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1  Introduction
Laminar-to-turbulent transition of boundary layers has attracted growing concern in 
the aerodynamic shape design of aircrafts. For example, natural-laminar-flow design for 
transonic/supersonic transports needs to delay transition onset to reduce friction drag, 
and special thermal protection measures are required for hypersonic vehicles near tran-
sition regions, where heat fluxes increase rapidly. NASA’s CFD Vision 2030 [1] regards 
physics-based and predictive modeling including boundary-layer transition as a basic 
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capability for future CFD techniques. Therefore, accurate prediction and modeling of 
boundary-layer transition has become a critical requirement in aerodynamic design of 
next-generation aircrafts.

In order to take into account flow transition in CFD simulations, many transition pre-
diction methods have been proposed. These methods include: 1) stability-theory-based 
eN method, which is a physics-based method modeling the evolution of perturbations 
inside boundary layers, e.g. the local linear stability theory (LST) [2–5], Bi-global LST 
[6], parabolized stability equations (PSE) method [7, 8] and direct numerical simula-
tion method [9, 10]. 2) Transition criteria, which utilize empirical criteria derived from 
theoretical and experimental study, e.g. Arnal-Habiballah-Delcourt (AHD) criteria [11], 
Gleyzes criteria [12] and C1 criteria [13]. 3) Transition transport models, which imple-
ment empirical transition criteria into transport equations during flow simulation, e.g. 
γ-Reθ model [14, 15], k-ω-γ model [16, 17] and amplification factor transport (AFT) 
model [18]. The eN method was firstly proposed in 1956 [2] and then modified for 2D, 
3D, incompressible and compressible boundary layers [19]. It has been coupled with 
RANS simulations and applied in boundary-layer transition prediction for airfoil/wing/
wing-body configurations [20–24]. Among the existing transition prediction methods 
for hypersonic boundary layers, the eN method is also one of the most widely applied and 
effective methods, having been calibrated by various wind tunnel and flight experiments.

While successful engineering applications of the eN method have been devised to 
model the complex physics, there is still a  great need to improve the efficiency and 
robustness of these applications [25]. For example, a common way of using the  eN 
method is to couple a LST solver with a RANS solver in an iterative manner [22]. The 
RANS solver provides boundary layer information for stability analysis. The LST solver 
computes growth rates and amplification factors (N factors) of perturbations at differ-
ent frequencies and wavenumbers, and locates the transition onset where the N factors 
reach a threshold value. Coupling of the LST solver and RANS solver is implemented 
only after the boundary layer flow attains a level of maturity. The predicted transition 
location by LST is then returned to RANS simulations to substitute a former one and 
the turbulence models are updated accordingly. In this process, high-accuracy boundary 
layer profiles are needed for stability analysis, including velocity and temperature pro-
files, as well as their first and second derivatives [22]. This demands high-resolution flow 
simulations inside boundary layers, accompanied with heavy computational costs. In 
eN transition prediction, a number of unstable disturbances at different frequencies and 
wavenumbers have to be evaluated, which also increases computation efforts. Besides, 
the calculation of amplification factors N is a non-local operation, which makes it quite 
difficult to implement the eN method in a general CFD code. To convert N factors calcu-
lations to a local process and simplify the application of eN method, the AFT model [17] 
is proposed, implementing a relation between N factor envelope slope and boundary-
layer shape factor into transport equations. Whereas, the AFT method is mainly appro-
priate for low-speed flows, and further research is still necessary to extend this method 
for disturbance growth prediction in hypersonic flows.

As a substitute of solving linear stability equations, surrogate models are introduced 
to simplify the disturbance growth calculation. The application of surrogate models in 
linear stability analysis was firstly presented by Fuller et al. [26] in 1997, who trained 
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a neural network to identify the growth rates at different streamwise locations in a 
jet flowfiled. The predicted disturbance growth rate is very accurate with less than 
2% error interpolating within the training set. In 2002, Crouch et al. [27] used neural 
networks to predict the growth rate of Tollmien-Schlichting (TS) waves and station-
ary crossflow (CF) instabilities on swept wings. Rajnarayan and Sturdza [25] intro-
duced singular value decomposition method to describe the boundary-layer velocity 
and temperature profiles in the modeling of separate TS and CF modes for supersonic 
flows in 2013. Zafar and Xiao et al. [28] built a convolutional neural network for low-
speed airfoils and found the relationship between boundary layer profiles and bound-
ary layer shape factor. For hypersonic boundary layers, Pinna F et al. [29] selected a 
Gaussian basis function and used a compact support radial basis function method to 
predict the disturbance growth on sharp cones in 2018. Their training set was gener-
ated by stability analysis on self-similar boundary layer profiles. Danvin et al. [30, 31] 
investigated the accuracy of disturbance growth prediction by surrogate models on 
sharp cones using self-similar profiles and high-accuracy CFD profiles, respectively. 
Results show that surrogate models built based on self-similar profiles are more accu-
rate than those based on CFD profiles. Whereas, Pinna and Danvin’s research dealt 
primarily with sharp cones, where entropy layers or non-similar effects hardly exist. 
In 2020, Paredes et al. [32] used full CFD profiles with 61 equal-spaced points inside 
the boundary layer to build a convolutional neural network for stability analysis on 
a blunt cone. Their model can precisely predict the disturbance growth during the 
ascent phase of the HIFiRE-1 flight experiment. Moreover, it even outperforms direct 
linear stability calculations for some under-resolved basic states. Nie et al. [33] pro-
vided a surrogate-based stability analysis method for oblique first modes and Mack 
modes in self-similar compressible boundary layers at Mach 0 ~ 6.

Compared with directly solving stability equations in transition prediction, using 
surrogate-based method is more efficient and robust. It can reduce the requirement for 
boundary layer resolution in CFD simulations [32], as it needs merely several charac-
teristic BL parameters, and has the potential to be transformed into local formulations 
for transition transport modeling. Compared with other simplified eN methods like 
eN-envelope-fitting method and eN-database method, a surrogate-based method can 
predict growth rates of separate modes at different frequencies and wavenumbers and 
achieve comparable accuracy to a LST method.

In general, there are two ways of parameterizing BL profiles when establishing sur-
rogate models for disturbance growth prediction in hypersonic boundary layers. One 
is to describe the boundary layer using self-similar flow parameters, such as boundary-
layer-edge Mach number Me, temperature Te and Hartree pressure gradient parameter 
βH. It is suitable for sharp cones without non-similar effects, but generates some devia-
tion for blunt cones. The other is to describe the boundary layer using discrete points on 
the BL profiles extracted from high-accuracy CFD results. It can deal with non-similar 
boundary layers and predict the disturbance growth on blunt cones with high accu-
racy. Whereas, this method faces the same problem as a direct linear stability analysis 
method, which needs high-resolution boundary layer profiles. It is also difficult to be 
further transformed into local formulations, which is necessary in transition transport 
modeling.
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The objective of this article is to build surrogate models for rapid disturbance 
growth prediction in stability analysis and transition prediction of hypersonic bound-
ary layers. Based on previous studies, we aim to find a proper method to describe 
boundary layer profiles, which is expected to be not only applicable to non-simi-
lar boundary layers near the nose of a blunt cone, but also capable of being trans-
formed into local formulations for transition transport modeling. Instead of directly 
using discrete points on the boundary layer profiles by Danvin and Paredes, we have 
conducted correlation analyses between boundary layer flow parameters and pro-
file parameters and found a group of characteristic parameters for boundary layer 
description.

This article continues in Section 3 to introduce three methods for boundary layer 
profile description in surrogate model training, including self-similar flow solu-
tions, discrete point on BL profiles and correlated boundary-layer flow parame-
ters. Section 4 presents a surrogate-based stability analysis method for hypersonic 
boundary layers over blunt cones. Freestream conditions are selected according to 
the MF-1 flight experiments. Radial basis function (RBF) models are established 
based on high-accuracy CFD solutions, with those characteristic BL parameters as 
inputs. The predicted disturbance growth rates and amplification factors for MF-1 
experiments at the instants of t = 17 s ~ 22 s by RBF models are compared with those 
by LST to validate the boundary layer description methods and the surrogate-based 
stability analysis method.

2 � Theory
2.1 � Linear stability theory and eN method

To predict the transition location, linear stability theory introduces a small distur-
bance inside the boundary layer based on parallel flow assumption. Initial disturbances 
at different frequencies are located on neutral curves, where those disturbances begin 
to amplify. By solving linear stability equations, the disturbance growth rates are com-
puted at each streamwise station and then integrated into an amplification factor N. The 
transition onset predicted by the eN method is located where the amplification factor N 
reaches a pre-calibrated threshold Ncr. The small disturbances in linear stability theory 
are defined as

where αr is streamwise wavenumber, αi is streamwise growth rate, ω is circular fre-
quency, x and y are the streamwise and normal coordinate. To compute the neutral 
curves or disturbance growth rates, an eigenvalue problem is solved for a given bound-
ary layer as

where neutral curves are located with local Reynolds number Rel and growth rate αi = 0, 
and disturbance growth is calculated with local Reynolds number Rel at certain circular 
frequency ω. Once the disturbance growth at different frequencies is solved, amplifica-
tion factors are computed along the streamwise location by

(1)q′ x, y, t = q̂(y) · e-αixei(αrx−ωt)
,

(2){αi,αr} = f (ω,Rel) or {ω,αr} = f (αi,Rel),
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where x0 is the location that disturbances at a  certain frequency f begin to amplify. 
According to the transition mechanisms and disturbance parameters such as wavenum-
ber, frequency and phase velocity, unstable disturbances can be classified as first modes 
(Tollmien-Schlichting waves), second modes (Mack modes) and others. The surrogate-
based stability analysis method in this article is not restricted to a specific kind of unsta-
ble modes, but applies to disturbances within a range of frequencies and wavenumbers.

2.2 � Radial basis function interpolation [34]

Surrogate models (or metamodels) such as kriging models, support vector machine 
models, neural networks and so on, have been widely used in aerodynamic design [35–
37]. The RBF (radial basis function) model is one of the simplest data-driven surrogate 
models. Its interpolation coefficients are calculated for a given sample set based on the 
distances among sample points. Assuming there are n sample points x1, x2, …, xn whose 
response values are f1, f2, …, fn, a system of linear equations can be obtained as

where φ is the basis function, λ is the interpolation coefficient and ||xi - xj|| is the Euclid-
ean distance between the i-th and j-th sample points. Although the RBF model is a com-
bination of linear equations, it can well fit complex non-linear problems with sufficient 
sample points. During model training, the correlation matrix sometimes meets an ill-
conditioning problem, resulting from a large condition number and leading to numeri-
cal error. To avoid this problem, a regularization method is introduced by adding small 
values on the diagonal of the Matrix to reduce its condition number. To predict the 
response value of an unknown point, the distances of this point with the pre-calculated 
sample points are computed as inputs. The response value fp at a new point xp is pre-
dicted as

The basis function in this article is a thin-plate spline function, which is φ(r) = r2 log r.

3 � Boundary layer description methods
As mentioned above, solving the eigenvalue problem for disturbance growth rate 
requires detailed BL information, including velocity and temperature profiles as well 
as their derivatives. According to the convergence study by Fischer et  al. [22], at least 
60 or more points are needed inside the boundary layer to ensure the accuracy of sta-
bility analysis. To represent the full BL profile, a few characteristic parameters are usu-
ally introduced. For example, a single parameter of BL shape factor H12 can be used to 
characterize a low-speed boundary layer on a flat plate or airfoil, as the BL flow shows 
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self-similar characteristics. When it comes to hypersonic boundary layers on blunt 
cones, the blunt nose results in off-body shock waves and entropy layers, which could 
bring non-similar effects to BL profiles. To find a proper BL description method for such 
non-similar boundary layers, three kinds of BL characteristic parameters are investi-
gated, which are self-similar flow parameters, discrete points on BL profile and corre-
lated BL flow parameters.

3.1 � Self‑similar flow parameters

Solution of self-similar profiles on a sharp cone at zero angle of attack refers to [38]. 
Firstly, the boundary layer equations of a sharp cone in polar coordinate are given as

where r and θ are polar coordinates as shown in Fig. 1, h is enthalpy, U and V are stream-
wise and normal velocities, ρ is density, μ is dynamic viscosity, and Pr is Prandtl number. 
Applying a transformation of η = r(θ − θ0)/

√
r and V = V ·

√
r , where θ0 is the cone 

angle, the boundary layer equations are reduced to a system of total differential equa-
tions as

To resolve the “2ρU” terms in the continuity equation, an additional transformation of 
η̃ =

√
3η and V =

√
3

(

Ṽ − 2/3 · η̃U
)

 is introduced. After this, the boundary layer equa-

tions of a sharp cone are converted to the same formulation as that of a flat plate. As a 
result, the similarity solutions of sharp-cone boundary layer equations can be obtained 
as on a flat plate, which refers to [39]. Considering the pressure gradient over cone sur-
face, solving the similar equations requires only boundary-layer edge Mach number Me, 
temperature Te and Hartree parameter βH ( βH = 2m

m+1
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dξ
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∫
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Therefore, according to similar solutions on sharp cones, a parameter set {Me, Te, βH} 
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Fig. 1  Diagram of polar coordinate system on a sharp cone
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(marked as A) is used as the inputs of MODEL A for surrogate model training in the 
next section.

3.2 � Discrete boundary‑layer profile parameters

It has been proved by [32] that using self-similar profiles generates some deviation from 
the CFD profiles on blunt cones. To consider the non-similar effects, a simple method is 
to use discrete points inside boundary layers to represent BL profiles. As an example, the 
velocity and temperature value as well as their derivatives are extracted at four equal-
spaced locations on the BL profiles in Fig. 2. This parameter set {(u/ue)0.2δ, (u/ue)0.4δ, (u/
ue)0.6δ, (u/ue)0.8δ, (u/ue)’0.2δ, (u/ue)’0.4δ, (u/ue)’0.6δ, (u/ue)’0.8δ, (t/te)0.2δ, (t/te)0.4δ, (t/te)0.6δ, (t/
te)0.8δ, (t/te)’0.2δ, (t/te)’0.4δ, (t/te)’0.6δ, (t/te)’0.8δ} (marked as B) will be used as the inputs of 
MODEL B for surrogate model training in the next section.

3.3 � Correlated boundary‑layer flow parameters

According to self-similar boundary layer solutions, BL edge flow parameters are highly 
correlated to BL profiles. Although using self-similar parameters is not enough to rep-
resent non-similar boundary layers on blunt cones, additional BL edge parameters can 
be included to increase accuracy. Those non-similar effects originate from off-body 
shock waves and entropy layers near the blunt cone nose, which are mainly influenced 
by freestream Mach number M∞ and nose radius of cone [40]. Therefore, we conducted 
correlation analyses between BL edge and profile parameters based on CFD simulations 
over blunt cone at different freestream Mach numbers and different nose radiuses. In 
this study, the positions of BL edge are defined between the maximum-enthalpy point 
and farfield, where local enthalpy reaches the average value of maximum-enthalpy and 
freestream enthalpy, as depicted in Fig. 3.

3.3.1 � Correlation of BL parameters at different freestream Mach numbers M∞

With fixed nose radius of 5 mm, boundary layer flows of blunt cones are computed 
at freestream Mach numbers from M∞  = 4 to M∞  = 6. The half cone angle is 7°, 

(a) velocity (b) velocity derivative (c) temperature (d) temperature derivative

Fig. 2  Discrete points extracted from BL profiles on blunt cones with BL edge located by total enthalpy
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freestream Mach number is selected at M∞ = 4, 4.2, 4.4, …, 6.0, unit Reynolds num-
ber is Re∞ = 2 × 107/m and angle of attack is 0°. Referring to [40], the entropy layer 
edge is defined at the location where local entropy production reaches 0.01 times the 
maximum entropy production at stagnation point. The Mach number contour and 
entropy layer edge distributions at different Mach numbers are presented in Fig. 4. It 
can be seen that the location of entropy layer edge hardly moves with the increase of 
Mach number, but the absolute value of entropy production inside the entropy layer 
is larger. The pressure distribution at BL edge is also given in Fig.  5, which shows 
that the absolute value of pressure increases with the Mach number, but its relative 
distribution varies only a little. Correlation analyses are conducted between BL flow 
parameters using BL data at s = 0.2 m ~ 1.0 m for all the freestream conditions. Using 
the extracted characteristic BL parameters and BL profile parameters, the square 
Pearson correlation coefficients are computed by

Fig. 3  Definition of boundary-layer edge by total enthalpy

(a) (b) (c)
Fig. 4  Flow field of blunt cones at different freestream Mach numbers
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where xi is the characteristic boundary layer parameter of the i-th profile, yi is the 
boundary layer profile parameter of the i-th profile, x and y are the averaged values, 
respectively. It is shown in Tables 1 and 2 that velocity profiles are most related with se, 
Te, ηe, H12 and βH, while temperature profiles are correlated with ρe and ue. Furthermore, 
the entropy production se can be computed using Te and ρe. The shape factor H12 is usu-
ally estimated by Mach number Me and Hartree pressure gradient factor βH. Therefore, 
the parameter set {Ue, Te, ρe, ηe, βH} (marked as C) and {Ue, Te, ρe, ηe, H12} (marked as D) 
are expected to be appropriate for BL profiles over blunt cones at different Mach num-
bers. Note that parameter set C only uses BL edge parameters, while set D includes an 
integral BL shape factor. These two parameter sets will be validated to see if they are 
suitable for blunt cones with different nose radiuses.

3.3.2 � Correlation of BL parameters at different nose radiuses RN

With fixed freestream Mach number at M∞ = 5, boundary layer flows are computed for 
blunt cones with nose radiuses from rn = 2 mm to rn = 8 mm. The half cone angle is 7°, 
freestream Mach number is M∞ = 5.0, unit Reynolds number is Reu = 2 × 107/m and angle 
of attack is 0°. The Mach number contour and entropy layer edge distributions at differ-
ent nose radiuses are presented in Fig. 6. It can be seen that the absolute value of entropy 

(8)Csquare Pearson =

n
∑

i=1

[

(xi − x)
(

yi − y
)]2

n
∑

i=1

(xi − x)2
n
∑

i=1

(

yi − y
)2

,

Fig. 5  Pressure distribution along streamwise coordinate xs of blunt cones at different freestream Mach 
numbers
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Table 1  Correlation matrix of BL flow parameters with velocity profiles at different freestream Mach 
numbers

Table 2  Correlation matrix of BL flow parameters with temperature profiles at different freestream 
Mach numbers

(a) Rn=2 mm (b) Rn=5mm (c) Rn=8mm

Fig. 6  Flow field of blunt cones at different nose radiuses
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production changes very little with nose radius, but the location of entropy layer edge 
moves outward. The pressure distribution at BL edge is also given in Fig. 7. Pressures expe-
rience the effects of upstream bluntness right up to a surface length of about s = 0.5, beyond 
which point they settle down to a uniform value. In the bluntness region, the absolute pres-
sure values diminish with bluntness past the minimum value. Correlation analyses are con-
ducted between BL parameters using BL data at s = 0.2 m ~ 1.0 m for all the nose radiuses. 
The computed square Pearson correlation coefficients are listed in Tables 3 and 4. It can be 
seen that the relationship between velocity profiles and H12 is still close, so is that between 

Fig. 7  Pressure distribution along streamwise coordinate xs of blunt cones at different nose radiuses

Table 3  Correlation matrix of BL flow parameters with velocity profiles at different nose radiuses
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temperature profiles and ρe and ue. But the correlation factor between velocity profiles 
and other parameters becomes much lower, which can influence the effects of parameter 
set C. We will further use the parameter sets C and D as inputs in training surrogate models 
in the next section to see which of them is more accurate.

3.4 � Brief summary of BL characteristic parameters

In Section 3, three methods are discussed for BL profile description, including using self-
similar flow parameters, discrete BL profile parameters and correlated BL flow parameters. 
As a result, four sets of parameters (marked as A, B, C and D) are derived as inputs in estab-
lishing surrogate models for stability analysis over blunt cones, which are summarized in 
Table 5. To further study the accuracy of the four parameter sets A ~ D in stability analysis 
modeling, surrogate models A ~ D using those parameters as inputs will be investigated in 
Section 4.

4 � Surrogate‑based stability analysis on MF‑1 blunt cone at flight experiments 
[41]

Based on four sets of characteristic parameters, surrogate models are established 
for stability analysis over MF-1 blunt cone at flight experiments [41]. The main 
purpose of using surrogate models is to substitute linear stability solvers for rapid 

Table 4  Correlation matrix of BL flow parameters with temperature profiles at different nose 
radiuses

Table 5  Four sets of parameters for boundary layer profile description

Mark Source Parameters for boundary layer description

A Self-similar solutions Me, Te, βH

B Discrete points (u/ue)0.2δ, (u/ue)0.4δ, (u/ue)0.6δ, (u/ue)0.8δ, (u/ue)’0.2δ, (u/
ue)’0.4δ, (u/ue)’0.6δ, (u/ue)’0.8δ, (t/te)0.2δ, (t/te)0.4δ, (t/te)0.6δ, (t/
te)0.8δ, (t/te)’0.2δ, (t/te)’0.4δ, (t/te)’0.6δ, (t/te)’0.8δ

C Correlation analysis Ue, Te, ρe, ηe, βH

D Correlation analysis Ue, Te, ρe, ηe, H12
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disturbance-growth prediction. Apart from better efficiency and robustness, the sur-
rogate-based method also removes the necessity of high-resolution boundary layer 
solutions, which can reduce the computational cost of CFD simulations and has 
the potential to be further implemented in transition transport modeling.

The process of building surrogate models in this article is described as follows. 
Firstly, a database is generated by performing CFD simulations and stability analyses 
on MF-1 blunt cones at different freestream conditions. Secondly, characteristic flow 
parameters are extracted as input of surrogate models, along with the disturbance 
parameters. Thirdly, the complete sample set is partitioned into smaller sample sets 
and RBF models are trained for each sub-set. Finally, the trained RBF models are used 
in stability analysis and transition prediction. The flow charts of disturbance growth 
prediction by direct linear stability analysis and by surrogate models are depicted in 
Fig. 8, respectively.

4.1 � Database generation

Considering the non-similarity of hypersonic boundary layers on blunt cones, it’s dif-
ficult to establish a universal surrogate model like in low-speed boundary layers over 
flat plates or airfoils. The objective of using surrogate models is thus to satisfy the 
requirement of disturbance growth prediction in transition prediction within a par-
ticular range of configurations and freestream conditions. In this article, the MF-1 

(a) Direct linear stability analysis

(b) Surrogate models

Fig. 8  Diagram of disturbance growth rate prediction by direct linear stability analysis and surrogate models
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blunt cone [41] during ascent phase at flight experiments is chosen to validate the 
surrogate-based stability analysis method. Its half cone angle is 7° and nose radius 
is 5 mm. Freestream conditions of the MF-1 cone at flight experiments are listed in 
Table 6.

In order to satisfy the above condition, flow parameters for calculating training samples 
are selected at Mach numbers M∞ = 4.3: 0.2: 5.5, unit Reynolds number Re∞ = 1.4 × 107: 
0.3 × 107: 3.5 × 107 and wall temperatures Tw = 500: 25: 600, as listed in Table 7, which 
add up to 280 base flows. The computational states of the MF-1 flight experiment can be 
interpolated from the training samples, as shown in Fig. 9. The base flows are computed 
using a Laminar NS solver using a  second order up-wind scheme. The BL profiles are 
extracted for linear stability analysis. Characteristic BL profile and edge parameters are 
also extracted according to the four groups of sample sets A ~ D.

Based on the extracted BL information, a linear stability solver is adopted to com-
pute the growth rates αi of perturbations at non-dimensional circular frequency of 
ω = 0 ~ 1.0 at all the streamwise locations. An example of the computed growth rate 
contour at different frequencies is demonstrated in Fig. 10. Although the physical fre-
quency of unstable modes varies a lot at different streamwise directions, it is observed 
that the neutral curves of all the unstable modes in the training sample set are located 
within the range of non-dimensional circular frequency of 0.38 < ω < 0.72 and local 
Reynolds number of Rel > 2000. To cater for possible disturbance growth rates remain-
ing below zero, stability analysis results are extracted at 31 circular frequencies from 
ω = 0.35 to ω = 0.75 and 31 streamwise locations at Rel > 1800.

Finally, growth rates of disturbance at the 31 frequencies and 31 streamwise loca-
tions for 280 freestream conditions are used as response values in the training 
samples, together with the A, B, C, D four sets of boundary layer parameters and dis-
turbance parameters as input values, which add up to 269,080 sample points.

Table 6  Parameters of MF-1 flight experiment at ascent phase

t/s H/km M∞ Re∞/m− 1 Tw/K T∞/K

17 11.20 4.54 3.333 × 107 518 216.65

18 12.24 4.87 3.036 × 107 531 216.65

19 13.35 5.23 2.739 × 107 575 216.65

20 14.50 5.25 2.295 × 107 595 216.65

21 15.63 5.08 1.860 × 107 595 216.65

22 16.71 4.93 1.524 × 107 600 216.65

Table 7  Parameters of baseflow calculation of samples for training surrogate models

Parameter Range Interval Sampling 
levels

M∞ 4.3 ~ 5.5 0.2 7

Re∞/m−1 1.4 × 107 ~ 3.5 × 107 0.3 × 107 8

Tw/K 500 ~ 600 25 5

T∞/K 216.65 / 1
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4.2 � Surrogate model training

RBF models with thin-plate spline basis function are established to predict disturbance 
growth. Considering the difficulties of model training brought about by a large number 
of sample points, a sample partition method is utilized to classify the complete sample 
set into a series of sub sample sets. Thus, models are trained within each of the sub-sam-
ple-sets. When used for prediction, the validation samples also need to search for their 
corresponding sub-sample-set and surrogate model. Based on this idea, the database 
with 269,080 sample points is partitioned into 25 sub-sets. In the 25 partitions (5 × 5), 
five are selected on the basis of non-dimensional frequency, and the other five are based 

Fig. 9  Parameter range of MF-1 flight experiment and calculated training samples

Fig. 10  Computed growth rates and neutral curve of MF-1 case at t = 21 s
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on local Reynolds number criteria (as shown in Fig. 11). The number of sample points 
within each of the sample set is near 12,000. Using the four sets of characteristic param-
eters A, B, C and D, RBF models are trained (also marked as A, B, C and D) and their 
prediction accuracies are compared in Section 4.3.

4.3 � Comparison of prediction accuracy of RBF models using different input parameters

To assess the accuracy of the four sets of surrogate models, validated samples are 
selected by stability analysis on MF-1 blunt cones at the instants of t = 17 s ~ 22 s dur-
ing ascent of flight experiments. Predicted growth rates are compared with those 
computed by linear stability analysis. Firstly, the computed disturbance growth rate 
at different frequencies at the moment of t = 17 s ~ 22 s by those RBF models and by 
LST are compared in Fig. 12. It can be seen that the predicted values by RBF model 
B and D agree well with those by LST, while the results of RBF A and C show some 
deviations. The relative errors of all validation samples using the four RBF models 
have been gathered and listed in Table 8. It is demonstrated that RBF models using 
16 discrete BL profile parameters (models B) and using four BL edge parameters 
and a shape factor (models D) are the most accurate. They are obviously more pre-
cise than those using self-similar flow parameters (models A) and using merely BL 
edge parameters (models C). As expected, the mere use of self-similar profiles or BL 

Fig. 11  Partition of sample points by non-dimensional frequency and local Reynolds number

(a) t=17s, Rel=4700 (b) t=18s, Rel=4400 (c) t=19s, Rel=4100

(d) t=20s, Rel=3800 (e) t=21s, Rel=3500 (f) t=22s, Rel=3200

Fig. 12  Comparison of predicted growth rates by LST and RBF models at different instants for MF-1 
experiment
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edge parameter to describe BL profiles overlooks the non-similar effects in blunt cone 
boundary layers, which can lead to deviation from realistic BL profiles. The N factor 
envelopes computed by LST and RBF models are also compared at different stream-
wise locations, as shown in Fig. 13. It can be seen that, regardless of the deviations in 
predicted growth rates, the RBF models using self-similar parameters and BL edge 
parameters can still provide reasonable prediction for N factors. While RBF models 
using discrete profile parameters and those using BL edge parameters and shape fac-
tor are more accurate, especially at t = 17 s and t = 21 s.

4.4 � Validation of RBF models using BL characteristic parameters in stability analysis 

and transition prediction

It has been shown in Section 4.3 that RBF models using merely four BL edge parameters 
and a shape factor can be as accurate as those using 16 discrete BL profile parameters. 
In view of the potential that BL edge parameters and shape factor can be converted 
into local variables and used for transition transport modeling, we would like to further 
investigate the accuracy of RBF models with those parameters in boundary layer stability 
analysis and transition prediction.

Table 8  Comparison of prediction errors of growth rates by RBF models A ~ D on MF-1 blunt cone

RBF Model Mean Absolute Error Mean Square Error Mean Relative 
Error

R2

A 0.169 × 10−3 0.743 × 10−7 43.4% 0.9984

B 0.886 × 10−4 0.336 × 10−7 8.3% 0.9993

C 0.116 × 10−3 0.403 × 10−7 29.1% 0.9991

D 0.657 × 10−3 0.209 × 10−7 8.0% 0.9996

(a) t=17s (b) t=18s (c) t=19s

(d) t=20s (e) t=21s (f) t=22s

Fig. 13  Comparison of N factor envelopes by LST and RBF models at different instants for MF-1 experiment
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The contours and distributions of predicted disturbance growth rates by RBF mod-
els D (using four BL edge parameters and a shape factor as inputs) are compared with 
those by LST in Fig.  14. As can be seen from the figure, the predicted growth rate 
of RBF models D at instants from t = 17 s to t = 22 s agrees well with those by LST, 
which means that the established models D are applicable to non-similar bound-
ary layers on hypersonic blunt cones. Computational costs of the  two methods are 
also given in Table 9. To predict growth rates of a group of disturbances at different 
frequencies and streamwise locations (3600 samples in total), RBF models take only 
13.38 s, while the LST method requires about 877.32 s. The reason for saving time 
cost by surrogate-based method is that it uses pre-calculated results to interpolate 
the growth rates, while the direct linear stability analysis method needs to solve the 
stability equations iteratively.

The amplification factors of disturbances on MF-1 blunt cones are also computed by RBF 
D models and the LST method, respectively. As shown in Fig. 15, the N factors at differ-
ent frequencies and their envelopes computed by RBF D models are very close to those by 
the LST method. The maximum relative error of N factor envelope is 6.6%, demonstrating 
the accuracy of disturbance growth prediction using RBF models with four BL edge param-
eters and a shape factor for non-similar blunt cone boundary layers. It also shows that the 
established surrogate models are a good substitute for directly solving stability equations in 
eN transition prediction.

5 � Conclusion
To improve the efficiency and robustness of eN transition prediction, we have inves-
tigated application of surrogate-based stability analysis for non-similar boundary 
layers, focused on input parameters for boundary-layer (BL) profile description. 
Four sets of BL parameters are proposed as input parameters for establishing sur-
rogate models. The accuracies of these models are validated through MF-1 flight 
experiments and compared with direct linear stability analysis. Some conclusions are 
obtained as follows.

(1)	 The proposed surrogate-based method can substitute direct stability analy-
sis for rapid disturbance growth prediction on hypersonic blunt cones. It can 
increase the efficiency of eN transition prediction, which gets rid of the neces-
sity of high-resolution BL profiles, initial eigenvalue search and iterative solu-
tion of stability equations. Because the surrogate models merely use BL edge 
parameters and shape factor, they also have the potential to be transformed into 
local formulations and implemented in transition transport models for general 
CFD applications.

(2)	 Correlation analyses demonstrate that BL edge parameters and shape factor are highly 
correlated with BL profiles. Surrogate models using merely four BL edge parameters 
and a shape factor {Ue, Te, ρe, ηe, H12} for stability analysis and transition prediction can 
achieve comparable accurate results with those using 16 discrete boundary layer profile 
parameters.
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Fig. 14  Comparison of predicted disturbance growth-rate contours and surfaces by LST and RBF D at 
different instants for MF-1 experiment
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Table 9  Comparison of time cost in a singular evaluation by LST and RBF D for MF-1 experiment 
(CPU: i7–2600 3.4GHz)

Method Computational 
time

LST 877.32 s

RBF D 13.38 s

Fig. 15  Comparison of computed N factors by LST and RBF D at different instants for MF-1 flight experiment
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(3)	 For MF-1 blunt cone at flight experiments, the mean relative error of predicted dis-
turbance growth rates by established surrogate models is 8.0% and the maximum 
relative error of calculated N factor envelopes is less than 6.6%, which validates the 
applicability of surrogate-based methods using merely BL edge parameters and 
shape factor to stability analysis and transition prediction of non-similar boundary 
layers over blunt cones.
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