculated using remesh-
ing, adding and eliminating the cells as the spheres moved, with a single grid including
the two spheres, as depicted in Fig. 7 of the literature. Please refer to the literature for the
detailed methodology for the comparative data.

In the current study, the two spheres started to approach each other at speed U in the z
direction from the position where the centres were 10 apart and crossed at a distance of
0.2. The moving speed U is shown in Eq. (9). Since the velocity is nondimensionalised by
the speed of sound in this study, U was equal to the speed of sound when U/ = 1.0. The
initial conditions are shown in Table 2. The boundary conditions were the slip conditions
at the wall of the spheres and the Riemann invariant boundary conditions at the outer

boundaries of each grid.

10¢, t<0.1

U=
1.0, ¢t>0.1

)

Table 2 Initial conditions (crossing test)

Whole region

P 1.0
u 0.0
v 0.0
w 0.0
p ply
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The two identical unstructured grids with 502506 cells were generated by MEGG3D.
The fineness of the computational grids was as close as possible to that of the literature.
Figure 10 illustrates the cross section of the grids at the centre of the spheres in the y
direction, with (a) showing the overlapping grids without the nonactive cells, with (b)
and (c) showing Grid 1 and Grid 2, respectively, and with (d) showing the cells around
the sphere. The cells are coloured according to the cell type. The white cells represent
active cells, the magenta cells are the interpolation cells of Grid 1, the cyan cells are the
interpolation cells of Grid 2, and the yellow cells are nonactive cells. At the region where
Grid 1 and Grid 2 overlap, only one grid or the other has nonactive cells.

4.2.2 Scalability of overlapping cell search

We investigated the scalability of the KD-tree-based algorithm for searching for the owner
cell for each node, and we depicted the results in Fig. 11. The figure also includes the
y = Aoxlog (x) graph (Ao is an arbitrary number) as a reference. This graph indicates that
the performance of our numerical implementation of the KD-tree search is consistent

with the theoretical prediction O(nlogn).

4.2.3 Results and discussion
Figure 12 shows the cross section of the grids at the centre of the spheres in the y direction,
with each time step of the spheres (a) approaching each other (¢ = 1.6), (b) crossing
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(t = 5.0), and (c) moving away from each other (¢ = 6.4). The left side depicts the whole
view, and the right side illustrates the enlarged view around the spheres. The nonactive
cells are omitted, and only the active and interpolation cells are shown. The colouring rule
is the same as in Fig. 10. Figure 13 shows the pressure distribution on the surface of the

t=1.6

0.00 0.5 1 1.5 1.97
_— J ‘ R

Fig. 13 Pressure distribution on the sphere surface and pressure contour at each time step (crossing test)
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spheres and the contour plot of the pressure in the flow field at each time step. The graph
in Fig. 14 provides the time histories of the drag coefficient Cp, the lift coefficient C;, and
the side-force coefficient Cg for one sphere and compares them with the values calculated
using the method of the literature [11]. These coefficients are calculated by Eq. (10):
2Fp 2F; 2Fs
= 72 ) CL = X S = 2¢’
pV=-S pV=S pV=4S§

where Fp, Fr, and Fs represent the drag, lift, and side-force, respectively, which are

Cp (10)

the forces exerted on the sphere in the z-, y-, and x-axes, respectively. V indicates the
maximum speed of the sphere, and S denotes the frontal area of the sphere.

The grids in Fig. 12 show that the computational domains followed the movement of the
corresponding spheres as they moved. Each domain moved independently, and the classi-
fication of each cell was updated as the steps progress. Figure 13 implies that a bow shock
was generated in front of the spheres, which travel at the speed of sound, and that another
shock was generated behind the spheres at t = 1.6. When crossing at t = 5.0, the shock
in front of one sphere and the shock behind the other sphere interacted. After crossing at
t = 6.4, the shock behind each sphere affected the rear of each other’s sphere. Similar phe-
nomena can be observed in the literature by Yamakawa [11], and therefore it can be said
that the flow field variables were successfully communicated between the domains in this
study. Figure 14 shows that Cp made a dramatic increase just before crossing and then fell
drastically as the crossing was over. These phenomena were caused by the mutual influ-
ence of the high-pressure fields in front of the two spheres and the low-pressure fields
behind the spheres. In addition, fluctuation can also be observed in Cs, and this implies
that the forces which made the spheres waver were exerted on the spheres when cross-
ing. The comparative data (the dashed lines) in Fig. 14 suggests that the same trends can
be seen in all the drag, lift, and the side-force coefficients. In particular, these coefficients
were in good agreement with the comparative data when crossing, which is a noticeable
feature in this simulation.

These results show that the flow interaction of multiple moving objects can be simu-
lated using computational domains created around each object that communicate with
each other. On the other hand, those multiple-object simulations using a single fixed com-
putational domain containing all the objects normally require remeshing the inside of

1.8 T

(present sluAy)
(present study)
(present study)
(Yamakawa 2017)
(Yamakawa 2017)
Yamakawa 2017)

Coefficient

04 L L L
20 4.0 6.0 8.0 10.0

Time

Fig. 14 Comparison with the values calculated using the method proposed by the literature [11] (crossing
test)




Nishimura et al. Advances in Aerodynamics (2022) 4:5 Page 17 of 18

the domain as the objects move. Such remeshing needs to introduce complex techniques,
such as adding and eliminating cells as represented in Yamakawa [11]. In addition, the
limitation in the size of the computational domain constrains the space in which objects
can move. In contrast, remeshing is unnecessary with the method introduced in the cur-
rent study. Moreover, the computational domains themselves can be moved freely, which
makes it possible to move each object along with the corresponding domain, without
spatial limitations.

5 Conclusions

This study introduces moving computational domains that communicate with each other
as a means of simulating the full trajectory of multiple moving objects. The MCD method
is applied to modelling the movement of objects. In this method, computational domains
are moved in line with the trajectory of each object, thereby removing the spatial con-
straints for simulating moving objects. The interaction of each domain’s flow with the
other’s flow is achieved by applying the overset approach, which allows the commu-
nication of the flow field variables. A shock tube test is conducted to verify that the
basic requirements for this method are satisfied. The comparison of the results to the
exact solution confirms that the flow variables are accurately interpolated between the
domains. Then, the crossing of two spheres is simulated. This test demonstrates that the
shock wave generated around each sphere interacts with the other, and that fluctuation
can be observed in the drag coefficient of one sphere. Also, fluctuation observed in the
side-force coefficient of the sphere suggests that the forces that cause the spheres to waver
are exerted on them when crossing. These results verify that this method can reliably

model the flows around multiple objects and their interaction.
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