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Abstract 

Prediction of the coupled conduction‑radiation heat transfer in composite materials 
with periodic structure is important in high‑temperature applications of the materi‑
als. The temperature dependence of thermal properties complicates the problem. In 
this work, a multiscale model is proposed for the conduction‑radiation heat transfer 
in periodic composite materials with temperature‑dependent thermal properties. 
Homogenization analysis of the coupled conduction and radiative transfer equations is 
conducted, in which the temperature dependence of thermal properties is considered. 
Both the macroscopic homogenized equations and the local unit cell problems are 
derived. It is proved that the macroscopic average temperature can be used in the unit 
cell problems for the first‑order corrections of the temperature and radiative intensity, 
and the calculations of effective thermal properties. The temperature dependence of 
thermal properties only influences the higher‑order corrections. A multiscale numeri‑
cal method is proposed based on the analysis. The Gaussian process (GP) regression is 
coupled into the multiscale algorithm to build a correlation between thermal proper‑
ties and temperature for the macroscale iterations and prevent the repetitive solving 
of unit cell problems. The GP model is updated by additional solutions of unit cell 
problems during the iteration according to a variance threshold. Numerical simula‑
tions of conduction‑radiation heat transfer in composite with isotropic and anisotropic 
periodic structures are used to validate the proposed multiscale model. It is found that 
the accuracy and efficiency of the multiscale method can be guaranteed by using a 
proper variance threshold for the GP model. The multiscale model can provide both 
the average temperature and radiative intensity fields and their detailed fluctuations 
due to the local structures.

Keywords: Multiscale model, Heat Conduction, Radiative transfer equation, 
Temperature‑dependent, Gaussian process regression, Machine learning
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1 Introduction
Prediction of the heat transfer in composite materials with periodic structures is impor-
tant in many applications, from the insulation of buildings to the thermal protection 
of space vehicles [1–3]. Among a variety of prediction methods, homogenization tech-
niques combine both macroscopic and microscopic solutions and can provide multiscale 
results in periodic composites [4, 5]. The temperature field is divided into a macroscopic 
temperature field and local perturbations due to microscopic structures. The asymp-
totic analysis derives macroscopic governing equations for the whole material and gov-
erning equations in a representative unit cell. It also establishes the relation between 
macroscopic effective thermal properties and results of unit cell problems. The homog-
enization methods have been widely used in calculations of heat transfer in periodic 
composites [6–8], and are extended to the coupled conduction convection and radiation 
heat transfer problems [9–16]. The radiative transfer equation is also included in recent 
research [17].

In many works, the thermal properties of materials are assumed to be constant in the 
analysis. In practice, the thermal properties of real materials often depend on tempera-
ture. Therefore, the heat conduction in composite materials with temperature-depend-
ent thermal conductivities is studied in some research. For example, Muliana and Kim 
[18] proposed a two-scale homogenization framework for laminated composites. The 
thermal conductivities of the components in the micromechanical model were tem-
perature-dependent. Chung et  al. [19] applied asymptotic expansion homogenization 
for composite materials with nonlinear properties. The thermal conductivities of the 
components in the unit cell problem were determined by the macroscopic average tem-
perature or the non-uniform local temperature. Numerical tests demonstrated that the 
differences between the two approaches were insignificant. Zhai et al. [20] studied the 
transient heat conduction in composite materials with temperature-dependent thermal 
properties. The macroscopic average temperature was also used in the determination of 
the thermal properties in their unit cell problem. However, detailed asymptotic analysis 
of the heat conduction equation with temperature-dependent thermal properties is still 
needed.

Another problem associated with the multiscale model with temperature-depend-
ent thermal properties is that the computational cost will be expensive. The effective 
thermal properties for the macroscopic model are provided by the solutions of the 
microscopic model. Because the temperature influences the thermal properties in 
the microscopic model, the microscopic model should be solved repetitively at each 
macroscopic iteration point, and the computational cost is unacceptable. This prob-
lem can be solved by reducing the order of the microscopic model [21]. For example, 
Monteiro et  al. [22] used the proper orthogonal decomposition to reduce the order 
of the micro problem and simplify the computation. Another convenient approach 
is to build lists, fitted equations or surrogate models for the thermal properties to 
substitute the repetitive microscopic calculations. These surrogate models can be 
built before the macroscopic calculation based on preliminary microscopic calcu-
lations. They can be also built “on-the-fly”, which means the surrogate models are 
updated during the calculations of macroscopic models [23, 24]. In recent years, the 
rapid developing artificial intelligence and machine learning models provide tools for 
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the multiscale methods. The machine learning models have been used in the hybrid 
atomistic-continuum simulations to substitute the microscopic molecular dynamics 
and complement the macroscopic continuum model [25, 26]. Stephenson et al. [27] 
employed the Gaussian process (GP) regression model in their hybrid model. The 
advantage of the GP model is that it estimates the errors of the predictions simul-
taneously [28]. A threshold of the error can be used to automatically indicate when 
the update of the GP model and the additional microscopic calculations are needed. 
Therefore, it is promising to combine the machine learning model with the homog-
enization model to improve its efficiency for problems with temperature-dependent 
thermal properties.

In this work, a homogenization method will be proposed for the coupled heat con-
duction and radiative transfer equations with temperature-dependent properties, and 
the GP regression model will be employed to accelerate the multiscale simulations. The 
rest of the paper is organized as follows. In Section  2, an asymptotic analysis will be 
conducted on the heat conduction equation and radiative transfer equation. The tem-
perature dependence of the thermal properties will be considered in the analysis and a 
homogenization model will be established. In Section 3, the GP regression model will be 
introduced first. An accelerated multiscale algorithm based on the GP regression model 
will be proposed. Some numerical examples are used to validate the proposed multiscale 
model in Section 4. Finally, conclusions will be presented in Section 5.

2  Homogenization of conduction and radiative transfer equations
The coupled heat conduction equation and radiative transfer equation are as follows 
[29]:

where x = (x1, x2, x3) is the coordinate and Ω = (Ω1, Ω2, Ω3) is the direction of the radi-
ative intensity. The Tε and Iε are the temperature and the radiative intensity. The heat 
conductivity kεij , the extinction coefficient βε, the absorption coefficient αε and the scat-
tering coefficient σε are all functions of the coordinate and the temperature. The σB is the 
Stefan-Boltzmann constant. The Einstein summation convention is used in this paper, 
and the repetitive indices i and j imply summations over all the components.

The homogenization of the Eqs. (1) and (2) is similar to the analysis in Ref. [17]. A 
local coordinate y = x/ε in a unit cell is introduced, as shown in Fig. 1. The ε can be 
regarded as the ratio between the characteristic length of the unit cell and the charac-
teristic length of the whole material or computational domain. Therefore, ε is a small 
parameter when the material contains a large number of unit cells.

Then, the temperature and the radiative intensity are expanded as:

(1)
∂

∂xi
kεij x,T ε ∂T ε(x)
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− αε x,T ε 4σB[T
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where the T1 and T2 are periodic functions in a unit cell. It is also assumed that the volu-
metric averages of T1, T2 and I1 in a unit cell are zero. The spatial derivative becomes:

The thermal properties kεij , α
ε, βε and σε are functions of both y and Tε. In the present 

work, the Taylor expansions are used and the thermal properties are expressed as:

where φ represents any of the physical properties.
The Eqs. (3)-(6) are then submitted into Eqs. (1)-(2) to obtain the equations in differ-

ent orders of ε. The detailed analysis can be found in Ref. [17], and the difference is that 
more terms are introduced into the equations by Eq. (6). However, it will be demon-
strated that the temperature-dependent properties do not influence the macroscopic 
average equations and the first-order corrections.

The equation in the order of ε−2 still provides:

The heat conduction equation in the order of ε−1 becomes:

(3)T ε(x) = T0

(
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)

+ εT1

(
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)

+ ε2T2

(

x, y
)

+ O
(
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,
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(
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+ εI1
(
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+ O
(

ε2
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,
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∂
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+ εT1
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,
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Fig. 1 Sketch of the computational domain for homogenization analysis
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where the last term on the left-hand side is related to the variable thermal conductivity. 
Because ∂T0

/

∂yj = 0 , the first and last terms on the left-hand side can be eliminated. 
Therefore, the equation for unit cell problem is the same as that for problems with con-
stant thermal properties, which is [17]:

with the following form of T1:

The periodic boundary condition is still used for Nα and the volumetric average of Nα 
in a unit cell should be zero. Eq. (9) demonstrates that the thermal conductivity in the 
unit cell problem is determined by the macroscopic average temperature T0. This analy-
sis is also justified by the simulations in Ref. [19, 20], where the T0 is used in the unit cell 
problems because of its simplicity.

As for the radiative transfer equation, the ε−1 order equation still provides:

In the order of ε0, the heat conduction equation gives:

Here ∂T0

/

∂yj = 0 is already applied to eliminate a vanished term. The last term on 
the left-hand side is the additional term due to the thermal conductivity. The homog-
enized macroscopic equation is derived by integrating Eq. (12) in a unit cell. Because of 
the periodic properties of the variables in the unit cell, the terms started with ∂[]

/

∂yi will 
be eliminated.

Therefore, the temperature-dependent thermal properties still have no influence on 
the macroscopic heat conduction equation, and the homogenized equation is:

The effective thermal conductivity Kij is given by:

where |Y| is the volume of the unit cell, and the volumetric average value of a variable φ 
is defined as:
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The equations are the same as the equations derived with the constant thermal prop-
erties [17]. Therefore, the analysis further demonstrates that the macroscopic aver-
age temperature can be used in the unit cell problem to calculate the effective thermal 
properties.

However, the equations for the calculation of T2 are more complex because of the 
additional terms and the dependence of T0 on x. The spatial derivatives of kεij and Nβ are:

Then, Eq. (12) can be reformed into:

where all the properties are determined at T0. Equation (13) can be also rewritten as:

The unit cell problems related to T2 are derived by subtracting Eq. (18) from Eq. (17). 
According to the form of Eq. (17), the following ansatz for T2 can be used:

The corresponding governing equations for the Mαβ, Pαβ and C are:

Compared with the analysis for problems with constant thermal properties in Ref. 
[17], it can be found that the equations for Mαβ and C are the same, and the Pαβ is the 
additional functions that should be solved. It is also easy to prove that the integrals of 
the right-hand sides of Eqs. (20)-(22) are all zero according to the periodic property of kεij 
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and Nα in a unit cell and the definition of Kαβ in Eq. (14). The periodic boundary condi-
tions can be still used for Mαβ, Pαβ and C in a unit cell.

The previous research shows that the influence of T2 on the accuracy of the temper-
ature field is insignificant [17]. Because the present work mainly focuses on the com-
putation of multiscale heat transfer problems with temperature-dependent thermal 
conductivities, the solution of T2 is not considered and only T0 and T1 are calculated in 
this work for the temperature.

Finally, because the partial derivatives of thermal properties of the Eq. (6) are in the 
order of ε, they have no influence on the radiative transfer equations in the order of ε−1 
and ε0. Therefore, the equations for I0 and I1 are the same as those in Ref. [17]:

It should be mentioned that a variety of boundary conditions of I1 can be used for Eq. 
(24) in a unit cell. In the previous work, it is found that the periodic boundary condition 
will overpredict the fluctuations in the unit cell and lead to large errors [17]. It is sug-
gested that the I1 is solved in the whole region with the following boundary condition:
I1 (I1,all) is solved in the whole domain with 

where n is the outward unit normal and Γ is the boundary of the whole domain. The I1 
solved by Eq. (25) is denoted by I1,all in this work. However, this treatment of I1 still has 
two drawbacks. Firstly, the error of the radiation tends to accumulate from the incoming 
boundary to the outgoing boundary, and the fluctuations will be amplified. Secondly, it 
is inconvenient to obtain a local radiation fluctuation by solving I1 in the entire region.

In this work, the following I1 solved in an individual unit cell is used:
I1 (I1,cell) is solved in an individual unit cell with 

where ΓY is the boundary of a unit cell. The I1 solved by Eq. (26) is denoted by I1,cell in this 
work. The boundary condition in Eq. (26) means that the incoming I1 is zero in each unit 
cell, which is different from the periodic boundary condition. It is found that I1,cell tends 
to underpredict the fluctuations. Therefore, the average of I1,all and I1,cell is also used as a 
boundary condition, which is calculated by:

In summary, the influence of the temperature-dependent thermal properties only 
appears in the equations for T2. The macroscopic homogenized equations for T0 and I0 
and the unit cell problems for T1 and I1 are the same as the equations for problems with 

(23)�i
∂I0

∂xi
= −β(T0)I0 +

α(T0)σB

π
T 4
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1

4π

∫
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∂I1

∂yi
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(
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(
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d�′.

(25)I1(x,�) = 0, for � · n < 0, x ∈ Ŵ,

(26)I1(x,�) = 0, for � · n < 0, x ∈ ŴY ,
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)/
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constant thermal properties. The macroscopic average temperature T0 is used in these 
equations to determine the thermal properties. All the governing equations are summa-
rized in Table 1 for convenience.

3  Gaussian process regression accelerated multiscale algorithm
According to the analysis in Section  2, a multiscale computational procedure can be 
proposed for the conduction-radiation heat transfer in periodic composite materials. A 
mesh for the macroscopic simulations and a mesh for the unit cell problems are firstly 
established. Then, the Eqs. (13) and (23) are solved to obtain the macroscopic T0 and 
I0. The effective thermal conductivities and radiative transfer coefficients are calcu-
lated from the solutions of the unit cell problems. Because the properties in the unit cell 
problems depend on the temperature, the above calculations of the effective properties 
should be employed in each iteration on all the mesh nodes. This procedure is unaccep-
table because the repetitive calculations of the unit cell problems under different tem-
peratures will consume large computational resources.

Therefore, in the  present work, the Gaussian process regression will be used as the 
surrogate model to obtain the correlation between the effective thermal conductivity 
and the temperature. In the rest of this section, the GP regression will be briefly intro-
duced in Section 3.1, and the multiscale computational procedure will be described in 
Section 3.2.

3.1  Gaussian process regression

Details of the GP regression model can be found in Ref. [27, 28], and only the essential 
algorithms are described in this section. It is assumed that n thermal conductivity ten-
sors Kij,k, k = 1 ~ n, have been calculated from the unit cell problem before the regression, 
which are corresponding to the temperatures Tk. The vectors Kij and T are defined as 

Table 1 The summary of the equations for the homogenization of conduction and radiative transfer 
equations

Variables Governing equations

Tε T ε(x) = T0(x, y)+ εT1(x, y, T0)+ ε2T2(x, y, T0)  

T0 ∂
∂xi

[
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∂xj

]
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4
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dy 
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∂T0(x)
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Kij = (Kij,1, Kij,2, …, Kij,n)T and T = (T1, T2, …, Tn)T. In the GP model, the prior mean func-
tion is chosen as zero. The variance of the noise of Kij is denoted by σ 2

n  . The σn is chosen 
as the residual of the Nα, which is  10–7 in this work. The squared exponential covariance 
function is used in this paper:

where σf and l are two hyperparameters. Then, the probability distribution of Kij
* at tem-

perature T* is a Gaussian distribution with mean value [28]:

and the variance:

where C* is an n × 1 vector with entries C*
k = C(T*, Tk) and C is an n × n matrix with 

entries Ckm = C(Tk, Tm).
During the simulation, when the C and Kij are calculated based on the existing data, 

the Kij
* at a new temperature T* can be predicted by Eq. (29). A variance σ 2

∗  is also given 
by Eq. (30). If the σ∗ exceeds a threshold σt which is specified before the simulation, a 
new unit cell problem of Nα will be called to calculate the Kij at the new temperature. 
The new data will be added to the existing data set and the C and Kij are updated. In 
addition, the σ∗ is not relevant to Kij, as demonstrated by Eq. (30). Therefore, the thresh-
old is the same for all the components of thermal conductivity tensor.

In practice, the two hyperparameters in the GP model need to be determined. A pos-
sible method is to use the maximum likelihood estimation (MLE) as mentioned in Ref. 
[27]. In the present work, we simply choose l = Th-Tc and σf = 1. The reason can be 
explained by the following test. The data is the K12 calculated from a unit cell with ellip-
tical particle with temperature changing from 400 to 1400 K. The K12 for 400 K, 800 K, 
1200 K and 1400 K are used to train a GP model. The MLE gives an optimized set of (σf, 
l) as (0.0075, 370.6). However, the K12 predicted with the optimized hyperparameters 
have large deviations compared with the real data, as shown in Fig. 2. On the contrary, 
the GP model with (σf, l) = (1, 1000) coincides better with the calculated data. The rea-
son is that although the optimized hyperparameters by MLE are more consistent with 
the training data, the training data could not reflect the trend of the real data. It should 
be mentioned that although different hyperparameters provide different predictions, the 
parameter that controls the accuracy of the multiscale simulation is the threshold σt. In 
the present work, the (σf, l) = (1, 400) is used and the influence of σt will be discussed.

3.2  Multiscale computational procedure

The computational procedure for multiscale simulation with GP regression is given in 
Fig. 3. The procedure contains the following steps.

(1) Build meshes and initialize the macroscopic problems and the unit cell problems.

(28)C
(

Ti,Tj

)

= σ 2
f exp

[

−

(

Ti − Tj

)2

2l2

]

,

(29)K
∗

ij = C∗
(

T ∗,T
)T

[

C(T,T)+ σ 2
n I
]−1

Kij ,

(30)σ 2
∗ = C

(

T ∗,T ∗
)

− C∗
(

T ∗,T
)T

[

C(T,T)+ σ 2
n I
]−1

C∗
(

T ∗,T
)

,
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(2) Select a set of initial temperatures. Solve Eq. (9) for Nα in the unit cell and calcu-
late the effective thermal conductivity and radiative coefficients by Eqs. (14) and (15).
(3) Build an initial GP model for the thermal properties by calculating the matrix 
[

C(T,T)+ σ 2
n I
]−1 in Eqs. (29) and (30).

(4) The macroscopic homogenized Eqs. (13) and (23) are iterated, while the thermal 
properties are calculated from the GP model. Equation (30) is firstly used to obtain 
the σ∗ according to the current temperature of the grid node. If σ∗ is smaller than the 
threshold σt, Eq. (29) is used to calculate the thermal properties. Otherwise, the unit 
cell problem is solved to obtain the new thermal properties under the temperature. 
The GP model is updated based on the enriched database of the thermal properties.
(5) Equations (13) and (23) are iterated until convergent results of T0 and I0 are 
obtained.
(6) Finally, the T1 and I1 in each unit cell can be obtained by Eqs. (9), (10) and (24). 
The first-order approximations for Tε and Iε can be reconstructed by:

In this work, the Cartesian meshes are used. The finite volume method and discrete 
ordinate method are employed to solve the heat conduction and radiative transfer equa-
tions, respectively. Details of the numerical methods can be found in Refs. [17, 30]. In 
addition, it should be mentioned that the value of the small parameter ε used in the com-
putations has no influence on the final results. The reason is that the solutions of the 
equations in the unit cell, such as Eq. (9) and Eq. (24), are inversely proportional to the ε 
in the coordinate y. Thus, the ε is cancelled out in Eqs. (31) and (32) when calculating the 
final results. More detailed explanations can be found in Section 3 of Ref. [17]. In this 

(31)T ε = T0 + εT1 + O
(

ε2
)

,

(32)Iε = I0 + εI1 + O
(

ε2
)

.

Fig. 2 Gaussian process regression model with different (σf, l) hyperparameters
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work, the ε is determined as the ratio between the spatial steps in a unit cell and in the 
whole domain. Therefore, ε = 1/4 is used in Example 1 and Example 2 in the following 
section.

4  Numerical examples
4.1  Example 1

In this section, two-dimensional numerical examples will be used to validate the pro-
posed multiscale method. The examples are similar to the examples in Ref. [17], which 
are heat transfer in  SiO2 aerogel doped with  TiO2 opacifier particles. Because the effec-
tive coefficients for radiative transfer are the simple volumetric average, the correspond-
ing GP model is not necessary. Therefore, these coefficients are still assumed to be 
constant in this work. The absorption coefficients for  SiO2 aerogel and  TiO2 are 15.4  m−1 
and 7208   m−1, and the scattering coefficients are 24.8   m−1 and 0   m−1. The following 
polynomials are used to calculate the thermal conductivities, which are obtained by fit-
ting the data in Ref. [30]:

(33)Ts = (T [K] − 850)
/

360.6,

(34)kSiO2 [Wm−1K−1] = 0.002179T 3
s + 0.005754T 2

s + 0.009287Ts+0.02087,

Fig. 3 Multiscale computational procedure with Gaussian process regression for conduction‑radiation heat 
transfer problems with temperature‑dependent thermal properties
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The range of the temperature T in Eq. (33) for the correlations in Eqs. (34) and (35) is 
300 K ~ 1400 K.

The first example is a 1 mm × 0.1 mm region with ten 0.1 mm × 0.1 mm unit cells [17], 
as shown in Fig. 4. The  TiO2 particle is assumed to be a circle with a diameter of 20 μm. 
The temperature Th on the left boundary is 900 K, 1100 K or 1300 K. The temperature 
Tc on the right boundary is specified as 400 K. The boundaries are assumed to be black 
boundaries for the radiation. Periodic boundary conditions are used on the other bound-
aries. For the fully-resolved simulations, the size of the mesh for a unit cell is 400 × 400 
and that for the whole domain is 4000 × 400. The grid independence for effective ther-
mal conductivities can be found in Ref. [17]. As for the homogenized equations, the grid 
size is 1000 × 100.

The criterion for convergence is that the relative error between two iterations is less 
than  10–8. Because the grid size is relatively large and the  thermal conductivities are 
temperature-dependent, the convergence for fully-resolved simulation is slow. There-
fore, in this work, the temperature results of the macroscopic homogenized equations 
are used as the initial temperatures for the fully-resolved simulations to speed up the 
convergence. The relative errors of the temperature and radiative intensity fields of the 
multiscale simulations are defined as:

where the subscripts i and j are the indices for 2D grid nodes and k is the index for dis-
crete directions of radiative intensities. The superscripts M and F represent the results of 
the multiscale simulations and the fully-resolved simulations. The reference temperature 
is the average of the two boundary temperatures: Tref = (Th + Tc)

/

2 , and the reference 
radiative intensity is Iref = σBT

4
ref

/

π.
Taking the problem with 1300 K left boundary temperature as an example, the unit 

cell problem is firstly solved under 6 temperatures: 400 K, 600 K, 800 K, 1000 K, 1200 K 
and 1300 K. An initial GP model for the effective thermal conductivities is established 
according to the data on the 6 temperatures. When the σ∗ of the GP model on a new 
temperature is larger than the threshold σt, the unit cell problem is solved, the data set 
is updated and a new GP model is built. The influence of the value of σt is considered by 
setting σt as  10–2 to  10–6. The results for the multiscale simulations are given in Table 2. 
Evidently, when σt decreases, the number of temperature points on which the effective 
thermal conductivity is calculated increases. The CPU time increases because more unit 

(35)kTiO2 [Wm−1K−1] = −0.3295T 3
s + 0.9424T 2

s − 1.047Ts + 3.745.

(36)

ET =

√

√

√

√

∑

i,j

(

TM
i,j − TF

i,j

)2
/
∑

i,j

(

TF
i,j − Tref

)2
,EI =

√

√

√

√

∑

i,j,k

(

IMi,j,k − IFi,j,k

)2
/
∑

i,j,k

(

IFi,j,k − Iref

)2
,

Fig. 4 Computational domain for Example 1
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cell calculations are conducted and the dimension of the matrices in Eqs. (29) and (30) 
increases. As a comparison, the CPU time for the fully-resolved simulation is 69.2  h, 
although the solution of the homogenized equation is used as the initial temperature. 
Thus, the multiscale method increases the efficiency of the simulations. Meanwhile, it 
can be found that σt =  10–4 is sufficient for the simulation because a smaller threshold 
cannot further increase the accuracy. Therefore, a proper threshold can be chosen to 
guarantee both the accuracy and efficiency of the multiscale model, and σt =  10–4 is used 
in the rest of the work.

The temperature and incident radiation fields of the fully-resolved simulation and the 
multiscale simulation with σt =  10–4 are shown in Fig. 5. The incident radiation in Fig. 5 
is defined as G =

∑

k wkIk , where wk and Ik are the weights and discrete radiative inten-
sities in the discrete ordinate method. Both the I1,cell in Eq. (26) and the I1,ave in Eq. (27) 

Table 2 Results for the multiscale simulations with different threshold σt

σt Number of data points 
for GP model

CPU time Relative error of T0 Relative error of Tε

10–2 6 4.20 h 1.356% 1.104%

10–3 8 4.84 h 1.290% 1.020%

10–4 11 6.64 h 1.274% 1.000%

10–5 14 8.51 h 1.274% 1.000%

10–6 24 11.47 h 1.274% 1.000%

Fig. 5 The temperature and incident radiation fields of the fully‑resolved simulation and the multiscale 
simulation
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are used to reconstruct the radiative intensity fields. It can be seen that the temperature 
and incident radiation fields of both the simulations coincide well with each other. The 
multiscale model can provide detailed small scale fluctuations of temperature and radia-
tive intensity fields. The relative errors of the incident radiation are 12.47% for I0, 10.72% 
for Iε with I1,cell, and 5.90% for Iε with I1,ave. Fig.  5 (b) also demonstrates that the I1,cell 
underpredicts the fluctuations and I1,ave provides a better result.

The 900 K and 1100 K are also used as the left temperature boundary conditions to 
show the influence of macroscopic temperature gradient on the multiscale simulations. 
The errors of temperature and radiative intensity are given in Table 3. The results dem-
onstrate that the multiscale model can provide accurate results of the coupled con-
duction-radiation heat transfer in composites. The temperature and incident radiation 
profiles along horizontal line y = 0.05 mm are also shown in Fig. 6. It can be seen that the 
fluctuations of temperature and radiation induced by the particle are reproduced by the 
multiscale model.

Finally, the influence of radiation on the accuracy of the multiscale method is consid-
ered. The 1300 K and 400 K are used as the temperature boundary conditions. The grid 
size is still 4000 × 400. The absorption and scattering coefficients are multiplied by a fac-
tor to tune the effects of radiation. The relative errors of temperature and radiative inten-
sity fields for different multipliers are given in Table 4. Although the influence on the 
error of temperature is insignificant, the error of radiation intensity increases with the 
increase of absorption and scattering coefficients. The reason can be found in Fig. 7 and 
Fig. 8, where the profiles of incident radiations with different multipliers are presented. 
The α2 = 72080  m−1 corresponds to the multiplier 10 in Fig. 8. The profiles have similar 

Table 3 Results of the multiscale simulations with different boundary temperature Th (FR represents 
fully‑resolved)

Th CPU time CPU time 
of FR 
simulation

Relative 
error of T0

Relative 
error of Tε

Relative 
error of I0

Relative 
error of Iε 
with I1,cell

Relative error 
of Iε with I1,ave

900 K 4.99 h 23.3 h 0.796% 0.305% 13.72% 11.84% 6.54%

1100 K 5.39 h 66.4 h 1.081% 0.773% 13.06% 11.25% 6.21%

1300 K 6.64 h 69.2 h 1.274% 1.000% 12.47% 10.72% 5.90%

Fig. 6 The temperature and incident radiation profiles of the fully‑resolved simulations and the multiscale 
simulations on line y = 0.05 mm
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fluctuations due to the particles, but the magnitudes of the fluctuations and variations of 
the radiation are different. When the coefficients are small, the interaction between heat 
and radiation transfer is weak. The fluctuations and variations of the radiation are small 

Table 4 Results of the multiscale simulations with different multipliers of the absorption and 
scattering coefficients

Multiplier Relative error of T0 Relative error of Tε Relative error of I0 Relative error 
of Iε with I1,ave

0.01 1.682% 1.525% 0.222% 0.093%

0.1 1.712% 1.554% 2.055% 0.805%

1 1.274% 1.000% 12.47% 5.90%

2 1.064% 0.675% 18.31% 11.32%

5 1.199% 0.844% 25.78% 20.15%

10 1.541% 1.286% 30.39% 28.45%

Fig. 7 The incident radiation profiles of the fully‑resolved simulations and the multiscale simulations on line 
y = 0.05 mm with different multipliers of the absorption and scattering coefficients

Fig. 8 The incident radiation profiles of the fully‑resolved simulations and the multiscal simulations on line 
y = 0.05 mm with different absorption coefficients α2
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and the relative errors of the radiation are also small. On the contrary, large coefficients 
lead to large fluctuations and variations of the radiation and therefore large errors. Fur-
thermore, for the coefficients with multiplier 10, different absorption coefficients α2 for 
the particles are used and the results are compared in Table 5  and Fig. 8. It can be seen 
that the errors of the radiation decrease as the values of the absorption coefficients of the 
two components become closer and the fluctuations become weaker.

4.2  Example 2

In this section, the coupled conduction and radiation heat transfer with anisotropic 
structures are simulated [17]. The structures are shown in Fig. 9, which are composed of 
7 × 7 unit cells. The size of the unit cell is 0.1 mm and the size of the domain is 0.7 mm. 
The lengths of the major and minor axes of the elliptical particles are 94.9  μm and 
9.49 μm. The particles are horizontally aligned or 45° tilted. The properties of the mate-
rials are the same as in Example 1. The temperature on the left boundary is specified as 
Th = 1300 K and the temperature on the other boundaries is Tc = 400 K. The grid size of 
a unit cell is 400 × 400, and that of the fully-resolved simulation is 2800 × 2800. The grid 
size of the macroscopic homogenized simulation is 700 × 700.

The temperature and incident radiation fields for both the fully-resolved simulations 
and the multiscale simulations are given in Fig. 10 and Fig. 11. It can be seen that the 
multiscale results can reproduce the local temperature and radiation fluctuations due to 
the elliptical particles (Table 6). In addition, the CPU times of the fully-resolved simula-
tions are 596.1  h and 500.2  h for the horizontally aligned and tilted particles, respec-
tively. The CPU times of the multiscale simulations are 11.7 h and 13.7 h.

Table 5 Results of the multiscale simulations with different absorption coefficients

α1
/m−1

α2
/m−1

β1
/m−1

β2
/m−1

Relative error of T0 Relative error of Tε Relative error of I0 Relative error 
of Iε with I1,ave

154 72,080 248 0 1.541% 1.286% 30.39% 28.45%

154 7208 248 0 1.818% 1.635% 7.439% 3.115%

154 720.8 248 0 1.993% 1.844% 0.066% 0.041%

Fig. 9 Computational domains for Example 2
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5  Conclusions
In the above research, the homogenization of the coupled conduction and radiative 
transfer equations with temperature-dependent thermal properties has been conducted. 
The Taylor expansions of the thermal properties about the average temperature are used 
in the analysis. Both the homogenized equations and the unit cell problems are derived. 
It is proved that the macroscopic average temperature can be used in the unit cell prob-
lems to determine the effective thermal properties. The homogenized equations for T0, 
I0 and the equations for T1, I1 are the same as the equations in the analysis with constant 
thermal properties. The effect of the temperature-dependent thermal properties only 
occurs in the higher-order corrections such as the equation for T2.

Based on the homogenization analysis, the multiscale numerical method has been 
proposed. The cell problem is solved to provide effective thermal properties for the mac-
roscale iterations. In order to prevent the repetitive calculation of the cell problem, the 
GP regression is introduced to build a correlation between the effective thermal proper-
ties and the temperature. The GP model is updated during the iteration according to the 
variance of the model.

By comparing with the results of fully-resolved simulations of conduction-radiation 
heat transfer in composite with isotropic and anisotropic periodic structures, the pro-
posed multiscale method is validated. By using a proper variance threshold for the GP 

Fig. 10 Temperature and incident radiation fields for horizontally aligned particles
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model, the accuracy and efficiency of the multiscale method can be guaranteed. The 
multiscale method can provide both the average temperature and radiative intensity 
fields and their fluctuations due to the local structures. It is found that the I1,ave can pro-
vide better correction of the radiative intensity, which is the average of the I1,all solved in 
the whole domain and the I1,cell solved in the individual cell with zero boundary incom-
ing. It is also found that the error of the radiation increases with the magnitude of the 
absorption and scattering coefficients and the difference between the coefficients of dif-
ferent components. The proposed multiscale model can be used in further studies on 
the high-temperature heat transfer in composite materials with periodic structures. It 
should be mentioned that the analysis in this work is for the interior of composites. The 

Fig. 11 Temperature and incident radiation fields for tilted particles

Table 6 Errors of the multiscale simulations for Example 2 

Structure Relative error of T0 Relative 
error of Tε

Relative error of I0 Relative error 
of Iε with I1,cell

Relative error 
of Iε with I1,ave

Horizontally 
aligned particle

11.27% 9.84% 8.83% 7.86% 5.27%

Tilted particle 7.92% 5.10% 13.22% 11.73% 10.24%
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boundary layer problems should be studied in the future for the correction of boundary 
conditions. More detailed analysis of the homogenization of the radiative transfer equa-
tion is also needed to obtain a clearer boundary condition for I1 [31, 32].
Acknowledgements
Not applicable.

Author contributions
All the authors contributed to this manuscript. All authors read and approved the final manuscript.

Funding
This study is supported by the National Numerical Windtunnel Project of China (NNW2018ZT2‑A04, NNW2020ZT3‑A22) 
and the National Natural Science Foundation of China (No. 51906186).

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable 
request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 22 June 2022   Accepted: 14 August 2022

References
 1. Nguyen ST, Tran‑Le AD, Vu MN, To QD, Douzane O, Langlet T (2016) Modeling thermal conductivity of hemp insula‑

tion material: A multi‑scale homogenization approach. Build Environ 107:127–134
 2. Peng X, Zhong Y, Wang P, Luo D (2019) Estimation of thermal conduction in hollow‑glass‑beads‑filled cement‑based 

composites by variational asymptotic homogenization method. Appl Therm Eng 161:114191
 3. He YL, Xie T (2015) Advances of thermal conductivity models of nanoscale silica aerogel insulation material. Appl 

Therm Eng 81:28–50
 4. Bensoussan A, Lions JL, Papanicolaou G (1978) Asymptotic analysis for periodic structures, 1st edn. North‑Holland, 

Amsterdam
 5. Cioranescu D, Donato P (1999) An introduction to homogenization. Oxford University Press, Oxford
 6. Kamiński M (2003) Homogenization of transient heat transfer problems for some composite materials. Int J Eng Sci 

41(1):1–29
 7. Matine A, Boyard N, Legrain G, Jarny Y, Cartraud P (2015) Transient heat conduction within periodic heterogeneous 

media: A space‑time homogenization approach. Int J Therm Sci 92:217–229
 8. Bennai F, Abahri K, Belarbi R, Tahakourt A (2016) Periodic homogenization for heat, air, and moisture transfer of 

porous building materials. Numer Heat Tr B‑Fund 70(5):420–440
 9. Allaire G, El Ganaoui K (2009) Homogenization of a conductive and radiative heat transfer problem. Multiscale 

Model Simul 7(3):1148–1170
 10. Allaire G, Habibi Z (2013) Homogenization of a conductive, convective, and radiative heat transfer problem in a 

heterogeneous domain. SIAM J Math Anal 45(3):1136–1178
 11. Asakuma Y, Kanazawa Y, Yamamoto T (2014) Thermal radiation analysis of packed bed by a homogenization method. 

Int J Heat Mass Transf 73:97–102
 12. Yang Z, Cui J, Ma Q (2014) The second‑order two‑scale computation for integrated heat transfer problem with con‑

duction, convection and radiation in periodic porous materials. Discrete Continuous Dyn Syst Ser B 19(3):827–848
 13. Yang Z, Cui J, Sun Y, Ge J (2015) Multiscale computation for transient heat conduction problem with radiation 

boundary condition in porous materials. Finite Elem Anal Des 102–103:7–18
 14. Yang Z, Sun Y, Cui J, Yang Z, Guan T (2018) A three‑scale homogenization algorithm for coupled conduction‑radia‑

tion problems in porous materials with multiple configurations. Int J Heat Mass Transf 125:1196–1211
 15. Haymes R, Gal E (2018) Iterative multiscale approach for heat conduction with radiation problem in porous materi‑

als. ASME J Heat Transf 140(8):082002
 16. Huang J, Cao L (2014) Global regularity and multiscale approach for thermal radiation heat transfer. Multiscale 

Model Simul 12(2):694–724
 17. Tong ZX, Li MJ, Yu YS, Guo JY (2021) A multiscale method for coupled steady‑state heat conduction and radiative 

transfer equations in composite materials. ASME J Heat Transf 143(8):082102
 18. Muliana AH, Kim JS (2010) A two‑scale homogenization framework for nonlinear effective thermal conductivity of 

laminated composites. Acta Mech 212(3):319–347
 19. Chung PW, Tamma KK, Namburu RR (2001) Homogenization of temperature‑dependent thermal conductivity in 

composite materials. J Thermophys Heat Transf 15(1):10–17
 20. Zhai H, Wu Q, Yoshikawa N, Xiong K, Chen C (2021) Space‑time asymptotic expansion method for transient thermal 

conduction in the periodic composite with temperature‑dependent thermal properties. Comput Mater Sci 
194:110470



Page 20 of 20Tong et al. Advances in Aerodynamics            (2022) 4:30 

 21. Fish J (2013) Practical multiscaling. Wiley, Chichester
 22. Monteiro E, Yvonnet J, He QC (2008) Computational homogenization for nonlinear conduction in heterogeneous 

materials using model reduction. Comput Mater Sci 42(4):704–712
 23. Weinan E (2011) Principles of multiscale modeling. Cambridge University Press, Cambridge
 24. Tong ZX, He YL, Tao WQ (2019) A review of current progress in multiscale simulations for fluid flow and heat transfer 

problems: The frameworks, coupling techniques and future perspectives. Int J Heat Mass Transf 137:1263–1289
 25. Asproulis N, Drikakis D (2013) An artificial neural network‑based multiscale method for hybrid atomistic‑continuum 

simulations. Microfluid Nanofluid 15(4):559–574
 26. Roehm D, Pavel RS, Barros K, Rouet‑Leduc B, McPherson AL, Germann TC, Junghans C (2015) Distributed database 

kriging for adaptive sampling (D2KAS). Comput Phys Commun 192:138–147
 27. Stephenson D, Kermode JR, Lockerby DA (2018) Accelerating multiscale modelling of fluids with on‑the‑fly Gauss‑

ian process regression. Microfluid Nanofluid 22(12):139
 28. Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. MIT Press, Cambridge
 29. Howell JR, Siegel R, Mengüç MP (2010) Thermal radiation heat transfer, 5th edn. CRC Press, Boca Raton
 30. Xie T, He YL (2016) Heat transfer characteristics of silica aerogel composite materials: Structure reconstruction and 

numerical modeling. Int J Heat Mass Transf 95:621–635
 31. Bensoussan A, Lions PL, Papanicolaou GC (1979) Boundary layers and homogenizatlon of transport processes. Publ 

Res Inst Math Sci 15:53–157
 32. Dumas L, Golse F (2000) Homogenization of transport equations. SIAM J Appl Math 60(4):1447–1470

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	A Gaussian process regression accelerated multiscale model for conduction-radiation heat transfer in periodic composite materials with temperature-dependent thermal properties
	Abstract 
	1 Introduction
	2 Homogenization of conduction and radiative transfer equations
	3 Gaussian process regression accelerated multiscale algorithm
	3.1 Gaussian process regression
	3.2 Multiscale computational procedure

	4 Numerical examples
	4.1 Example 1
	4.2 Example 2

	5 Conclusions
	Acknowledgements
	References


