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1  Introduction
Nonlinear approaches, such as the weighted essentially non-oscillatory (WENO) 
scheme, are widely used to calculate complex flow fields with discontinuities, such as 
shock waves. Because of the mathematics of such schemes, truncation errors can affect 
the convergence rate of the computation and the spectral properties affect the deviation 
of the Fourier modes of the numerical results from the exact solution. Therefore, study-
ing the spectral properties of nonlinear schemes is important and meaningful when 
developing high-order nonlinear schemes.

Tam and Webb [1] suggested that it was necessary to consider the spectral proper-
ties besides using the standard Taylor series method in the construction of difference 
schemes. Specifically, by using the Fourier transformation of the governing equation, 
they proposed a basic method for analyzing the dispersion and dissipation relation of a 
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linear scheme and developed a dispersion relation preservation (DRP) scheme. Moreo-
ver, this method can also be used to evaluate the spectral properties of different linear 
schemes and to construct new schemes. However, the method is inappropriate for ana-
lyzing the spectral properties of nonlinear schemes. To remedy this deficiency, Pirozzoli 
[2] studied the amplitude evolution of a disturbing mode after a tiny propagation period 
through a discrete Fourier transform (DFT), through which he proposed an approximate 
dispersion relation (ADR) analysis. ADR [2] gives an estimate of the total error gener-
ated by a nonlinear scheme and provides a method for analyzing its spectral properties. 
However, there are still some issues. For example, the time scheme can introduce errors, 
and if the grid number is not chosen carefully, there can be unexpected jumps in the 
spectral distribution [3].

Observing these problems, Mao et al. [3] proposed an improved ADR without time dis-
cretization called ADR-NT. Using the assumption of a tiny time period, they transferred the 
effect of the temporal derivative into the contribution of the spatial derivative. The research-
ers reported [3] that ADR-NT not only reduced the computational cost but also avoided the 
error due to the time discretization, as occurs in ADR. Mao et al. [3] also suggested ways to 
avoid jumping points when using ADR, i.e., the size of the grid should be twice some large 
prime or take the average over a large number of results with different initial phases.

The dispersion relation usually reflects the phase velocity of a spatial scheme. For 
practical problems with wave propagation, it is necessary to consider the group veloc-
ity, which is the one the energy propagates at [4]. De and Eswaran [5] analyzed the dis-
persion relation property of schemes from the perspective of the group velocity, which 
we refer to as the GRP method or just GRP. They pointed out that GRP was important 
when evaluating the spectral properties of linear schemes. In the space of the reduced 
wave number and frequency, group velocity preservation (GVP) occurs in the region 
where the ratio of the numerical group velocity to the theoretical group velocity is in 
[0.95, 1.05]. Obviously, the analyses of GRP proposed by De and Eswaran [5] are differ-
ent from those of Tam and Webb [1] and Pirozzoli [2]. However, the GRP method can be 
used only for linear schemes and not for nonlinear schemes. Thus, we derived the mod-
ified wave number of nonlinear schemes with the ADR method, combined the afore-
mentioned group velocity analysis with high-order Runge–Kutta schemes, and finally, 
derived a quasi-linear method to analyze the spectral properties of nonlinear schemes. 
For brevity, the method is called the QL-GRP method or just QL-GRP. Its rationality was 
then verified with a numerical test and the DFT method.

As usual, a one-dimensional wave propagation equation [5] is used in this study to 
explore the GVP of nonlinear schemes by QL-GRP. As shown in [5], for this governing 
equation, the group velocity is the same as the phase velocity. Therefore, it is insuffi-
cient to investigate the GVP of difference schemes. To overcome this, we devised hyper-
bolic equations such that the solutions are synthetic waves where the group velocity and 
phase velocity are different. Using the equations, we numerically analyzed the GVP of 
different difference schemes and also verified the validity of QL-GRP.

This paper is arranged as follows. The GRP and ADR methods are reviewed in Sec-
tion 2. In Section 3, the GRP formula is derived for a high-order Runge–Kutta scheme, 
the QL-GRP method is described, and the comparative results from QL-GRP are given 
for typical schemes. In Section  4, the group velocities of selected cases are obtained 
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computationally using DFT and compared with those from QL-GRP, through which the 
rationality of QL-GRP is verified. We construct hyperbolic equations for which the solu-
tions are waves where the group velocity and phase velocity are different. In Section 5, 
the one-dimensional wave propagation equation and the aforementioned hyperbolic 
equations are solved and analyzed. The conclusions are drawn in Section 6.

2 � Review of GRP and ADR methods
Before we consider the QL-GRP method, the GRP and ADR methods are reviewed first.

2.1 � GRP method

Consider the one-dimensional wave propagation equation [1–3, 5]:

For the initial distribution u(x, 0) =
⌢
ueikx , Eq. (1) has the exact solution 

u(x, t) =
⌢
uei(kx−ωt) . For Eq. (1) it holds that ω = kc. Therefore, the exact group velocity is 

Vg, exact = dω/dk = c.
When using a time scheme, the following approximate relation is obtained:

where un is the value at the initial time tn, u(tn + Δt) is the exact solution at tn + Δt, and 
un + 1 is the corresponding numerical solution. Suppose the variable distribution on tn 
takes the form un =

⌢
uei(kx−ωt) . When the explicit Euler scheme is used for Eq. (1), Eq. 

(2) can be written as:

where f(tn, un) denotes the contributions from the spatial derivative. When a spatial 
scheme is used, one can see [5] that

where κ′ represents the modified wave number. It can be further derived from Eq. (3) 
that:

Following the approach of De and Eswaran [5], the numerical value Vg, num of the Euler 
scheme can be derived by differentiating both sides of the above equation:

where ωΔt is the reduced frequency, κ̂ = k�x is the reduced wave number, and c is the 
theoretical group/phase velocity. Equation (4) is exactly the same as that proposed by De 
and Eswaran [5].

(1)ut + cux = 0.

(2)u(tn +�t)− un ≈ un+1
− un,

(3)
⌢
uei[kx−ω(t+�t)] −

⌢
uei(kx−ωt) ≈ �t · f

(

tn,u
n
)

,

f
(

tn,u
n
)

= (−c)ux = (−c)
iκ ′

�x

⌢
uei(kx−ωt),

e−iω�t
− 1 ≈ �t · (−c) ·

iκ ′

�x
.

(4)

Vg ,num =

(

dω

dk

)

num

= c Re

(

eiω�t
·
dκ ′

dκ̂

)

= c

(

cos (ω�t)
dκ ′r

(

κ̂
)

dκ̂
− sin (ω�t)

dκ ′i
(

κ̂
)

dκ̂

)

,
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When a linear scheme is employed, the spatial derivative at xi can be approximated 
by:

where M and N are the numbers of nodes on the right and left sides of xi, and aj are the 
scheme coefficients. The modified wave number can be obtained by a Fourier transfor-
mation [1]:

Once the dispersion and dissipation relations are obtained, Vg, num for the first-order 
explicit Euler scheme can be obtained from Eq. (4). The explicit Euler scheme usually 
yields relatively large temporal errors, therefore the high-order Runge-Kutta schemes 
are employed in computations especially for unsteady problems. Hence, it is necessary 
to develop GRP analysis for high-order Runge-Kutta methods. Thus, Sengupta et al. [6] 
assumed that a4 + ib4 = iκ′ and a5 + ib5 =

dκ ′

dκ̂
 , and derived the following GRP formula 

for the fourth-order Runge–Kutta scheme:

where σ = cΔt/Δx is the Courant–Friedrichs–Lewy (CFL) number. On checking, the fol-
lowing problems were found with this work:

1.	 There are no details for the derivation. Therefore, it is difficult to check the correct-
ness of the formula.

2.	 When σ approaches 0, the formula does not regress to that of the first-order explicit 
Euler scheme in Eq. (4).

3.	 When ωΔt = π/2, the denominator cos(ωΔt) is 0, and there is a singularity. 
Therefore, the GRP formula needs further investigation for higher-order Runge–
Kutta schemes.

Thus, we employ the idea of [5] and derive the GRP results for high-order Runge–
Kutta schemes in Section 3.1.

2.2 � ADR method

Despite its applicability to linear schemes, the spectral analysis method by Tam and 
Webb [1] is unsuitable for nonlinear schemes. Thus, Pirozzoli et  al. [2] proposed a 
quasi-linear spectral analysis method for nonlinear schemes or ADR. The process is as 
follows [2].

For Eq. (1), suppose the initial distribution is u(x, 0) = ⌢
u0e

ikx and consider a semi-dis-
cretized approximation of Eq. (1) on grids {xj = jΔx} with the spacing Δx as

ux(xi) =
1

�x

M
∑

j=−N

ajui+j ,

(5)κ ′
(

κ̂
)

= −i

M
∑

j=−N

aje
ijκ̂ .

Vg ,num

c =

a5+2σ(b4b5−a4a5)/3+a5σ
2
(

3a24−b24−Nca
3
4+Nca4b

2
4

)

/6+b4σ
2
(

−6a4b5−2b4a5−3σa24b5−σb5b
2
4+2σa4a5b4

)

/6

cos (ω�t)
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where vj(t) ≈ u(xj, t) and δvj is for a specific numerical scheme, e.g., the linear difference 
scheme:

as before. From [2], Eq. (6) has the following exact solution: 
vj(t) =

⌢
v (t)eijκ̂ =

⌢
u0e

−i(ct/�x)κ ′eijκ̂ . Furthermore, Pirozzoli [2] proposed ADR to derive 
κ′:

In this equation, 
⌢
v 0

(

κ̂n
)

 is the Fourier coefficient corresponding to the initial mode and 
⌢
v
(

κ̂n, τ
)

 is the DFT of vj(τ) at time τ where κ̂n = kn�x . The operation of DFT is

where Nx is the number of grid number.
As indicated in the introduction, ADR depends on the choice of time step and num-

ber, and inappropriate choices can lead to temporal errors or unreasonable jump 
points in the spectral distributions [3]. Mao et al. [3] expanded the solution vj(τ) of 
Eq. (6) with a Taylor series:

Substituting the above formula into Eq. (8) and the subsequent result into Eq. (7), Mao 
et al. [3] proposed ADR without time discretization, known as ADR-NT, to derive κ ′

(

κ̂n
)

:

where bj+l are the coefficients of the nonlinear scheme.
In order to compare performances by ADR and ADR-NT, the spectral property of 

WENO5-JS is obtained by the two methods respectively. According to Pirozzoli’s advice 
[2], we set Nx = 422 and τ = 10− 8 for ADR and the results are shown in Fig. 1. The figure 
tells that the results of the two methods agree well with each other, which is consistent 
with that by Mao [2]. Compared with ADR, ADR-NT has reduced the computation cost 
and the difficulties in deriving the numerical spectrum of schemes. For convenience, 
ADR-NT is used in this paper.

(6)
dvj

dt
+ cδvj = 0, vj(0) =

⌢
u0e

ijκ̂ ,

δvj =
1

�x

M
∑

l=−N

aluj+l ,

(7)κ ′
(

κ̂n
)

=
i�x

cτ
ln

(⌢
v
(

κ̂n, τ
)

⌢
v 0

(

κ̂n
)

)

.

(8)
⌢
v
(

κ̂n, τ
)

=
1

Nx

Nx−1
∑

j=0

vj(τ )e
−ijκ̂n ,

vj(τ ) = vj(0)+ τ



−
c

�x

M
�

l=−N

bj+lvj+l(0)



+ o
�

τ 2
�

.

(9)κ ′
�

κ̂n
�

=
1

i





Nx−1
�

j=0





M
�

l=−N

bj+lvj+l(0)



e−ijκ̂n



/

�

Nx
⌢
v 0

�

,
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3 � QL‑GRP for nonlinear schemes
De and Eswaran [5] first analyzed and derived the numerical group velocity for linear 
schemes. However, their method can be used only for linear schemes and not for nonlinear 
ones. Considering the development of ADR [2] from DRP [1], which extends the analysis 
from linear to nonlinear, we introduce the influence of the nonlinearity in GRP [5] by using 
ADR to account for the spectral property of the nonlinear scheme. Next, employing a simi-
lar procedure as in GRP, the so-called QL-GRP is derived for nonlinear schemes. Prior to 
a further discussion on QL-GRP, we first derive the GRP formula for high-order Runge–
Kutta schemes.

3.1 � GRP formula for high‑order Runge–Kutta schemes

Taking the third-order Runge–Kutta scheme as an example, we derive the GRP formula 
based on the method of [5]. For convenience, the nth-order Runge–Kutta scheme is 
referred to as RKn.
RK3 here takes the form [7]:

(10)







u(1) = un +�t · f (un),

u(2) = 3
4u

n + 1
4u

(1) + 1
4�t · f

�

u(1)
�

,

un+1 = 1
3u

n + 2
3u

(2) + 2
3�t · f

�

u(2)
�

,

Fig. 1  Re(κ′) of WENO5-JS by ADR and ADR-NT respectively, where Nx = 422, τ =10− 8 and RK4 is used for ADR
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where f(un), f(u(1)), and f(u(2)) are the derivatives on the sub-time steps. From Eq. (10), 
un + 1 can be reformulated as:

Let K1 = f(u(n)), K2 = f(u(1)), and K3 = f(u(2)). Then, Eq. (2) can be rewritten as:

It is known that K1 in Eq. (10) corresponds to the derivative of un or K1 = f(tn, un); simi-
larly K2 = f(tn + Δt, u(1)) = f(tn + Δt, un + ΔtK1) and 
K3 = f

(

tn + 1
2�t,un + 1

2�t · 1
2 (K1 + K2)

)

 . Using κ′, then Ki in Eq. (11) can be written 

as [5, 8]:

Substituting Eq. (12) into Eq. (11):

Applying d(.)/dk to the above equation and taking the real part as in [5], the group veloc-
ity for RK3 is

For a linear scheme, κ′ is found from Eq. (5) [5]. Similarly, when an RK4 scheme is used 
for time discretization, the GRP formula can be derived as:

From Eqs. (13) and (14), it can be seen that the numerical group velocity for a high-order 
Runge–Kutta scheme depends on σ, unlike the first-order explicit Euler scheme in Eq. 
(4). For illustration, the group velocity of a linear fifth-order scheme, UPW5, namely:

was investigated for different CFL numbers. The velocity distributions are shown in 
Fig. 2 for σ = 0.01, 0.1, 0.3 and 0.5, respectively. The effect of σ is apparent through the 
variation of the GVP region, for which Vg, num/c ∈ [0.95, 1.05], as mentioned before.

As indicated by De and Eswaran [5], the group velocity distribution near the ori-
gin is of special concern. Because the region where Vg/c lies in (0.95,1.05) is of 

un+1
= un +�t

(

1

6
f
(

u(n)
)

+
1

6
f
(

u(1)
)

+
2

3
f
(

u(2)
)

)

.

(11)
⌢
uei[kx−ω(t+�t)] −

⌢
uei(kx−ωt) ≈ �t ·

(

1

6
K1 +

1

6
K2 +

2

3
K3

)

.

(12)























K1 = (−c) · iκ ′

�x

⌢
uei(kx−ωt),

K2 =

�

(−c) · iκ ′

�x +�t ·
�

−c2
�

�

κ ′

�x

�2
�

⌢
uei(kx−ωt),

K3 =

�

(−c) · iκ ′

�x + �t
4 ·

�

−c2
�

�

κ ′

�x

�2
+ �t

4

�

�

−c2
�

�

κ ′

�x

�2
+�t · ic3

�

κ ′

�x

�3
��

⌢
uei(kx−ωt).

e−iω�t
− 1 ≈ −iσ · κ ′ −

1

2

(

σ · κ ′
)2

+
1

6
i
(

σ · κ ′
)3
.

(13)
(

Vg ,num

)

RK3
= c · Re

((

1− iσ · κ ′ −
1

2

(

σ · κ ′
)2
)

eiω�t
·
dκ ′

dκ̂

)

.

(14)
(

Vg ,num

)

RK4
= c · Re

((

1− iσ · κ ′ −
1

2

(

σ · κ ′
)2

+
1

6
i
(

σ · κ ′
)3
)

eiω�t
·
dκ ′

dκ̂

)

.

(du/dx)j ≈
1

�x

(

−
1

30
ui−3 +

1

4
ui−2 − ui−1 +

1

3
ui +

1

2
ui+1 −

1

20
ui+2

)

,
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the major point, they [4, 5] divided the domain into three regions with the value 
ranges as < 0.95, 0.95 ~ 1.05, and > 1.05 to highlight the GVP region of schemes. 
In terms of the similar consideration, the same choice is used in this paper. Fig-
ure 2 shows that when the CFL number is small, the distributions of the first-order 
explicit Euler scheme, RK3, and RK4 are almost the same. With an increase of the 
CFL number, differences appear among the different time schemes. As shown in 
Fig.  2, when σ = 0.1, for the green area near the origin, RK4 ≈ RK3 > the explicit 
Euler scheme, which indicates that higher-order time schemes enhance the GVP. 
This outcome confirms the potential advantages of higher-order time schemes for 

Fig. 2  Distribution of Vg/c in the kΔx vs. ωΔt space for different time schemes at different σ. UPW5 is used 
for the spatial discretization. The green region represents the range 0.95–1.05, the red region represents the 
range > 1.05, and the blue region represents the range < 0.95



Page 9 of 23Xu et al. Advances in Aerodynamics            (2022) 4:14 	

unsteady problems. With the further increase of σ, GVP regions of RK3 and RK4 
change apparently due to the inclusion of σ in Eqs. (13) and (14), which is qualita-
tively consistent with that in [5].

In summary, in this section the group velocities of RK3 and RK4 were found by 
applying the same procedure used for the explicit Euler scheme in [5]. The follow-
ing remarks are given: (1) When the CFL number approaches 0, the group velocity 
distributions of higher-order Runge–Kutta schemes gradually degenerate into that of 
the first-order explicit Euler scheme. Further, the results from GRP for different time 
schemes become the same under this condition. (2) No singularity arises in Eqs. (13) 
and (14), which indicates their rationality.

3.2 � QL‑GRP

As mentioned in the introduction, QL-GRP is proposed to evaluate the character-
istics of the group velocity in a quasi-linear manner. The main difference between 
QL-GRP and GRP is that the modified wave number in the former considers the 
nonlinearity of schemes. Therefore, the formulas for QL-GRP are the same as 
those for GRP, such as Eqs. (13) or (14), except that different evaluations of κ′ are 
implemented.

The concrete implementations are summarized as follows:

1.	 Solve for the modified wave number κ ′
(

κ̂
)

 of nonlinear spatial schemes.

Based on ADR, the dispersion and dissipation relations of the nonlinear scheme, 
κ ′
(

κ̂
)

 , are solved with Eq. (9).

2.	 Solve for dκ ′/dκ̂.

When the spatial scheme is linear, κ ′
(

κ̂
)

 can be obtained as κ ′
(

κ̂
)

= −i
M
∑

j=−N

aje
ijκ̂ . 

Because the coefficient aj is constant, dκ ′/dκ̂ can be derived analytically. However, 
when the spatial scheme is nonlinear, the coefficient bj + l in Eq. (9) correlates with 
the initial variable distribution nonlinearly and dκ ′/dκ̂ is hard to resolve analyti-
cally. To overcome this difficulty, we use the difference method to evaluate it 
numerically. Taking the second-order central difference as an example, dκ ′/dκ̂ can 
be evaluated as:

where j is the index of the reduced wave number and

for j = 0, …, Nx/2.

(15)
(

dκ ′

dκ̂

)

j

≈
1

60�κ̂

(

−κ ′j−3 + 9κ ′j−2 − 45κ ′j−1 + 45κ ′j+1 − 9κ ′j+2 + κ ′j+3

)

,

κ̂j = kj�x =
2π

�j
×

L

j
=

2π j

Nx
,
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3.	 Substitute d𝜅�
∕d𝜅̂ into the QL-GRP formulas, such as Eqs. (13) or (14), to obtain Vg, 

num.

When solving for κ ′
(

κ̂
)

 for nonlinear schemes with ADR, Δt in the time integration 
must be small enough [2], which means the corresponding reduced frequency ωΔt 
should also be small. Correspondingly, QL-GRP can describe the GVP of nonlinear 
schemes effectively only for a small reduced frequency. When ωΔt is large, ADR does 
not accurately predict the spectral property, and therefore, QL-GRP cannot accurately 
describe GVP either. However, QL-GRP can give some insights into the group velocity of 
a nonlinear scheme. Hence, QL-GRP can provide a useful reference for the overall char-
acteristics of the group velocity for a nonlinear scheme.

For demonstration, we used QL-GRP to find the group velocity for three typical spatial 
schemes: UPW5, WENO5-JS [7], and WENO5-M [9]. Besides, in order to show the dif-
ference of GVP regions more obviously, the optimized SLS scheme [8], 

0.0895
(

u�
i−2

+ u�
i+2

)

+ 0.57967
(

u�
i−1

+ u�
i+1

)

+ u�
i
≈

1

�x

[

0.00559
(

ui+3 − ui−3

)

+ 0.25154
(

ui+2 − ui−2

)

+ 0.6494

(

ui+1 − ui−1

)] , which 

has smaller dispersion error and optimized spectral property is investigated. Adopting 
the aforementioned procedure, the corresponding distributions of Vg/c with the RK4 
scheme are shown in Fig. 3.

The figure shows that:

1.	 Comparing Fig. 3a with Fig. 2, one can see that the group velocity distributions for 
QL-GRP with the UPW5 scheme are the same as those for GRP. This is because, for 
linear schemes, κ ′

(

κ̂
)

 in ADR is the same as that in DRP [1]. In other words, QL-GRP 
degenerates into GRP for a linear spatial scheme.

2.	 The distributions of the group velocity are obviously different for the four schemes, 
which indicates that QL-GRP can be used to distinguish between the GVP of differ-
ent spatial schemes under the same time scheme. Specifically, the area of the GVP 
region (green) for the WENO5-JS scheme is smaller than that for the UPW5 scheme, 
which indicates that the group velocities of the nonlinear scheme differ from that 
of the  linear scheme. Moreover, the GVP area of the WENO5-M scheme is larger 
than that of WENO5-JS, which shows that the nonlinear optimization of the former 
enhances the GVP. Among the schemes in Fig.  3, SLS obviously yields the largest 
GVP region, which is consistent with its excellent spectral property than other three 
schemes.

3.	 The GVP area near the origin, especially along the vertical axis, is the largest for SLS, 
followed by UPW5, then WENO5-M and finally WENO5-JS.

In short, QL-GRP can be applied not only to analyze the group velocity of a linear 
scheme but also of a nonlinear scheme. Moreover, the method can clearly differentiate 
spatial schemes by considering the size of the GVP region.

Despite the presentation of QL-GRP and its capability to tell the differences of non-
linear schemes on GRP, how to use it to optimize difference schemes is not indicated at 
present. One may observe that DRP can be well used in scheme optimizations as shown 
in [10, 11]. In this regard, an analogous occurrence can be noticed that ADR [2, 3], 
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although its less use in scheme optimization, is widely accepted and applied to evaluate 
the spectral properties of nonlinear schemes, and hopefully QL-GRP would play a simi-
lar role. Besides, as indicated in above, different nonlinear schemes yield different GVP 
regions, which might be used in scheme optimization and would be discussed in other 
investigations.

4 � Numerical analysis and validation of QL‑GRP
The previous section introduced the derivation and implementation of QL-GRP. In this 
section, the numerical group velocity is obtained numerically and the results are com-
pared with those from QL-GRP. Thus, the rationality of the method will be analyzed 
and verified. Moreover, we devise hyperbolic equations and a corresponding example to 
determine the numerical group velocity of the scheme directly, which further verifies the 
approach.

Fig. 3  Distribution of Vg/c in the kΔx vs. ωΔt space for different spatial schemes. RK4 is used for the time 
discretization, and σ = 0.01. The green region represents the range 0.95–1.05, the red region represents the 
range > 1.05, and the blue region represents the range < 0.95
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4.1 � Numerical analysis and validation

In this section, the group velocity of different schemes is numerically obtained by solving 
the one-dimensional wave propagation equation and by using DFT. By comparing with 
the analytic results from QL-GRP, the numerical error is acquired and the rationality of 
QL-GRP is evaluated.

First, we select several points Pi in the kΔx vs. ωΔt plane, then numerically compute 
the group velocity using DFT. The coordinates of Pi are the reduced frequency and 
wave number. Without loss of generality, we set kΔx as 1. Because ω = kc, then

Hence, once Δt and Δx are determined, the coordinates of Pi are defined.
Next, the derivation of numerical group velocity will be discussed. The solution of 

the semi-discrete Eq. (6) is

where κ ′ = κ ′
(

κ̂
)

 [12]. Compared with the exact solution uj(t) =
⌢
u0e

i(kx−ωt) , the numer-
ical frequency can be expressed as ω′ = cκ′/Δx, which depends on κ′. Hence, the reduced 
frequency at Pi can be expressed with the modified wave number as:

where L is the length of the computational domain. We consider Eq. (1) with c = 1 and 
the initial distribution u0 = cos(x) at x ∈ [0, L] with L = 2π. From [2], κ′ can be numeri-
cally found with ADR [2] for a spatial scheme and time scheme using DFT. Here, we use 
WENO5-JS and RK4 for the spatial and time discretization. The number of grid cells and 
time step are given in Table 1. As shown in the table, four cases with respective (Nx, Δt) 
are chosen, and these correspond to Pi. Then, κ′ can be acquired with respect to κ̂ , as 
illustrated in Fig. 4.

Besides P1 to P4, we also investigated the case when the reduced frequency was 
larger. There were oscillations in the results. Hence, the frequency region for investiga-
tion was limited to ωΔt < 1. For illustration, the positions of Pi (i = 1, 2, 3, 4) are shown 
in the kΔx vs. ωΔt plane in Fig. 5. The colors indicate the group velocity calculated by 
QL-GRP with WENO5-JS and RK4.

Thus far, the numerical solution of the group velocity can be found from:

ω�t = c
�t

�x
κ̂ .

vj(t) =
⌢
u0e

−i(ct/�x)κ ′eijκ̂ =
⌢
u0 exp

[

i

(

kx −
cκ ′

�x
t

)]

(16)ω′�t = c
κ ′�t

�x
= cκ ′

N�t

L
,

(17)Vg ,num = Re
(

�ω′
)

/�k = Re
(

ω′
2 − ω′

1

)

/(k2 − k1),

Table 1  Size of computational grid, time step, and coordinates of Pi

Point Grid number Nx Time step, Δt (kΔx, ωΔt)

P1 422 10−8 (1, 6.72 × 10−7)

P2 422 10−3 (1, 0.0672)

P3 3046 10−3 (1, 0.04848)

P4 6082 10−3 (1, 0.968)
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where k1 and k2 represent two wave numbers with a small difference, ω′
1 and ω′

2 are the 
corresponding numerical frequencies, and Re denotes taking the real part. Substituting 
Eq. (16) into Eq. (17):

Under the assumption that κ̂ = 1 as above, we set κ̂1 and κ̂2 as κ̂1 = 1−�κ̂ and 
κ̂2 = 1+�κ̂ . The corresponding modified wave numbers Re(κ ′1

(

κ̂1
)

 ) and Re(κ ′2
(

κ̂2
)

 ) can 
be obtained from the distributions of Re(κ′) in Fig. 4. Moreover, Vg, num is the slope of 
Re(κ′) at the point 

(

1, κ ′i (1)
)

.
Next, we compare the group velocities at Pi obtained by QL-GRP and the numerical 

analysis. For QL-GRP, the analytic group velocity Vg, anal at Pi can be obtained from 
Eqs. (9) and (14), whereas the numerical group velocity Vg, num at Pi can be obtained 
from Eq. (18). These are compared in Table 2.

Table 2 shows that when ωΔt is small, as for P1, P2, and P3, then the group velocity 
given by QL-GRP is quite close to the numerical value. This indicates that QL-GRP 
can reasonably predict the group velocity at low reduced frequency. With an increase 
of ωΔt, the error between Vg, anal and Vg, num becomes large but is still within 21% 
when ωΔt < 1. Therefore, QL-GRP can provide important insights for the group veloc-
ity at medium reduced frequency.

(18)Vg ,num =
Re

(

κ ′2

(

κ̂2
)

− κ ′1

(

κ̂1
))

κ̂2 − κ̂1
.

Fig. 4  Illustrations of Pi on the distributions of Re(κ′) for different sizes of grid and different time steps with 
WENO5-JS and RK4
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Note that QL-GRP can provide an overview of the group velocity in the kΔx vs. ωΔt 
space, which is difficult for the numerical approach just mentioned. In addition, QL-
GRP avoids the tedious process of finding a numerical solution and is more convenient 
for practical analyses.

4.2 � Constructing hyperbolic equations for a combination wave with different phase 

and group velocities

The distribution u = cos(kx − ωt) satisfies Eq. (1) when ω/k = c, where the group and 
phase velocities are Vg, exact = dω/dk = c and Vp, exact = ω/k = c, respectively. One can 

Fig. 5  Positions of Pi in the kΔx vs. ωΔt plane. The colors indicate the group velocity calculated by QL-GRP 
with WENO5-JS and RK4

Table 2  Both group velocities and errors of Pi for WENO5-JS and RK4

Point Vg, num Vg, anal |Vg, anal − Vg, num|/Vg, num

P1 0.8647 0.8627 0.23%

P2 0.8638 0.8698 0.69%

P3 0.8732 0.8524 2.38%

P4 0.8203 0.6505 20.70%
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see that in such situations, the group velocity and phase velocity are indistinguisha-
ble, which is unfavorable for investigating the GVP property of the numerical scheme.

In textbooks, the combination wave u = cos(k1x − ω1t) + cos(k2x − ω2t) is usually 
used to explain the concept of group velocity, which can also be written as:

The envelope of Eq. (19) is

and the corresponding group velocity and phase velocity are

Without loss of generality, it is usually assumed that k1 = ω1. When k2 ≠ ω2, then Vg ≠ Vp.
Although the combination wave is used to explain the group velocity and phase veloc-

ity, the distribution does not satisfy Eq. (1). Therefore, this equation cannot be used 
to simulate the wave. We devised the following hyperbolic equations so that we could 
numerically study the GVP of different schemes:

It can be shown that Eq. (19) satisfies Eq. (20) and a = ω2/k2 when k1 = ω1. If a ≠ 1, the 
group velocity is different from the phase velocity. Hence, a measure is provided to study 
the combination wave with the co-occurrence of different group and phase velocities, 
which also provides a powerful way to verify the outcome of QL-GRP.

5 � Numerical examples
In the following, to compute the group velocity, the envelope of the wave is derived by a 
Hilbert transform.

5.1 � One‑dimensional wave propagation

(1)	Initial condition using sinuous distribution

Consider Eq. (1) with c = 1/8. The following initial distribution is chosen:

The exact solution is u = sin(8πx − πt) with Vg, exact = Vp, exact = 1/8.
Two tests were used to check the GVP: (1) using the same spatial scheme for dif-

ferent κ̂ and (2) using different spatial schemes for the same κ̂ . Considering that 

(19)u = 2 cos

(

k1 + k2

2
x −

ω1 + ω2

2
t

)

cos

(

k2 − k1

2
x −

ω2 − ω1

2
t

)

.

2 cos

(

k2 − k1

2
x −

ω2 − ω1

2
t

)

,

Vg ,exact =
ω2 − ω1

k2 − k1
and Vp,exact =

ω2 + ω1

k2 + k1
.

(20)
{

∂u
∂t +

∂u
∂x = p,

∂p
∂t + a

∂p
∂x = 0.

(21)u0 = sin (8πx).
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κ̂ = k�x = kL/Nx , κ̂ can be adjusted by changing the size of Nx. In the computation, 
T = 2, Δt = 10−3, and ωΔt = 10−3π, and the computational domain was [− 1, 1].

First, the performance of WENO5-JS was tested for different grids, as shown in Fig. 6.
When Nx was 48, 64, or 96, κ̂ was π/3, π/4, or π/6, respectively. Because the group 

velocity is equal to the phase velocity in this situation, the phase velocity can be com-
puted by the phase change of the wave peak, and the group velocity can be obtained 
thereafter. Figure  6 shows that when κ̂ = π/3 , the numerical group velocity was 
about 0.1025 and the ratio Vg, num/Vg, exact = 0.82. When κ̂ = π/4 , Vg, num was about 
0.11875 and Vg, num/Vg, exact = 0.95, which indicated that the group velocity was in the 
accurate region [0.95, 1.05]. With an increase of Nx, κ̂ decreased and the numerical 
group velocity gradually approached the theoretical value, i.e., Vg, num was 0.99 when 
κ̂ = π/6.

Using QL-GRP with the WENO5-JS scheme and the RK4 scheme, for the same 
three points (π/3, 10−3π), (π/4, 10−3π), and (π/6, 10−3π) in the kΔx vs. ωΔt plane, Vg, 

num/Vg, exact can be derived from Eq. (14) as 0.8259, 0.9592, and 0.9950, respectively. 
These values are nearly the same as those obtained numerically. Hence, QL-GRP has 
been verified quantitatively, and its usefulness in analyses of the group velocity has 
been demonstrated.

Fig. 6  Results of WENO5-JS with RK4 for different sizes of grid for T = 2, Δt = 10−3, and ωΔt = 10−3π 
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Next, GVP was compared for UPW5, WENO5-JS, and WENO5-M for Nx = 48 and 
(

κ̂ ,ω�t
)

=
(

π/3, 10−3π
)

 . The results are shown in Fig. 7.
Figure 7 shows that the UPW5 scheme yields a relatively accurate group veloc-

ity, since Vg, num/Vg, exact = 0.96, whereas WENO5-M and WENO5-JS have rela-
tively large errors, i.e., Vg, num/Vg, exact = 0.87 and 0.82, respectively. WENO5-M 
performed better than WENO5-JS. The rank of performance for the GVP is 
UPW5 > WENO5-M > WENO5-JS. The results for QL-GRP are consistent with 
the numerical results, which demonstrates the validity and capability of QL-GRP 
for nonlinear schemes.

(2)	Initial condition using wave packet-like distribution

Consider Eq. (1) with c = 1. The following initial distribution is chosen:

(22)u0 = cos(7x)× cos6(x).

Fig. 7  Results for UPW5, WENO5-JS, and WENO5-M with RK4 for grid size Nx = 48, T = 2, Δt = 10−3, and 
ωΔt = 10−3π 
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The period of the distribution can be found as π. For brevity, the “envelope” in the fol-
lowing figures is abbreviated as “envlp”. The initial distribution which imitates a wave 
packet-like structure and its envelope are shown in Fig. 8. Note that due to the employ-
ment of Eq. (1) as the governing equation, the group speed here is still the same as the 
phase velocity.

The same three spatial schemes as above, UPW5, WENO5-M, and WENO5-JS, are 
tested to further explore their GVP. In the computation, T = π, Δt = 10−3, Nx = 48, and 
the computational domain was [π/2  , 3π/2]. The results are shown in Fig. 9 with enve-
lopes derived.

From the figure, it can be seen that UPW5 yields the most accurate group velocity 
in three schemes, which is followed by WENO5-M, whose peak value of envelope 
has decreased from the exact “1” to “0.4”. WENO5-JS has the least performance 
considering its smallest and deformed envelope. The rank of GVP performance is 
still: UPW5 > WENO5-M > WENO5-JS, as indicated by previous QL-GRP analysis.

5.2 � Wave propagation with different group and phase velocities

In this section, the case described in Section 4.2 with different group and phase veloc-
ities is evaluated for the different spatial schemes, namely UPW5, WENO5-M, and 
WENO5-JS, which further demonstrates the validity of QL-GRP.

Fig. 8  Distributions of initial wave packet-like structure and its envelope
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For the distribution in Eq. (19), multiple waves were included in one wave packet for 
the purpose of better illustration. The initial condition is

in the domain [−3π, 3π]. We set k1 = ω1 = 6, k2 = 8, and ω2 = 12. The exact group and 
phase velocities were Vg, exact = 3 and Vp, exact = 9/7. The initial distribution and its enve-
lope derived with a Hilbert transform are shown in Fig. 10. Here, Nx = 120, T = 1, and 
Δt = 5 × 10−4.

The corresponding envelopes, which contain information about the group veloc-
ity, were derived by Hilbert transform [13], as shown in Fig. 11. By convention, the 
envelopes were drawn after taking the absolute value. The details to derive envelopes 
are shown in the Appendix. For the purpose of further comparison, the result of lin-
ear counterpart of WENO7-JS, UPW7, which has lower dissipation, is also given in 
Fig. 11.

Figure 11 shows that UPW7 yields a result closest to the exact solution, which is 
due to its relatively smallest spectrum error such as low dissipation. Besides, UPW5 
yields an envelope such that the numerical group velocity is closest to the theoreti-
cal one of the remaining three schemes, followed by WENO5-M and then WENO5-
JS. The amplitudes of the envelope show that UPW5 had the least dissipation, 

u0 = 2 cos

(

k1 + k2

2
x

)

cos

(

k2 − k1

2
x

)

Fig. 9  Solution distributions and corresponding envelopes for T = π under the initial packet-like wave and 
the conditions Nx = 48 and Δt = 10−3 for different spatial schemes and RK4
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followed by WENO5-M and then WENO5-JS. Recall that from Fig.  3, the area of 
GVP given by QL-GRP was in the order: UPW5 > WENO5-M > WENO5-JS. There-
fore, the results for QL-GRP agree with the numerical results, which verifies its 
validity.

6 � Conclusions
Because GRP [5] cannot be used for a group velocity analysis of a nonlinear scheme, 
QL-GRP was proposed by combining ADR with GRP. Moreover, a detailed derivation 
and implementation of QL-GRP were provided for high-order Runge–Kutta schemes. 
The conclusions are as follows:

1.	 Since QL-GRP can analyze the GVP for nonlinear schemes, it can distinguish 
between the group velocity of different schemes. When the spatial scheme is linear, 
QL-GRP degenerates to GRP.

2.	 The group velocities of typical schemes were derived numerically and the compari-
son confirmed the rationality of QL-GRP.

3.	 If the reduced frequency is small, the group velocity given by QL-GRP is accu-
rate. Moreover, its predictions are reasonable and meaningful at medium reduced 
frequency. Although QL-GRP cannot accurately predict the GVP at high reduced 

Fig. 10  Distributions of initial combination wave and its envelope for k1 = ω1 = 6, k2 = 8, and ω2 = 12
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frequency, it can provide a reference in an analysis of the group velocity of non-
linear schemes.

4.	 Hyperbolic equations were devised for combination waves with different group 
and phase velocities. These enabled numerical investigations. Through two numer-
ical examples, the validity of QL-GRP was verified qualitatively and quantitatively.

As indicated in this study, distinct GVP regions exist among schemes with differ-
ent performances regarding GRP, hence such information would be used to define the 
(free) parameters in optimized schemes and schemes with additional control param-
eters. Besides, it is known the multiple waves would yield nonlinear interaction through 
nonlinear schemes, which has drawn the attention in nonlinear spectrum analysis in 
[14]. It is natural to extend the current analysis to one that considers the interaction of 
multiple waves. Due to the limitation of space, such a topic will be discussed in other 
investigations.

Appendix
The main codes on deriving the envelopes by MATLAB are as follows:

U = abs(hilbert(a)); % “a” represents the numerical value.
plot(b, U); % “b” represents the x-coordinate, “U” represents the envelope.

Fig. 11  Envelopes for T = 1 for the hyperbolic equations under the conditions Nx = 120 and Δt = 5 × 10−4 
with k1 = ω1 = 6, k2 = 8, and ω2 = 12 for different spatial schemes and RK4
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Taking the distribution u = 2cos(3x − 5t)cos(x − 3t) as an example, the derived enve-
lopes at different moments are depicted in Fig. 12, which shows that the numerical enve-
lope obtained by the codes is the same as the exact one.
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