
Advances in AerodynamicsMeng and Xu Advances in Aerodynamics            (2022) 4:22 
https://doi.org/10.1186/s42774-022-00110-4

RESEARCH Open Access

Adaptive local discontinuous Galerkin
methods with semi-implicit time
discretizations for the Navier-Stokes
equations
Xiangyi Meng and Yan Xu*

*Correspondence: yxu@ustc.edu.cn
School of Mathematical Sciences,
University of Science and
Technology of China, Hefei 230026,
Anhui, People’s Republic of China

Abstract

In this paper, we present a mesh adaptation algorithm for the unsteady compressible
Navier-Stokes equations under the framework of local discontinuous Galerkin methods
coupled with implicit-explicit Runge-Kutta or spectral deferred correction time
discretization methods. In both of the two high order semi-implicit time integration
methods, the convective flux is treated explicitly and the viscous and heat fluxes are
treated implicitly. The remarkable benefits of such semi-implicit temporal
discretizations are that they can not only overcome the stringent time step restriction
compared with time explicit methods, but also avoid the construction of the large
Jacobian matrix as is done for fully implicit methods, thus are relatively easy to
implement. To save computing time as well as capture the flow structures of interest
accurately, a local mesh refinement (h-adaptive) technique, in which we present
detailed criteria for selecting candidate elements and complete strategies to refine and
coarsen them, is also applied for the Navier-Stokes equations. Numerical experiments
are provided to illustrate the high order accuracy, efficiency and capabilities of the
semi-implicit schemes in combination with adaptive local discontinuous Galerkin
methods for the Navier-Stokes equations.

Keywords: Mesh adaptation, Local discontinuous Galerkin methods, Implicit-explicit
Runge-Kutta methods, Spectral deferred correction methods, Navier-Stokes equations

1 Introduction
In this paper, we focus on an h-adaptive local discontinuous Galerkin (LDG) method in
combination with implicit-explicit Runge-Kutta (IMEX-RK) or spectral deferred correc-
tion (SDC) time discretizations to solve the unsteady compressible Navier-Stokes (NS)
equations.
The discontinuous Galerkin (DG) method, which is a class of finite element methods

using a completely discontinuous piecewise polynomial space for the numerical solutions
and the test functions in spatial variables, has been widely used in computational fluid
dynamics, computational acoustics and computational magneto-hydrodynamics, since it
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was firstly introduced in 1973 by Reed and Hill [1] in the framework of linear neutron
transport and then further extended by Cockburn et al. [2–5] for solving nonlinear hyper-
bolic conservation laws through a combination of explicit, Strong-Stability-Preserving
Runge-Kutta (SSP-RK) time discretizations and total variation bounded nonlinear lim-
iters to achieve non-oscillatory properties for strong shocks. The DG methods combine
two advantageous features commonly associated to continuous finite element and finite
volume methods, such as high order accuracy, flexibility on complex geometry, flexibil-
ity for h-p adaptivity, and so on, and are indeed a natural consideration when solving
hyperbolic conservation laws, such as the compressible Euler equations. However, when
it comes to partial differential equations (PDEs) containing high order spatial derivatives,
e.g., the compressible NS equations where the viscous and heat fluxes exist, a severe diffi-
culty with the approximations of the numerical fluxes for solution derivatives arises by the
direct application of the DGmethods, and a naive arithmetic mean of the solution deriva-
tives without taking into account the possible jump of the solutions will yield a weakly
unstable scheme.
In order to properly resolve the solution derivatives in the NS equations at the inter-

faces, plenty of numerical methods have been proposed in the literature. In 1997, Bassi
and Rebay [6] firstly attempted to apply the DG methods to the compressible NS
equations, later on, they introduced an improved method [7] based on the previous
scheme in order to maintain the compactness and stability for the pure diffusion prob-
lems. Hartmann and Houston [8] proposed employing the symmetric interior penalty
method, which can guarantee optimal order of convergence in terms of L2 norm of the
error, for the discretization of the leading order terms of the compressible NS equations.
To deal with moving and deforming boundaries, Klaij and van der Vegt [9] presented a
space-time DG method for the compressible NS equations. The key feature of the space-
time DG method is that no distinction is made between space and time variables and
thus this provides optimal flexibility to deal with time dependent boundaries and deform-
ing elements. Based on a so-called inter-cell reconstruction, Luo et al. [10] developed a
reconstruction-based DGmethod for the NS equations on arbitrary grids. The numerical
viscous and heat fluxes at interfaces are obtained by locally reconstructing a smooth solu-
tion with a least-square method from the underlying discontinuous solution. Based on
a direct weak formulation for the parabolic equations, a so-called direct DG method for
solving second-order diffusion problems was originally introduced by Liu and Yan [11],
and further extended by Cheng et al. [12] to solve the compressible NS equations.
Inspired and attracted by the high order accuracy, easy extension to high order PDEs

and arbitrary grids of the LDG method, we select it as the spatial discretization in our
study. Besides, adopting h-adaptive technique and semi-implicit time marching methods
are another two aspects we focus on in this paper to improve the computational accu-
racy and efficiency as well as deduce the computational complexity. The LDG method
was initially developed to solve nonlinear convection-diffusion equations by Cockburn
and Shu [13], enlightened by Bassi and Rebay’s successful simulation for the compressible
NS equations. The idea behind the LDG method is to properly rewrite the PDEs con-
taining high order derivatives as a first-order system by introducing auxiliary variables,
then apply the DG method to the system, in which correctly designing the numerical
fluxes is the key ingredient to guarantee stability and local solvability of the auxiliary vari-
ables. There has been abundant literature on designing and analyzing the LDG schemes
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for different types of high order PDEs, for a detailed review, see [14] and the references
therein.
By sharing the advantages of the DG method, the LDG scheme requires no imposition

of solution continuity between adjacent elements and allows the appearance of hanging
nodes, thus is extremely flexible to do local grid refinement. To start the mesh adap-
tation, a criterion to determine whether an element in the computational mesh needs
to be refined or coarsened is demanded. Generally, the criteria can be divided into two
types, i.e., error estimators and heuristic indicators [15]. Error estimators are based on
a so-called a posteriori error estimation which seeks to bound the error with respect to
a given norm. As a comparison, heuristic indicators usually depend on the local gradi-
ent of thermodynamical variables such as the density, pressure, entropy and so on, or
the local divergence or curl of the velocity field, thus are relatively simple to be imple-
mented for complicated PDEs. In the current, a rigorousmathematical analysis to develop
the a posteriori error estimation for the LDG scheme of the compressible NS equations
is out of our scope, therefore we consult the criteria in [16, 17] for the compressible
Euler equations and choose a combination of different heuristic indicators. In practical
implementation, the candidate elements marked for refinement are indeed to be refined,
however, to retain the mesh quality, some other elements around these elements may
also require to be refined. In contrast, to achieve the same goal, the candidate elements
marked for coarsening may not be coarsened depending on their neighbors.What’s more,
to maintain conservation and accuracy of the numerical solutions during refinement and
coarsening, the L2 projection is implemented for the prolongation and restriction of grid.
The application of any above extension of the DG methods to the compressible NS

equations will generate a large coupled system of ordinary differential equations (ODEs),
which require accurate and efficient time integration methods to march in time. The
explicit, high order SSP-RK time discretizations, which are suitable choices for hyperbolic
conservation laws, will sustain extremely small time step restriction for stability, but not
for accuracy due to the appearance of stiffness terms of the NS equations, i.e., the viscous
and heat fluxes terms. Nearly all the papers referred above applied the implicit temporal
discretizations, e.g., the backward Euler method, to overcome this restriction. This kind
of remedy is efficient to some extent, since the Courant-Friedrichs-Lewy (CFL) number
can be adjusted to be quite large, but the construction of the large Jacobian matrix and
the choice of efficient preconditioners for the linear systems arising in the inner loop
greatly increase the difficulty in implementation. In addition, for unsteady flow problems
with complicated flow structures, a time step of at least the same order of magnitude as
the mesh size is required to capture the complex flow structures accurately at any time.
By turning to the semi-implicit time discretization methods, specifically, IMEX-RK and
SDCmethods, and treating the convective, viscous and heat fluxes differently, no Jacobian
matrix is required to be assembled and only two linear systems for the momentum and
energy equations, respectively, need to be solved. Numerical experiments show that the
residual of the GMRES solver even without any preconditioner can approach the machine
error within a dozen of, sometimes two or three, outer iterations if the mesh quality is not
too bad. L. Pareschi and G. Russo considered IMEX-RK methods in time for hyperbolic
systems of conservation laws with stiff relaxation terms in [18]. In [19, 20] Wang et al.
analyzed the stability and error estimates of the LDG methods coupled with IMEX-RK
time discretizations for the linear convection-diffusion equations in one and two dimen-



Meng and Xu Advances in Aerodynamics            (2022) 4:22 Page 4 of 31

sions, and unconditional stability and optimal error estimates are obtained. Xia et al. [21]
explored three different time discretization techniques including SDC methods for solv-
ing the stiff ODEs resulting from an LDG spatial discretization to PDEs containing high
order spatial derivatives, and verified that all the three methods are efficient and a time
step �t = O(�x) is allowed for k-th order PDEs. The LDG method is more flexible
for treating the nonlinear terms when introducing the auxiliary for high order derivative
terms. Due to the local properties of the LDG methods, the resulting implicit scheme
is easy to implement and can be solved in an explicit way when it is coupled with iter-
ative methods, which has been demonstrated in the references [22, 23]. For other work
on semi-implicit schemes for gasdynamics, we suggest the readers consulting [24–30]
and the references therein.
The outline of this paper is organized as follows. Governing equations are given

in Section 2. In Section 3, we present the LDG scheme for the compressible NS
equations, including the detailed and clear treatment for the numerical fluxes for subsonic
inflow/outflow, supersonic inflow/outflow and solid wall boundary conditions. Section 4
is devoted to the discussion about two kinds of semi-implicit time discretization meth-
ods we adopt in this paper, i.e., IMEX-RK and SDC methods, and the fully discrete
schemes of the NS equations. In Section 5 we provide the implementation details of the
h-adaptive technique. Section 6 contains numerical results for the unsteady compress-
ible NS equations, which demonstrate the high order accuracy and capabilities of the
presented methods. Finally we give conclusions in Section 7.

2 Governing equations
Let � ⊂ R

d be a bounded domain with d ≤ 3, the NS equations governing the dynamics
of viscous compressible flows express the conservation of mass, momentum and energy,
and can be written in dimensionless and conservative form [31]

∂U
∂t

+ ∇ · F(U) = ∇ · G(U,∇U), (1)

in�×(0,T], T > 0, withU ∈ R
d+2 the vector of conserved variables and F,G ∈ R

(d+2)×d

the inviscid and viscous fluxes, which are defined as

U =
⎡
⎢⎣

ρ

ρu
E

⎤
⎥⎦ , F =

⎡
⎢⎣

ρu
ρu ⊗ u + pI

(E + p)u

⎤
⎥⎦ , G =

⎡
⎢⎣

0
τ

τu − q

⎤
⎥⎦ ,

respectively. Here ρ, u ∈ R
d and p denote the mass density, velocity field and pressure,

respectively. I represents unit tensor. The total energy per unit volume E is the sum of
internal and kinetic energy

E = ρ

(
e + 1

2
|u|2

)
,

with e the specific internal energy. In order to close the system, we consider the equation
of state for a calorically perfect gas

p = (γ − 1)ρe,

where γ = cp
cv is the ratio of cp and cv, the specific heats at constant pressure and vol-

ume, respectively. By Newtonian approximation and Stokes hypothesis, the viscous stress
tensor τ ∈ R

d×d relating to the derivatives of the velocity field u is defined as



Meng and Xu Advances in Aerodynamics            (2022) 4:22 Page 5 of 31

τ = μ

(
∇u + ∇Tu − 2

3
(∇ · u)I

)
,

where the dynamic viscosity coefficient μ, which is determined through Sutherland’s law,
reads in dimensionless form

μ = 1
Re∞

1 + Ts/T∞
T + Ts/T∞

T
3
2 ,

with Re∞ the Reynolds number, T the temperature, Ts a constant and subscript∞ denot-
ing the uniform free-stream values. The heat flux vector q ∈ R

d caused by the gradient
of temperature T is defined as

q = −κ∇T ,

via Fourier’s heat conduction law, where κ = cpμ
Pr is the thermal conductivity coefficient,

with Pr the Prandtl number. In addition, the specific internal energy e can relate to the
temperature T by

e = cvT .

As a matter of fact, the specific heats cp and cv in dimensionless form can be defined as

cp = 1
(γ − 1)M2∞

, cv = 1
γ (γ − 1)M2∞

,

with Mach numberM∞ for uniform flow given by

M∞ = u∞
a∞

, a∞ =
√

γ p∞
ρ∞

.

In this paper, unless otherwise stated, we will use γ = 1.4, Pr = 0.72 for air, and μ as a
constant for simplicity, i.e., μ = 1

Re∞ .

3 The LDGmethod
In this section, we will introduce the LDG method for the spatial discretization of the
compressible NS equations. Special attention will be paid to the numerical fluxes on
various boundaries.

3.1 Notations and finite element spaces

For the DG spatial discretizations, the domain � is approximated with a tessellation
Th consisting of nonoverlapping shape-regular elements K, which satisfy the condition⋃

K∈Th K := �h → � as h → 0, with the mesh size h := maxK∈Th hK and the diameter
hK of element K. Let � denote the union of the boundaries of all the elements K and clas-
sify them into internal faces �I and boundary faces �B, i.e., � = �I ∪ �B. We also assume
that �B may be decomposed as follows

�B = �sub−in ∪ �sub−out ∪ �sup−in ∪ �sup−out ∪ �W ,

where �sub−in, �sub−out, �sup−in, �sup−out and �W are distinct subsets of �B represent-
ing subsonic-inflow, subsonic-outflow, supersonic-inflow, supersonic-outflow and solid
wall boundaries, respectively. For solid wall boundaries, we also distinguish them either
according to slip (reflective) and no-slip conditions, i.e.,

�W = �W ,slip ∪ �W ,no−slip,

or according to isothermal and adiabatic conditions, i.e.,
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�W = �W ,iso ∪ �W ,adia.

Let e ∈ �I be an internal face shared by the “left” and “right” elements KL and KR,
i.e., e = ∂KL ∩ ∂KR, where the so-called “left” and “right” can be uniquely defined for
each internal face according to any fixed rule. Suppose φ is a function on KL and KR,
but possibly discontinuous across e, let φL and φR denote (φ|KL)|e and (φ|KR)|e, the left
and right traces, respectively. Similar definitions can be obtained component-wisely for
vector-valued and matrix-valued functions.
For the LDG discretizations, we require to introduce the finite element spaces. Actually

each element K of the tessellation Th is connected to a reference element K̂ through some
mapping FK . The mapping FK : K̂ → K from the reference element K̂ to the real physical
elementK is a function defined in the space of the reference element for each independent
variable. For example, for a quadrilateral element K in two dimension, K̂ =[−1, 1]2 is the
unit square and FK is expressed in terms of the nodal shape functions Ni, i = 1, · · · , 4 by

x = FK (ξ) =
4∑

i=1
xiKNi(ξ),

where x = (x1, x2) ∈ K , ξ = (ξ1, ξ2) ∈ K̂ , xiK , i = 1, · · · , 4 are the four vertex coordinates
of K and

N1(ξ) := 1
4
(1 − ξ1)(1 − ξ2), N2(ξ) := 1

4
(1 + ξ1)(1 − ξ2),

N3(ξ) := 1
4
(1 + ξ1)(1 + ξ2), N4(ξ) := 1

4
(1 − ξ1)(1 + ξ2),

see schematicmap in Fig. 1. Then the finite element spaces associated with the tessellation
Th are given by

Vh =
{
V = (v1, · · · , vd+2)

T ∈ (L2(�))d+2 : vi|K ◦ FK ∈ Pk(K̂), i = 1, · · · , d + 2, ∀K ∈ Th
}
,

Wh =
{
W = (w1, · · · ,wd)

T ∈ (L2(�))d : wi|K ◦ FK ∈ Pk(K̂), i = 1, · · · , d, ∀K ∈ Th
}
,


h =
{
σ = (σij)1≤i,j≤d ∈ (L2(�))d×d : σij|K ◦ FK ∈ Pk(K̂), i, j = 1, · · · , d, ∀K ∈ Th

}
,

with Pk(K̂) the space of polynomials of degree up to k with respect to d variables in
the reference element K̂ . Note that the functions in Vh, Wh and 
h are allowed to be
completely discontinuous across element interfaces.
Further, we also define the inner product notations in element and on face as

Fig. 1 Schematic map for the transformation FK from a unit square in the reference space to the real element
in the physical space



Meng and Xu Advances in Aerodynamics            (2022) 4:22 Page 7 of 31

(φ,ϕ)K :=
∫
K

φϕdK , (φ,ϕ)∂K :=
∫

∂K
φϕds,

(u, v)K :=
∫
K
u · vdK , (u, v)∂K :=

∫
∂K

u · vds,

(σ , η)K :=
∫
K

σ : ηdK , (σ , η)∂K :=
∫

∂K
σ : ηds,

for the scalar-valued functions φ,ϕ, vector-valued functions u, v and matrix-valued
functions σ , η, respectively, where

σ : η := σijηi,j.

3.2 The LDG discretization

In order to propose the LDG discretization for the NS equations, we firstly rewrite (1) as
a first order system, which is composed of the primary equations

∂U
∂t

+ ∇ · (F(U) − G(U, τ ,q)) = 0, (2)

and the auxiliary equations

z = ∇u, (3a)

q = −κ∇T , (3b)

where U = (ρ,m,E)T and

u = m
ρ
, (4a)

τ = 1
Re∞

(
z + zT − 2

3
tr(z)I

)
, (4b)

κT = γ

Re∞Pr

(
E
ρ

− 1
2
|u|2

)
, (4c)

with tr(z) := zii the trace of the matrix z. Based on the weak formulation of (2)− (3),
which is obtained by multiplying (2)−(3) by test functions, integrating over some domain,
and then performing an integration by parts, we can obtain the following semi-discrete
LDG scheme : findUh ∈ Vh, zh ∈ 
h and qh ∈ Wh, such that for all test functionsV ∈ Vh,
σ ∈ 
h and p ∈ Wh, the following equations are satisfied

d
dt

(Uh,V)K − (Fh − Gh,∇V)K + (̂F − Ĝn,V)∂K = 0, (5)

and

(zh, σ )K + (uh,∇ · σ )K − (̂u, σn)∂K = 0, (6a)

(qh,p)K − κ(Th,∇ · p)K + κ(T̂ ,p · n)∂K = 0, (6b)

where Uh = (ρh,mh,Eh)T , Fh = F(Uh), Gh = G(Uh, τh,qh) and

uh = mh
ρh

,

τh = 1
Re∞

(
zh + zTh − 2

3
tr(zh)I

)
,

κTh = γ

Re∞Pr

(
Eh
ρh

− 1
2
|uh|2

)
,

n is the unit outward normal vector to the boundary ∂K . The terms denoted with a hat in
(5) and (6) in the cell boundary terms from integration by parts are the so-called numer-
ical fluxes, which are functions defined on the faces and should be designed based on
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different guiding principles for different PDEs to ensure stability and local solvability of
the intermediate variables. Consider a face e ∈ ∂K , and we denote by superscripts L and R
the internal interface state and neighboring element interface state, respectively. Note, the
neighboring element could be a ghost element which lies exterior to the computational
domain.

• If e ∈ �I is an internal face, we choose the local Lax-Friedrichs flux for the convective
part and central flux for the other flux terms. In detail,

F̂ = 1
2
(
FLhn + FRhn − αe

(
UR
h − UL

h
))
, Ĝ = 1

2
(
GL
h + GR

h
)
,

û = 1
2
(
uLh + uRh

)
, T̂ = 1

2
(
TL
h + TR

h
)
,

where αe is the biggest eigenvalue of the Jacobian matrix ∂(Fhn)
∂U on e.

• If e ∈ �sub−in ∪ �sub−out ∪ �sup−in ∪ �sup−out is a farfield boundary face, we define
the right external states as

UR
h =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
ρ∞, ρ∞u∞, pLh

γ−1 + 1
2ρ∞|u∞|2

)T
, if e ∈ �sub−in,

U∞, if e ∈ �sup−in,(
ρL
h ,m

L
h,

p∞
γ−1 + 1

2ρ
L
h |uLh|2

)T
, if e ∈ �sub−out,

UL
h, if e ∈ �sup−out,

then the numerical flux F̂ is similarly defined as in the internal face, and

Ĝ = G
(
UR
h , τ

L
h,q

L
h
)
, û = uRh , T̂ = TR

h .

• If e ∈ �W is a solid wall boundary face, in order to weakly prescribe the slip and
no-slip boundary conditions, i.e., u · n = 0 and u = 0, respectively, for the convective
flux F̂, we again define the right external states as

UR
h =

{ (
ρL
h , ρ

L
hu

L
h − 2ρL

h
(
uLh · n)n,ELh

)T , if e ∈ �W ,slip,(
ρL
h ,−ρL

hu
L
h,E

L
h
)T , if e ∈ �W ,no−slip,

then F̂ can be formulated the same as in the internal face. The velocity at the
boundary is defined as

û = uLh − (
uLh · n)n, if e ∈ �W ,slip, or û = 0, if e ∈ �W ,no−slip.

In addition, for the isothermal case e ∈ �W ,iso, T̂ and Ĝ are given by

T̂ = Tw and Ĝ = (
0, τL

h, τ
L
hû − qLh

)T ,

with Tw the given temperature on the wall. For the adiabatic case e ∈ �W ,adia, T̂ and
Ĝ are given by

T̂ = TL
h and Ĝ = (

0, τL
h, τ

L
hû

)T .

Now we have completed the definition of the LDG scheme for the NS equations.

4 Time discretizations
The LDG spatial discretization for the NS equations typically results in a system of ODEs

ut = FN (t,u) + FS(t,u), in (0, T] ,

u(0) = u0, (7)
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which contains a non-stiff term FN (t,u) as well as a stiff term FS(t,u). One would then
need to use a suitable ODE solver to discretize the temporal variable. Generally, in many
cases, the non-stiff component FN (t,u) is nonlinear and the stiff component FS(t,u) is
linear, such as Burgers equation with viscous term, KdV type equations, etc. It would be
desirable to treat the different components separately, more specifically, to treat the non-
stiff term explicitly and stiff term implicitly. This kind of treatment can not only relax
the severe time step restriction due to implicit integration for the stiff term, but also be
easy to implement since we apply explicit discretization for potentially nonlinear non-
stiff terms. And what we would like to emphasize is that, even though the stiff term of the
NS equations is nonlinear with respect to all the conserved variables, we can still update
the variables at the new time level by solving a series of linear systems due to the special
structure of the NS equations. In the following work, we will consider two kinds of time
discretizations: IMEX-RK methods and semi-implicit SDC methods.
To numerically solve (7), we divide the time interval (0,T] intoM elements by the par-

tition 0 = t0 < t1 < · · · < tn < · · · < tM = T and denote by �tn = tn+1 − tn the time
step at level n and un the numerical approximation of u(tn).

4.1 IMEX-RK discretizations

By applying the IMEX-RK time marching methods, the numerical solution of (7)
advanced from time tn to tn+1 is given by

u(1) = un,

u(i) = un + �tn
i−1∑
j=1

âi,jFN
(
tjn,u(j)

)
+ �tn

i∑
j=2

ai,jFS
(
tjn,u(j)

)
, 2 ≤ i ≤ s + 1,

un+1 = un + �tn
s+1∑
i=1

b̂iFN
(
tin,u(i)

)
+ �tn

s+1∑
i=2

biFS
(
tin,u(i)

)
,

where tin = tn + ci�tn with ci = ∑i−1
j=1 âij = ∑i

j=2 aij. If we define Â = (âij), A = (aij) ∈
R(s+1)×(s+1), b̂ = (b̂1, · · · , b̂s+1)T , b = (0, b2, · · · , bs+1)T and c = (0, c2, · · · , cs+1)T , we
can interpret the IMEX-RK methods simply and clearly using a Butcher tableau

c Â A
b̂T bT

.

For a detailed introduction to IMEX-RK schemes, we refer the readers to [18, 32, 33].
The followings are examples of the first, second and third order IMEX-RK methods,
respectively:

• First order (one stage):

0 0 0 0 0
1 1 0 0 1

1 0 0 1

It is obvious that the first order IMEX-RK method is just taking the forward Euler dis-
cretization for the non-stiff term and the backward Euler discretization for the stiff
term.
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• Second order (two stages):

0 0 0 0 0 0 0
γ γ 0 0 0 γ 0
1 δ 1 − δ 0 0 1 − γ γ

δ 1 − δ 0 0 1 − γ γ

with γ = 1 −
√
2
2 and δ = 1 − 1

2γ .

• Third order (three stages):

0 0 0 0 0 0 0 0 0
γ γ 0 0 0 0 γ 0 0

1+γ
2

1+γ
2 − α1 α1 0 0 0 1−γ

2 γ 0
1 0 1 − α2 α2 0 0 β1 β2 γ

0 β1 β2 γ 0 β1 β2 γ

with γ the middle root of 6x3 − 18x2 + 9x − 1 = 0, γ ≈ 0.435866521508459, β1 =
− 3

2γ
2 + 4γ − 1

4 , β2 = 3
2γ

2 − 5γ + 5
4 , α1 = −0.35 and α2 = 1

3−2γ 2−2β2α1γ
γ (1−γ )

.

4.2 Semi-discrete SDC discretizations

Algorithm 1 Semi-discrete SDC method
Compute the initial first order approximation
u1n,0 = un
form = 0, · · · ,P − 1 do

u1n,m+1 = u1n,m + �tn,m
(
FN

(
tn,m,u1n,m

) + FS
(
tn,m+1,u1n,m+1

))
end for

Compute successive corrections
for k = 1, · · · ,K do

uk+1
n,0 = un

end for
form = 0, · · · ,P − 1 do

uk+1
n,m+1 = uk+1

n,m + �tn,m
(
FN

(
tn,m,uk+1

n,m

)
− FN

(
tn,m,ukn,m

))

+ �tn,m
(
FS

(
tn,m+1,uk+1

n,m+1

)
− FS

(
tn,m+1,ukn,m+1

))

+ Im+1
m

(
FN

(
t,uk

)
+ FS

(
t,uk

))

end for
Finally we have un+1 = uK+1

n,P .

The SDC time discretization is based on the Picard integral equation and low order time
integration methods, which are corrected iteratively, with the order of accuracy increased
by one for each additional iteration. The key advantage of SDC method is that it can
systematically and simply develop time integration methods of arbitrary high order of
accuracy.
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To define the semi-discrete SDC scheme, we further divide the time interval [ tn, tn+1]
into P subintervals by points tn,m for m = 0, 1, · · · ,P such that tn = tn,0 < tn,1 <

· · · < tn,m < · · · < tn,P = tn+1. Let �tn,m = tn,m+1 − tn,m and ukn,m denote
the k-th order approximation to u(tn,m). We choose the points {tn,m}pm=0 as Gauss-
Lobatto nodes on [ tn, tn+1]. Then the algorithm to calculate (k + 1)-th order accuracy
numerical solution of (7) advanced from time tn to tn+1 is given in Algorithm 1, where
Im+1
m

(
FN

(
t,uk

) + FS
(
t,uk

))
is the integral of the P-th degree interpolating polyno-

mial on the P + 1 points
(
tn,m,FN

(
tn,m,ukn,m

) + FS
(
tn,m,ukn,m

))P
m=0 over the subinterval

[ tn,m, tn,m+1].

4.3 Fully discrete schemes

Finally, as the implementation of IMEX-RK and SDC time discretizations to the semi-
discrete LDG scheme (5) and (6), we will present the fully discrete LDG schemes in the
following for the NS equations. We only present the third-order fully discrete scheme
here and the lower order fully discrete schemes can be deduced similarly.

• Third order IMEX-RK-LDG scheme
The LDG scheme with the third order IMEX-RK time marching method is given as :

(
Un,1
h ,V

)
K

= (
Un
h,V

)
K + γ�tn

((
Fnh,∇V

)
K − (̂

Fn,V
)
∂K

)

− γ�tn
((

Gn,1
h ,∇V

)
K

− (
Ĝn,1n,V

)
∂K

)
, (8a)

(
Un,2
h ,V

)
K

= (
Un
h,V

)
K +

(
1 + γ

2
− α1

)
�tn

((
Fnh,∇V

)
K − (̂

Fn,V
)
∂K

)

+ α1�tn
((

Fn,1h ,∇V
)
K

− (̂
Fn,1,V

)
∂K

)

− 1 − γ

2
�tn

((
Gn,1
h ,∇V

)
K

− (
Ĝn,1n,V

)
∂K

)

− γ�tn
((

Gn,2
h ,∇V

)
K

− (
Ĝn,2n,V

)
∂K

)
, (8b)

(
Un,3
h ,V

)
K

= (
Un
h,V

)
K + (1 − α2)�tn

((
Fn,1h ,∇V

)
K

− (̂
Fn,1,V

)
∂K

)

+ α2�tn
((

Fn,2h ,∇V
)
K

− (̂
Fn,2,V

)
∂K

)

− β1�tn
((

Gn,1
h ,∇V

)
K

− (
Ĝn,1n,V

)
∂K

)

− β2�tn
((

Gn,2
h ,∇V

)
K

− (
Ĝn,2n,V

)
∂K

)

− γ�tn
((

Gn,3
h ,∇V

)
K

− (
Ĝn,3n,V

)
∂K

)
, (8c)

(
Un+1
h ,V

)
K

= (
Un
h,V

)
K + β1�tn

((
Fn,1h ,∇V

)
K

− (̂
Fn,1,V

)
∂K

)

+ β2�tn
((

Fn,2h ,∇V
)
K

− (̂
Fn,2,V

)
∂K

)

+ γ�tn
((

Fn,3h ,∇V
)
K

− (̂
Fn,3,V

)
∂K

)

− β1�tn
((

Gn,1
h ,∇V

)
K

− (
Ĝn,1n,V

)
∂K

)

− β2�tn
((

Gn,2
h ,∇V

)
K

− (
Ĝn,2n,V

)
∂K

)

− γ�tn
((

Gn,3
h ,∇V

)
K

− (
Ĝn,3n,V

)
∂K

)
, (8d)
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(
zn,lh , σ

)
K

= −
(
un,lh ,∇ · σ

)
K

+
(
ûn,l, σn

)
∂K

, l = 1, 2, 3, (9a)
(
qn,lh ,p

)
K

= κ
(
Tn,l
h ,∇ · p

)
K

− κ
(
T̂n,l,p · n

)
∂K

, l = 1, 2, 3, (9b)

for any test function V ∈ Vh, σ ∈ 
h, p ∈ Wh, with Un,l
h =

(
ρ
n,l
h ,mn,l

h ,En,lh

)T
,

Fn,lh = F
(
Un,l
h

)
, Gn,l

h = G
(
Un,l
h , τn,l

h ,qn,lh

)
, l = 0, 1, 2, 3, and

un,lh = mn,l
h

ρ
n,l
h

, l = 0, 1, 2, 3, (10a)

τ
n,l
h = 1

Re∞

(
zn,lh +

(
zn,lh

)T − 2
3
tr
(
zn,lh

)
I
)
, l = 1, 2, 3, (10b)

κTn,l
h = γ

Re∞Pr

(
En,lh

ρ
n,l
h

− 1
2

∣∣∣un,lh

∣∣∣2
)
, l = 1, 2, 3, (10c)

and notations ∗n,0 = ∗n.
• High order SDC-LDG scheme

The LDG scheme with high order SDC time marching method reads : for any test
function V ∈ Vh, σ ∈ 
h, p ∈ Wh, the following first order approximation as well as
successive correction equations are satisfied

(
(Uh)

1
n,m+1,V

)
K = (

(Uh)
1
n,m,V

)
K + �tn,m

((
(Fh)1n,m,∇V

)
K − (̂

F1n,m,V
)
∂K

)

− �tn,m
((

(Gh)
1
n,m+1,∇V

)
K − (

Ĝ1
n,m+1n,V

)
∂K

)
, (11a)(

(Uh)
k+1
n,m+1,V

)
K

=
(
(Uh)

k+1
n,m ,V

)
K

+ �tn,m
((

(Fh)k+1
n,m ,∇V

)
K

−
(̂
Fk+1
n,m ,V

)
∂K

)

− �tn,m
((

(Fh)kn,m,∇V
)
K

−
(̂
Fkn,m,V

)
∂K

)

− �tn,m
((

(Gh)
k+1
n,m+1,∇V

)
K

−
(
Ĝk+1
n,m+1n,V

)
∂K

)

+ �tn,m
((

(Gh)
k
n,m+1,∇V

)
K

−
(
Ĝk
n,m+1n,V

)
∂K

)

+ Im+1
m

((
(Fh)k ,∇V

)
K

−
(̂
Fk ,V

)
∂K

)

− Im+1
m

((
(Gh)

k ,∇V
)
K

−
(
Ĝkn,V

)
∂K

)
, (11b)

form = 0, · · · ,P − 1, k = 1, · · · ,K , and
(
(zh)kn,m, σ

)
K

= −
(
(uh)kn,m,∇ · σ

)
K

+
(
ûkn,m, σn

)
∂K

, (12a)
(
(qh)kn,m,p

)
K

= κ
((

(Th)
k
n,m,∇ · p

)
K

−
(
T̂k
n,m,p · n

)
∂K

)
, (12b)

form = 0, · · · ,P, k = 1, · · · ,K + 1, where (Uh)
k
n,m = (

(ρh)
k
n,m, (mh)

k
n,m, (Eh)kn,m

)T ,
(Fh)kn,m = F

(
(Uh)

k
n,m

)
, (Gh)

k
n,m = G

(
(Uh)

k
n,m, (τh)

k
n,m, (qh)kn,m

)
and

(uh)kn,m = (mh)
k
n,m

(ρh)kn,m
, (13a)

(τh)
k
n,m = 1

Re∞

(
(zh)kn,m +

(
(zh)kn,m

)T − 2
3
tr
(
(zh)kn,m

)
I
)
, (13b)

κ(Th)
k
n,m = γ

Re∞Pr

(
(Eh)kn,m
(ρh)kn,m

− 1
2

∣∣∣(uh)kn,m
∣∣∣2
)
, (13c)

form = 0, · · · ,P, k = 1, · · · ,K + 1.
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Finally we can obtain the (K + 1)-th approximation Un+1
h = (Uh)

K+1
n,P at time tn+1.

5 Mesh adaptation
In this section, we mainly present the detailed implementation of the h-adaptation algo-
rithm for the structured mesh consisting of quadrilateral elements in 2D or hexahedral
elements in 3D, including the method to refine and coarsen elements, the criteria to select
candidate elements for refinement and coarsening, and the specific procedure of mesh
adaptation.

5.1 Refinement and coarsening of elements

For the data structure of adaptive mesh, we adopt a generalized binary tree, i.e., quadtree
in 2D and octree in 3D, to store all the elements, that is, a parent element is always divided
into 4 in 2D or 8 in 3D child elements. The DG method is extremely local in data com-
munication and allows the appearance of hanging nodes. This means that an element can
be refined an unlimited number of times, regardless of its immediate neighbors. How-
ever, if a huge difference between the levels of adjacent elements exists, the stability of the
resulting numerical scheme will be damaged. In order to enhance the mesh quality and
the stability of the scheme, we impose the quadtree or octree balanced, that is, the levels
between two adjacent elements differ at most by 1.
The numerical solution Uh restricted in element K can be expressed as

Uh(x, t)|K =
Nb∑
l=1

UK
l (t)vKl (x), (14)

where UK
l (t) and vKl (x), l = 1, · · · ,Nb denote the degrees of freedom and basis func-

tions, respectively, in element K. To maintain the accuracy and local conservation of the
solutions, we adopt L2 projection to obtain the degrees of freedom in the new generated
elements during refinement and coarsening. In detail, provided the numerical solution
Uh is already known on the mesh Th(tn), we require to determine the degrees of freedom
UK ′
l (tn), l = 1, · · · ,Nb in the new element K ′ ∈ Th(tn+1). Let U′

h be the L2 projection of
Uh, which is computed through the following equations:

∫
K ′

U′
h|K ′vK

′
l (x)dx =

∫
K ′

UhvK
′

l (x)dx, l = 1, · · · ,Nb. (15)

Then the degrees of freedom UK ′
l (tn), l = 1, · · · ,Nb can be obtained by substituting (14)

into (15).

5.2 Indicators

A criterion will be presented to initially determine the candidate elements for refinement
and coarsening in a given mesh. According to [16, 17], the gradient of density finds shock
and contact discontinuity well, the divergence of velocity is direction independent and
very effective in locating shock including strong shock and weak shock and the curl of
velocity is also direction independent and very effective in finding shear and vortex. For
these three different indicators, we compute the following quantities respectively:
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ηgi = |∇ρ|d
3
2
i , ηdi = |∇ · u|d

3
2
i , ηci = |∇ × u|d

3
2
i , i = 1, · · · ,Nc,

where Nc is the total number of elements, di = √|K | or di = 3√|K | depending on the
dimension. The standard deviation of the gradient of density, the divergence and the curl
of velocity are

ηg =
√∑Nc

i=1 η2gi

Nc
, ηd =

√∑Nc
i=1 η2di
Nc

, ηc =
√∑Nc

i=1 η2ci
Nc

,

respectively. In our work, a single indicator or a combination of two of the above indica-
tors will be taken into account for different problems. Suppose the level of all the elements
in the initial mesh equals zero, and each element in the initial mesh can be refined at
most LEV times. Based on the values of indicators, if only a single indicator, e.g., ηgi is
considered, then

• If ηgi > ω1ηg and the level of K < LEV , then K is marked as a candidate element for
refinement,

• If ηgi < ω2ηg and the level of K >0, then K is marked as a candidate element for
coarsening,

with problem dependent parameters ωl, l = 1, 2. If a combination of two indicators, e.g.,
ηgi and ηdi are employed, then

• If ηgi > ω1ηg or ηdi > ω3ηd , and the level of K < LEV , then K is marked as a
candidate element for refinement,

• If ηgi < ω2ηg and ηdi < ω4ηd , and the level of K >0, then K is marked as a candidate
element for coarsening,

with problem dependent parameters ωl, l = 1, 2, 3, 4. In general, ω1 and ω3 are chosen
between 1.1 and 1.5, ω2 and ω4 are chosen between 0.1 and 0.5.

5.3 Strategy for refinement and coarsening

In the above subsection, several candidate elements for refinement and coarsening are
selected through given criteria. And whether these elements can be ultimately refined or
coarsened, they also have to adhere to the principle that the level difference between two
adjacent elements is at most 1 to improve the stability and accuracy of the LDGmethods.
To satisfy this principle, we adopt the strategy “refinement must, coarsening can” in [15],
which means that a candidate element flagged for refinement is certainly to be refined,
and in comparison, a candidate element marked for coarsening may not be coarsened.
After the execution of Algorithm 2 and Algorithm 3 in sequence, we can obtain two

sets Cr and Cc which contain the final elements for refinement and coarsening, respec-
tively. In Algorithm 2, all the candidate elements for refinement will be refined, and
some neighbors of these elements are also added to the set Cr to ensure the mesh qual-
ity. In Algorithm 3, a candidate element for coarsening may be deleted from the set Cc
due to either the absence of marked for coarsening for its brother elements, or the level
difference with its neighbors.

5.4 Flow chart for mesh adaptation

As an end of this section, we present the general procedure for the adaptive LDG
methods. Given the initial coarse mesh Th(t0) and final computational time T,
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Algorithm 2 Refinement of candidate elements
Suppose the set of all the candidate elements for refinement is Cr
for each element K in Cr do

for each neighbor K̃ of K do
if K̃ /∈ Cr and the level of K̃ < the level of K then

add K̃ to Cr
end if

end for
end for

Algorithm 3 Coarsening of candidate elements
Suppose the set of all the candidate elements for coarsening is Cc
for each element K in Cc do

Set Kp as the parent element of K
if all the child elements of Kp belong to Cc then

if the level of all the neighbors of Kp ≤ the level of K then
keep K in Cc

else
delete K from Cc

end if
else

delete K from Cc
end if

end for

Step 1 Initialize the level of all the elements in Th(t0) to be 0 and obtain the degrees of
freedom in each element

{
UK
l (t0), l = 1, · · · ,Nb, K ∈ Th(t0)

}
through L2

projection for the initial exact solution.
Step 2 Given the mesh Th(tn) and the degrees of freedom in each element{

UK
l (tn), l = 1, · · · ,Nb, K ∈ Th(tn)

}
, an updated mesh Th(tn+1) is gained as

follows:

- Identify the candidate elements for refinement and coarsening in Th(tn)
through criteria in subsection 5.2.

- Determine the final element sets Cr and Cc for refinement and coarsening
through Algorithm 2 and Algorithm 3, respectively and subsequently.

- For each element in Cr , divide it into 4 in 2D or 8 in 3D child elements, get
the degrees of freedom of child elements by use of L2 projection, and
increase the level of child elements by one.

- For child elements with the same parent element in Cc, delete them and get
the degrees of freedom of the parent element through L2 projection.

Step 3 Obtain
{
UK
l (tn + 1), l = 1, · · · ,Nb, K ∈ Th(tn + 1)

}
by aid of the LDG method

coupled with an IMEX-RK or SDC method.
Step 4 If tn+1 < T , go to Step 2.
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6 Numerical experiments
In this section, we will carry out several numerical experiments including accuracy tests
and other benchmark problems for the NS equations to evaluate the performance of the
h-adaptive LDG methods. In addition, IMEX-RK and/or SDC time integration methods
are adopted to solve the ODEs resulting from the spatial discretizations. Note, at every
stage for the evolution in time, GMRES solver without any preconditioner is adopted to
solve the two successive linear systems with respect to momentum and energy equations.
In all experiments, the time step �tn at time tn is chosen to satisfy the following CFL
condition

d�tn
minK hK

max
K

(|uK | + aK ) < cfl,

where d ≤ 3 denotes the dimension, hK is the diameter of element K, uK and aK are the
velocity vector and speed of sound at element K, respectively, cfl is the CFL number taken
as 0.98, 0.3, 0.18 for the first, second and third order time discretizations, respectively. In
the following simulations, unless otherwise stated, an element in a mesh will be refined at
most LEV = 3 times, that is, the depth of the generalized binary tree is 3.

Example 1 Accuracy test in two dimension

In order to demonstrate the uniform high order accuracy both in space and time of our
proposed h-adaptive LDG scheme in conjunction with IMEX-RK or SDC methods, for
the first test case we consider a smooth exact solution

ρ(x, t) = 0.6 + 0.1 sin(5π t) cos(2πx) cos(2πy),

u(x, t) = sin(3π t) sin(2πx) sin(2πy),

v(x, t) = sin(3π t) sin(4πx) sin(4πy), (16)

p(x, t) = 0.8 + 0.1 sin(π t) sin(2πx) cos(2πy),

for the compressible NS Eqs. (1) with d = 2 and an additional source term, which is
acquired by inserting (16) into (1). Additionally, we take the computational domain as
[ 0, 1]2 with periodic boundary conditions and Reynolds number Re∞ = 200, 1000, 5000,
respectively. All the simulations are performed until time T = 0.1 on a set of successively
globally refined background meshes containing N × N , N = 16, 32, 64, 128 quadrilat-
eral elements, respectively. For a fixed N ×N background mesh, we randomly choose 2N
candidate elements marked for refinement and the remaining elements marked for coars-
ening at each time step, and gain the final element sets Cr and Cc through Algorithms 2
and 3. The initial 16 × 16 background mesh and the adaptive mesh at some time based
on the 32 × 32 background mesh are shown in Fig. 2. We adopt (k + 1)-th order IMEX-
RK or SDC time marching methods when k-th degree polynomials are employed. The L2

errors and orders of accuracy of density, velocity and pressure for both two schemes are
presented in Tables 1 and 2, respectively, which illustrate that our two schemes can both
obtain the expected optimal order of accuracy for these physical quantities with various
Reynolds numbers. Moreover, by comparing the results in Tables 1 and 2, we can con-
clude that the IMEX-RK and SDC methods with the same order share nearly identical
accuracy based on the background meshes with the same number of elements. For fur-
ther efficiency comparison between IMEX-RK and SDCmethods, we run the simulations
on the uniform 64× 64 mesh to eliminate the influence of frequent mesh refinement and
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Fig. 2 Sample mesh for accuracy test in two dimension

coarsening. It can be seen from Table 3 that, compared with the IMEX-RK scheme, the
SDC time discretization takes nearly the same time for the second order case and twice
the time for the third order case, respectively. This can evidently be explained by their
respective number of stages (there are 2 stages for both the second order IMEX-RK and
SDC schemes, 3 stages for the third order IMEX-RK scheme and 6 stages for the third

Table 1 Accuracy test for adaptive IMEX-RK-LDG scheme of 2D NS equations

Re∞ k N ‖ρ − ρh‖L2 Order ‖u − uh‖L2 Order ‖p − ph‖L2 Order

200 1 16 4.93E-03 – 2.72E-02 – 8.78E-03 –

32 1.04E-03 2.24 6.15E-03 2.14 1.81E-03 2.27

64 2.34E-04 2.15 1.44E-03 2.09 4.08E-04 2.14

128 5.61E-05 2.02 3.51E-04 2.03 9.86E-05 2.05

2 16 6.57E-04 – 3.17E-03 – 1.13E-03 –

32 8.52E-05 2.94 3.82E-04 3.05 1.40E-04 3.01

64 1.07E-05 2.99 4.76E-05 3.00 1.76E-05 2.99

128 1.28E-06 3.06 5.96E-06 3.00 2.16E-06 3.02

1000 1 16 4.51E-03 – 2.39E-02 – 8.05E-03 –

32 1.03E-03 2.11 5.84E-03 2.03 1.81E-03 2.14

64 2.50E-04 2.05 1.40E-03 2.05 4.38E-04 2.05

128 6.20E-05 2.01 3.46E-04 2.02 1.08E-04 2.01

2 16 6.75E-04 – 3.32E-03 – 1.23E-03 –

32 8.47E-05 2.99 3.94E-04 3.07 1.51E-04 3.02

64 1.08E-05 2.96 4.86E-05 3.02 1.90E-05 2.99

128 1.36E-06 3.00 6.02E-06 3.01 2.37E-06 3.00

5000 1 16 4.51E-03 – 2.39E-02 – 8.10E-03 –

32 1.03E-03 2.12 5.83E-03 2.03 1.82E-03 2.15

64 2.50E-04 2.05 1.40E-03 2.05 4.39E-04 2.05

128 6.19E-05 2.01 3.46E-04 2.01 1.08E-04 2.01

2 16 6.93E-04 – 3.65E-03 – 1.27E-03 –

32 8.67E-05 3.00 4.44E-04 3.03 1.56E-04 3.02

64 1.06E-05 3.02 5.18E-05 3.09 1.94E-05 3.00

128 1.35E-06 2.98 6.24E-06 3.05 2.43E-06 3.00



Meng and Xu Advances in Aerodynamics            (2022) 4:22 Page 18 of 31

Table 2 Accuracy test for adaptive SDC-LDG scheme of 2D NS equations

Re∞ k N ‖ρ − ρh‖L2 Order ‖u − uh‖L2 Order ‖p − ph‖L2 Order

200 1 16 4.96E-03 – 2.68E-02 – 8.81E-03 –

32 1.04E-03 2.25 6.16E-03 2.12 1.81E-03 2.27

64 2.34E-04 2.15 1.44E-03 2.09 4.10E-04 2.14

128 5.61E-05 2.06 3.52E-04 2.03 9.87E-05 2.05

2 16 6.56E-04 – 3.15E-03 – 1.12E-03 –

32 8.51E-05 2.94 3.81E-04 3.04 1.39E-04 3.01

64 1.07E-05 2.99 4.76E-05 3.00 1.75E-05 2.99

128 1.28E-06 3.06 5.95E-06 3.00 2.16E-06 3.02

1000 1 16 4.51E-03 – 2.39E-02 – 8.05E-03 –

32 1.03E-03 2.11 5.84E-03 2.03 1.81E-03 2.14

64 2.50E-04 2.05 1.40E-03 2.05 4.38E-04 2.05

128 6.20E-05 2.01 3.46E-04 2.02 1.08E-04 2.01

2 16 6.68E-04 – 3.30E-03 – 1.22E-03 –

32 8.47E-05 2.97 3.97E-04 3.05 1.51E-04 3.01

64 1.08E-05 2.96 4.86E-05 3.02 1.90E-05 2.99

128 1.36E-06 3.00 6.02E-06 3.01 2.37E-06 3.00

5000 1 16 4.51E-03 – 2.39E-02 – 8.10E-03 –

32 1.03E-03 2.12 5.83E-03 2.03 1.82E-03 2.15

64 2.50E-04 2.05 1.40E-03 2.05 4.39E-04 2.05

128 6.19E-05 2.01 3.46E-04 2.01 1.08E-04 2.01

2 16 6.93E-04 – 3.65E-03 – 1.27E-03 –

32 8.67E-05 3.00 4.44E-04 3.03 1.56E-04 3.02

64 1.06E-05 3.02 5.18E-05 3.09 1.94E-05 3.00

128 1.35E-06 2.98 6.24E-06 3.05 2.43E-06 3.00

order SDC scheme). However, unlike the IMEX-RK scheme, the SDCmethod of arbitrary
high order of accuracy can be systematically and simply developed.

Example 2 Accuracy test in three dimension

In this example, we extend our accuracy test to three dimension, which is much more
challenging to implement the procedure of refinement and coarsening for a general hex-
ahedral mesh. To this end, similar to the two dimensional counterpart, an artificial exact
smooth solution

ρ(x, t) = 2 + 0.5e−t sin(2πx) sin(2πy) sin(2πz),

u(x, t) = e−2t sin(2πx) cos(2πy) sin(2πz),

v(x, t) = e−2t cos(2πx) sin(2πy) cos(2πz), (17)

w(x, t) = e−2t sin(2πx) sin(2πy) cos(2πz),

p(x, t) = 1.5 + 0.2e−t cos(2πx) cos(2πy) cos(2πz),

Table 3 Simulation CPU time(s) of IMEX-RK and SDC methods based on the uniform 64 × 64 mesh

k IMEX-RK SDC

1 12.14 14.67

2 96.76 193.80
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is constructed to satisfy (1) with d = 3 and an additional source term. We compute the
numerical solution on [ 0, 1]3 with periodic boundary conditions and Reynolds number
Re∞ = 200 till final time T = 0.1. The series of background meshes are composed of
N × N × N hexahedral elements with N = 4, 8, 16, 32, see Fig. 3 for the 3D adaptive
sample mesh. We also compute the L2 errors and orders of density, velocity and pressure
for IMEX-RK-LDG and SDC-LDG schemes. As in the previous case, Tables 4 and 5 show
that our adaptivemethods can also achieve optimal order of accuracy for 3DNS equations
and nearly the same accuracy is obtained for the two schemes with identical setup.

Example 3 Efficiency test of h-adaptive methods

For the purpose of illustrating the superiority of the presented mesh adaptation tech-
nique compared with the uniform mesh method in terms of storage and computational
time, we consider the evolution of an isentropic vortex in inviscid flows. This procedure is
governed by the 2D Euler equations, which are obtained by neglecting the viscous effects
and heat conduction, that is, omitting the right-hand side of Eqs. (1). The initial solu-
tion of this problem is obtained by adding some perturbations to the uniform mean flow

Fig. 3 Sample mesh for accuracy test in three dimension
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Table 4 Accuracy test for adaptive IMEX-RK-LDG scheme of 3D NS equations

k N ‖ρ − ρh‖L2 Order ‖u − uh‖L2 Order ‖p − ph‖L2 Order

1 4 1.76E-01 – 2.37E-01 – 1.50E-01 –

8 4.61E-02 1.93 6.37E-02 1.90 3.49E-02 2.10

16 9.07E-03 2.34 1.34E-02 2.25 6.77E-03 2.37

32 1.81E-03 2.31 3.00E-03 2.15 1.44E-03 2.23

2 4 5.00E-02 – 7.46E-02 – 4.70E-02 –

8 7.73E-03 2.69 1.02E-02 2.86 6.35E-03 2.88

16 8.06E-04 3.26 1.16E-03 3.13 7.35E-04 3.11

32 9.26E-05 3.12 1.40E-04 3.05 8.98E-05 3.03

ρ∞ = u∞ = v∞ = p∞ = 1. The vortex perturbations of the temperature T, velocity field
(u, v) and entropy S can be formulated as follows:

δT = − (γ − 1)ε2

8γπ2 e1−r2 , (δu, δv) = ε

2π
e
1−r2
2 (y0 − y, x − x0), δS = 0,

where r2 = (x − x0)2 + (y − y0)2, (x0, y0) is the coordinate of the vortex center and ε is
the vortex strength. Then the initial solution is determined through isentropic relation

ρ = (1 + δT)
1

γ−1 , u = 1 + δu, v = 1 + δv, p = (1 + δT)
γ

γ−1 .

The exact solution to this problem is simply the passive convection of the initial solu-
tion. We take (x0, y0) = (10, 10), ε = 5 and computational domain as [ 0, 50]2. The
numerical solutions are computed using piecewise quadratic polynomials and third order
SSP-RKmethod which is more suitable for hyperbolic conservation laws. For more details
about SSP-RK methods, see [2–5]. To evaluate the efficiency improvement of the h-
adaptive methods, we run the simulations both in uniform and adaptive meshes with
Dirichlet boundary conditions till time T = 0.1. For the adaptive case, a combination of
indicators ηgi and ηci with parameters ω1 = 1.2, ω2 = 0.3, ω3 = 1.3 and ω4 = 0.4 are
employed, and the depth of the tree is LEV = 4. The final adaptive mesh based on a
16 × 16 background mesh and the density distribution around the vortex are presented
in Fig. 4. The computed L2 errors of density as functions of the final number of elements
in the mesh and CPU time are shown in Fig. 5, illustrating that the h-adaptive methods
can use less degrees of freedom and CPU time when achieving the same L2 error. Table 6
quantitatively shows that our h-adaptive methods can save 89.9% in storage and 70.4% in
CPU time compared with the uniformmesh method when they achieve the same L2 error
4.84E-6 of density.

Example 4 Shock-tube problems

Table 5 Accuracy test for adaptive SDC-LDG scheme of 3D NS equations

k N ‖ρ − ρh‖L2 Order ‖u − uh‖L2 Order ‖p − ph‖L2 Order

1 4 1.76E-01 – 2.37E-01 – 1.50E-01 –

8 4.61E-02 1.93 6.37E-02 1.89 3.50E-02 2.10

16 9.07E-03 2.34 1.34E-02 2.24 6.77E-03 2.37

32 1.81E-03 2.31 3.00E-03 2.15 1.44E-03 2.23

2 4 4.98E-02 – 7.39E-02 – 4.67E-02 –

8 7.74E-03 2.68 1.02E-02 2.84 6.35E-03 2.87

16 8.06E-04 3.26 1.16E-03 3.13 7.35E-04 3.11

32 9.26E-05 3.12 1.40E-04 3.05 8.98E-05 3.03
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Fig. 4 (a) The final adaptive mesh based on a 16 × 16 background mesh. (b) Density distribution around the
vortex

To explicitly show the shock-capturing property of our proposed methods, we simulate
the Riemann problems which are usually taken as Euler benchmark problems directly
using the NS equations. Specifically, the NS Eqs. (1) with d = 1 and initial conditions

U(x, 0) =
{
UL, x < 0,
UR, x > 0,

are considered in this test case. We adopt the classical Sod and Lax initial settings:

(ρL,uL, pL) = (1, 0, 1), (ρR,uR, pR) = (0.125, 0, 0.1), (18)

and

(ρL,uL, pL) = (0.445, 0.698, 3.528), (ρR,uR, pR) = (0.125, 0, 0.1). (19)

We run the two simulations with Reynolds number Re∞ = 1800, P2 element, third
order IMEX-RK methods as well as a combination of indicators ηgi and ηdi with param-
eters ω1 = 1.2, ω2 = 0.3, ω3 = 1.2, and ω4 = 0.3 on a background mesh of 200 cells till

Fig. 5 L2 errors of density as functions of the final number of elements and CPU time(s) on uniform and
adaptive meshes for the evolution of an isentropic vortex. (a) L2 error versus #elements; (b) L2 error versus
CPU time(s)
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Table 6 Comparison of uniform and adaptive meshes with respect to number of elements and CPU
time(s) when achieving 4.84E-6 L2 error of density for the evolution of an isentropic vortex

Uniformmesh Adaptive mesh Percentage of savings

#elements 669176 67195 89.9%

CPU time(s) 645 191 70.4%

time T = 0.25 and T = 0.13, respectively. Figures 6 and 7 show the comparisons of den-
sity, velocity, pressure, specific internal energy between the Euler exact solutions and the
NS numerical solutions. Note, the points for the NS numerical solutions are plotted every
four cells and more points are clustered near the shock waves, contact discontinuities and
rarefaction waves due to mesh adaptation to get better resolution.

Example 5 Taylor-Green vortex

We consider the Taylor-Green vortex, which is a lowMach number problem, in this test
case. The initial solution of this problem is

ρ(x, 0) = 1,

u(x, 0) = sin(x) cos(y),

v(x, 0) = − cos(x) sin(y),

p(x, 0) = p0
γ − 1

+ 1
4
(cos(2x) + cos(2y)),

Fig. 6 Sod shock-tube problem, Re∞ = 1800, P2
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Fig. 7 Lax shock-tube problem, Re∞ = 1800, P2

with p0 = 105. This configuration leads to a characteristic Mach numberM ≈ 1.7 · 10−3,
thus corresponds to the low Mach number regime [27]. The computational domain is
[ 0, 2π ]2. We simulate this procedure on a 64×64 backgroundmesh with periodic bound-
ary conditions till final time T = 0.1. The (k + 1)-th order IMEX-RK time discretization
will be employed when Pk element is used. A single adaptive indicator ηci with parame-
ters ω1 = 1.5, ω2 = 0.5 is adopted. As is shown in Fig. 8, the vortex can be accurately
captured by the adaptive mesh, and the contours become smoother when higher order
elements are employed.

Example 6 Subsonic flow around a NACA0012 airfoil

In this test case we consider a subsonic flow around a NACA0012 airfoil which is
symmetric about the x-axis with upper and lower surfaces described by functions [34]

y±(x) = ±5 × 0.12 × (0.2969
√
x − 0.126x − 0.3516x2 + 0.2843x3 − 0.1015x4),

0 ≤ x ≤ 1.008930411365,

and we require to rescale y± so as to gain an airfoil of unit chord length. A rather coarse
64 × 16 C-type background mesh which extends about 20 chord length away from the
airfoil is adopted for computation, see Fig. 9 for an impression of the mesh. The subsonic
flow has configuration of Mach numberM∞ = 0.5, angle of attack α = 0◦ and Reynolds
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Fig. 8 Taylor-Green vortex. Adaptive mesh and vorticity contours with 20 equally spaced contour lines from
-1.998 to 1.998

Fig. 9 Background mesh for NACA0012 airfoil
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number Re∞ = 5000. We apply an adiabatic no-slip wall boundary condition along the
airfoil, subsonic inflow and outflow boundary conditions at respective farfield bound-
aries. We employ also a combination of indicators ηgi and ηdi with parameters ω1 = 1.2,
ω2 = 0.3, ω3 = 1.2, and ω4 = 0.3. P2 element as well as the first order IMEX-RK time
discretization is used since this is a steady state simulation. The adaptive mesh and the
computed Mach number contours are presented in Fig. 10, clearly showing that the ele-
ments along and behind the wake of the airfoil can be locally refined to capture the more
complex flow field. The distribution of pressure coefficient along the airfoil wall is further
displayed in Fig. 11 and is consistent with the results presented in [6, 10].

Example 7 Supersonic flow past a NACA0012 airfoil

In this test case, the profile of the airfoil and the initial background mesh remain the
same as in the previous subsonic case. The supersonic flow with Mach number M∞ = 2
passes through the computational domain at an angle of attack α = 10◦ and Reynolds
number Re∞ = 106. An adiabatic no-slip wall boundary condition is imposed on the
airfoil and at the farfield part of the computational domain, supersonic/subsonic inflow
and supersonic/subsonic outflow boundary conditions are assumed, respectively, based
on the uniform freestream and the unit normal vectors to the outer boundary. A salient
feature of this case is the formation of a bow shock in front of the profile. We will also
apply a combination of indicators ηgi and ηdi with parameters ω1 = 1.2, ω2 = 0.3,
ω3 = 1.2 and ω4 = 0.3. Again owing to steady state simulation, P2 element as well as the
first order IMEX-RK time discretization is employed. Figure 12 shows the adaptive mesh,
Mach number and pressure contours of the numerical solution. Evidently, the bow shock
can be captured with a nice resolution by virtue of local grid refinement. The pressure
distribution is also given in Fig. 13.

Example 8 Rayleigh-Taylor instability

In order to show the capability of our methods to capture the small-scale features of
complicated flow structures, we consider the Rayleigh-Taylor instability phenomenon,

Fig. 10 (a) Adaptive mesh and (b) the contour plots corresponding to P2 solution for subsonic flow around a
NACA0012 airfoil, 30 equally spaced contour lines are used to plot Mach number from 0.025 to 0.580
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Fig. 11 Pressure coefficient for subsonic flow around a NACA0012 airfoil

Fig. 12 (a) Adaptive mesh and the contour plots corresponding to P2 solution for supersonic flow past a
NACA0012 airfoil, 30 equally spaced contour lines are used to plot (b) Mach number from 0.15 to 2.15, and (c)
pressure from 0.61 to 5.41
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Fig. 13 Pressure coefficient for supersonic flow past a NACA0012 airfoil

which usually occurs at an interface between two fluids with different densities when the
acceleration is directed from the heavy fluid to the light fluid, see [35, 36] for a detailed
description of this phenomenon. We take the computational domain as [ 0, 0.25]×[ 0, 1].
The initial solution is

(ρ,u, v, p) =
{

(2, 0,−0.025a cos(8πx), 1 + 2y), y ∈ (0, 0.5),
(1, 0,−0.025a cos(8πx), y + 1.5), y ∈[ 0.5, 1),

where a =
√

γ p
ρ

is the sound speed with ratio of specific heats γ = 5
3 . The Prandtl

number is taken as Pr = 0.7 for this test case. An adiabatic, reflective boundary condition
is imposed for the left and right boundaries. At the bottom and top boundaries, the flow
values are set as

(ρ,u, v, p) =
{

(2, 0, 0, 1), y = 0,
(1, 0, 0, 2.5), y = 1,

respectively. The source term ρ is added to the right hand side of the second momen-
tum equation and ρv is added to the right hand side of the energy equation in (1). All
the simulations are based on a 30 × 120 background mesh till final time T = 1.95, and
the (k + 1)-th order IMEX-RK time discretization will be employed when Pk element is
used. For the NS simulations, we adopt a single indicator ηgi with parameters ω1 = 1.5,
ω2 = 0.5. Computational results with Reynolds number 50000 and 150000 are shown in
Figs. 14 and 15, respectively. As can be seen, the interface between two fluids with differ-
ent densities becomes thinner as the Reynolds number increases. Our adaptive methods
can capture the interface and small-scale features precisely, and the resolution of P2 ele-
ment can even be comparable to that obtained with the ninth-order WENO scheme on a
600× 2400 uniform mesh in [36]. The adaptive meshes and density contours of the Euler
simulations with TVB limiter [3] and without TVB limiter are also presented in Figs. 16
and 17 by using adaptive parameters ω1 = 1.2, ω2 = 0.3. Due to the absence of physical
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Fig. 14 NS simulations for Rayleigh-Taylor instability with Reynolds number Re∞ = 50000. From left to right:
adaptive mesh for P1 element; 30 equally spaced density contours from 0.8728 to 2.2249 for P1 element;
adaptive mesh for P2 element; 30 equally spaced density contours from 0.8733 to 2.2262 for P2 element

viscosities, there exist more small-scale flow structures in these simulations, and the res-
olution of P2 element can be comparable to that obtained with the ninth-order WENO
scheme on a 480 × 1920 uniform mesh in [35].

7 Conclusions
In this paper, we have presented an h-adaptive LDG method for the solution of the
unsteady compressible NS equations. To achieve the uniform high order accuracy both
in space and time, avoid the extremely small time step restriction of explicit methods as

Fig. 15 NS simulations for Rayleigh-Taylor instability with Reynolds number Re∞ = 150000. From left to
right: adaptive mesh for P1 element; 30 equally spaced density contours from 0.8608 to 2.2316 for P1 element;
adaptive mesh for P2 element; 30 equally spaced density contours from 0.8712 to 2.2301 for P2 element
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Fig. 16 Euler simulations for Rayleigh-Taylor instability with TVB limiter. From left to right: adaptive mesh for
P1 element; 30 equally spaced density contours from 0.8620 to 2.2407 for P1 element; adaptive mesh for P2

element; 30 equally spaced density contours from 0.8705 to 2.2362 for P2 element

well as the construction of large Jacobian matrix in implicit methods, two semi-implicit
time marching methods including the classical IMEX-RKmethods and the SDCmethods
were also employed for temporal discretizations. In the process of mesh adaptation, indi-
cators are computed in each element of the mesh based on the gradient of density, the
divergence and curl of velocity field to pick candidate elements for refinement and coars-
ening. We also adopt the strategy of “refinement must, coarsening can” to determine the
ultimate element lists for refinement and coarsening. These proposed methods have been

Fig. 17 Euler simulations for Rayleigh-Taylor instability without TVB limiter. From left to right: adaptive mesh
for P1 element; 30 equally spaced density contours from 0.6548 to 2.4582 for P1 element; adaptive mesh for
P2 element; 30 equally spaced density contours from 0.6852 to 2.3728 for P2 element
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successfully implemented in a sequence of numerical examples, illustrating their expected
optimal order of convergence, efficiency and capabilities in flow problems. Due to the
high order accuracy and easy implementation, the h-adaptive LDGmethods coupled with
IMEX-RK or SDC methods provide an appealing alternative for unsteady compressible
NS equations which require to accurately capture the detailed flow structures at any time.
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