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1 Introduction
Multiphase fluid flows featured by the simultaneous presence of multiple thermody-
namic phases appear ubiquitous in natural environments and industrial engineering 
practice. An insightful understanding of the multiphase flow dynamics could practically 
facilitate manufacturing and production activities. As the mechanical behaviors of mul-
tiphase flows are too complex to be fully captured by experimental techniques, a series 
of interface tracking methods including the level-set (LS) method [1], the volume-of-
fluid (VOF) method [2] and the phase-field (PF) method [3], coupled with the numerical 
solution of the Navier-Stokes equation, have been developed to describe the complex 
behaviors of multiphase fluid flow from a macroscopic perspective [4]. Owing to the 
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tremendous advances in computing capability, mesoscopic approaches developed upon 
the kinetic theory offer a penetrating perspective to comprehend the multiphase inter-
actions. By exploring the multiphase behaviors at the mesoscopic level, the mesoscopic 
approaches fill the gap between the macroscopic descriptions of the multiphase dynam-
ics and microscopic intermolecular actions [5].

Among plenty of kinetic-based mesoscopic approaches, the lattice Boltzmann (LB) 
method has emerged as an efficient and powerful tool for simulating a wide range of 
multiphase fluid flows [6–10]. The multiphase LB models developed in the past three 
decades can be generally classified into four categories: the color-gradient model [11], 
the phase-field model [12], the free-energy model [13], and the pseudopotential (PP) 
model [14]. Both the color-gradient model and the phase-field model take two sets of 
distribution functions, one for the interfacial property and the other for the hydrody-
namic property, to depict the multiphase fluid flow. The free-energy model and the 
pseudopotential model, which mimic the effects of phase interactions by an additional 
volumetric force, employ a single set of distribution functions to describe the mul-
tiphase fluid flow. With such a treatment, the complexity of the  computing program 
gets roughly halved compared to the program implementing the color-gradient or the 
phase-field model. Moreover, the mass and momentum transport process in the simula-
tions employing the free-energy or the pseudopotential model is accomplished through 
the migration of identical particles described by the single set of distribution functions, 
which tends to be more consistent than the transport process exhibited in the simula-
tions utilizing the color-gradient or the phase-field model, where the mass and momen-
tum transport corresponds respectively to the migration of different particles depicted 
by two individual sets of distribution functions. Owing to the succinct implementation 
of the pseudopotential model, the pseudopotential LB method has experienced contin-
ued prosperity in a wide range of multiphase fluid flows [15–18]. Nevertheless, theo-
retical foundations of the pseudopotential model have remained the subject of debate 
since its birth. A major debating issue lies in the thermodynamic inconsistency. He and 
Doolean [19] first addressed the problem of the thermodynamic inconsistency and pro-
vided the simplified form of the pressure tensor induced by the pseduopotential model. 
Benzi et al. [20] identified the complete form of the pressure tensor at the continuum 
level. Later, Sbragaglia et al. [21] discovered that the continuum form of the pressure ten-
sor does not ensure uniqueness due to the arbitrary gauge. Shan [22] further emphasized 
that the continuum form of the interaction force does not guarantee exact mechanical 
balance. The pressure tensor constructed on the discrete level should be employed to 
accurately predict the thermodynamic behaviors of the pseudopotential model. Kuper-
shtokh et al. [23] managed to achieve the thermodynamic consistency by introducing a 
tunable interaction force. To uncover the underlying thermodynamic background, Sbra-
gaglia and Shan [24] derived the free energy functional in terms of the pseudopoten-
tial model and established the specific expression of the interaction potential. It turns 
out that an implementation of the equation of state in the thermodynamic theory would 
inevitably result in the thermodynamic inconsistency. Thereafter, Li et al. [25] explored 
the mechanical stability solutions in varying conditions and figured out the appropriate 
parameter value for approximately fulfilling the thermodynamic inconsistency require-
ment. With a third-order Chapman-Enskog analysis, Huang et al. [26] proved that the 
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classical discrete pressure tensor proposed by Shan [22] remains only conditionally cor-
rect. On the contrary, the continuum pressure tensor constructed by considering the 
third-order isotropic term could accurately predict the thermodynamic behaviors of the 
pseudopotential model. Despite the tremendous progress achieved by the pseudopoten-
tial model in multiphase fluid flow [6, 27], all of the research has been confined within 
the framework of LB method. Considering its straightforward implementation and 
excellent capacity, it is tempting to develop pseudopotential-based kinetic schemes that 
are not restricted by the uniform Cartesian grid for efficient multiphase flow simulation.

Rooted in the kinetic theory, the discrete unified gas kinetic scheme (DUGKS) devel-
oped within the finite volume framework suffers from no restriction on grid types 
[28]. By considering the local Knudsen information in the construction of kinetic flux, 
DUGKS could accurately depict extensive fluid flows ranging from the continuum 
regime to the free molecular regime [29]. Over the past decade, DUGKS has demon-
strated its excellent capability in modeling compressible flows [30–32], turbulent flows 
[33–35], solid-fluid flows [36–38], multicomponent gas flows [39, 40], microscale gas 
flows [41, 42], radiative heat transfer [43, 44], and so forth. For the widespread appli-
cation of DUGKS, readers are recommended to refer to the review literature provided 
by Guo and Xu [45]. Despite the tremendous progress made by DUGKS, studies cen-
tered on the multiphase fluid flows are rather limited [46, 47]. Moreover, the multiphase 
model employed in DUGKS is generally limited to the phase-field model [48], where two 
sets of distribution functions are utilized to separately describe the interface and fluid 
dynamics. Such a treatment isolates the mass transport from the momentum transport 
and could induce unphysical phenomena. To avoid this undesirable feature, DUGKS 
using a  single set of distribution functions for multiphase flow simulations should be 
developed. Very recently, Zeng et al. [49] proposed a well-balanced DUGKS for two-
phase flows by absorbing the free-energy model [50] into DUGKS. Only a single set of 
distribution functions has been utilized in their work for the concurrent transport of 
mass and momentum. Numerical results demonstrated the superior stability and accu-
racy of DUGKS over that of LB method. Nevertheless, the free-energy model considers 
the phase interactions through the chemical potential field, which typically belongs to a 
macroscopic description. To describe the phase interactions at the mesoscopic level, the 
pseudopotential model that directly mimics the intermolecular interactions is a distinct 
preference. Considering the excellent performance of DUGKS proved in previous studies 
[51, 52], as well as the mesoscopic feature of the pseudopotential model, we developed a 
pseudopotential-based DUGKS for two-phase fluid flows by coupling the pseudopoten-
tial model with the Strang-splitting DUGKS. To simulate a realistic two-phase system, 
the van der Waals equation of state (vdW-EOS) is implemented for the evaluation of 
bulk pressure. The rest of this paper is organized as follows: Section  2 introduces the 
Strang-splitting DUGKS and the pseudopotential model. Section 3 presents the numeri-
cal results as well as discussions. Section 4 concludes the findings.

2  Numerical methodology
In this section, the macroscopic governing equations are first briefly introduced. Then 
we offer a detailed explanation of the Strang-splitting discrete unified gas kinetic 
scheme. The pseudopotential model for DUGKS will be introduced in the final part.
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2.1  Macroscopic equations

The macroscopic governing equations recovered by the kinetic equation through the Chap-
man-Enskog theory read 

where t represents time, ρ indicates the fluid density, u denotes the flow velocity, p is the 
pressure, and µ is the dynamic viscosity. F s stands for the volumetric force that mimics 
the interaction effects between/among different phases whereas G indicates the gravita-
tional or buoyant force.

2.2  Discrete unified gas kinetic scheme

In present research, the flow field is directly governed by the Boltzmann-BGK equation, 
which takes the form of

where f = f (x, ξ , t) is the distribution function (DF) accounting for the particles resid-
ing at position x with a velocity of ξ at time t, τ is the relaxation time, f E is the equi-
librium distribution function approached by f within each collision. The moments of 
the distribution function yield the conservative flow variables via

A necessary prerequisite for the numerical evaluation of the moments is the discretiza-
tion of the velocity space. In present work, the three-point Gauss-Hermite quadrature 
is employed to determine the discrete particle velocities along each single dimension. 
In two dimension the discrete velocities can be derived from the tensor product of the 
single dimensional velocities, which reads

where ξ i is the ith discrete velocity and cs = 1/
√
3 is the model speed of sound. To fulfill 

the relation of Eq. (3) at the discrete level, the equilibrium DF f E in present research is 
evaluated by

where f E = f E0 , f
E
1 , · · · , f E8

⊤ represents the column vector constituted by the discrete 
equilibrium DFs, M is the transformation matrix defined as

(1a)
∂ρ

∂t
+ ∇ · (ρu) = 0,

(1b)
∂(ρu)

∂t
+∇ · (ρu⊗ u) = −∇p+ ∇

[

µ

(

∇u+ (∇u)T
)]

+ F s +G,

(2)∂f

∂t
+ ξ · ∇xf = � ≡ −

f − f E

τ
,

(3)ρ =
∫

fdξ =
∫

f Edξ , ρu =
∫

ξ fdξ =
∫

ξ f Edξ .

ξ i =
√

3c2s

[

0 1 0 − 1 0 1 − 1 − 1 1

0 0 1 0 − 1 1 1 − 1 − 1

]

,

(4)f E = M−1mE,
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and mE signifies the macroscopic equilibria:

Here α is a free parameter used to eliminate the nonisotropic effects of the scheme [26]. 
The relations between the conservative variables and the discrete DFs become

With the discretization of velocity space, the discrete velocity Boltzmann-BGK equation 
takes the following form:

To numerically solve Eq. (6), we first subdivide the spatial domain into a set of grid cells 
and integrate this equation over a certain cell, which yields

where Vc represents the integral cell centered at position xc , ∂Vc indicates the surface 
bounding the cell, and n represents the unit vector normal to the surface. Integrating 
Eq. (7) over a time step of length �t = tn+1 − tn yields

where |Vc| measures the volume of cell Vc , f ni  and �n
i  approximate the cell averages of Vc 

in such a way that 

F
n+1/2
i  measures the kinetic flux at the mid time tn +�t/2 by

M =

























1 1 1 1 1 1 1 1 1

−4 − 1 − 1 − 1 − 1 2 2 2 2

4 − 2 − 2 − 2 − 2 1 1 1 1

0 1 0 − 1 0 1 − 1 − 1 1

0 − 2 0 2 0 1 − 1 − 1 − 1

0 0 1 0 − 1 1 1 − 1 − 1

0 0 − 2 0 2 1 1 − 1 − 1

0 1 − 1 1 − 1 0 0 0 0

0 0 0 0 0 1 − 1 1 − 1

























,

mE = ρ

{

1, 3|u|2 − 2,α − 3|u|2,ux,−ux,uy,−uy,u
2
x − u2y ,uxuy

}⊤
.

(5)ρ =
∑

i

fi =
∑

i

f Ei , ρu =
∑

i

ξ ifi =
∑

i

ξ if
E
i .

(6)∂fi

∂t
+ ξ i · ∇xfi = �i ≡ −

fi − f Ei
τ

.

(7)
d

dt

∫

Vc

fi(x, t)dx +
∫

∂Vc

(ξ · n)fi(x, t)dS =
∫

Vc

�i(x, t)dx,

(8)f n+1
i − f ni +

�t

|Vc|
F
n+1/2
i =

�t

2

[

�n+1
i +�n

i

]

,

(9a)f ni =
1

|Vc|

∫

Vc

fi(x, tn)dx,

(9b)�n
i =

1

|Vc|

∫

Vc

�i(x, tn)dx,

(10)F
n+1/2
i =

∫

∂Vc

(

ξ i · n
)

fi(x, tn +�t/2)dS.
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Note that the midpoint rule is utilized to compute the time integral of the kinetic flux 
and trapezoidal rule is employed to evaluate the time integral of the collision term in 
Eq. (8). To obtain a fully explicit evolution equation, two auxiliary distribution functions 
are introduced:

Substituting Eq. (11) into Eq. (8), we have

which turns out to be fully explicit.
To evaluate the kinetic flux Fn+1/2

i  , the primitive distribution function fi(xf , tn+1/2) 
on cell interface is needed. To this end, we integrate Eq.  (6) along the characteristic 
line over a time step length of δt = �t/2:

Here the trapezoidal rule is once again employed to evaluate the time integral of colli-
sion term. To realize the explicit treatment of Eq. (13), another two auxiliary distribution 
functions are introduced as follows:

Eq. (13) then can be rearranged as

The cell-centered auxiliary distribution function f + can be constructed according to its 
definition:

The value of f +(xf − ξ iδt, tn) can be interpolated from the corresponding cell-cen-
tered distribution function [53]. For the face-based reconstruction scheme (FRS), 
f +(xf − ξ iδt, tn) can be evaluated by

For the cell-based reconstruction scheme (CRS), f +(xf − ξ iδt, tn) can be computed by

where xL and xR correspond respectively to the center positions of the two cells adjacent 
to the interface located at xf  . Once the value of f + is known, the primitive DF at cell 
interface can be updated by

(11)f̃i = fi −
�t

2
�i, f̃

+
i = fi +

�t

2
�i.

(12)f̃ n+1
i = f̃ +,n

i −
�t

|Vc|
F
n+1/2
i ,

(13)fi(xf , tn + δt)− fi(xf − ξ iδt, tn) =
δt

2

[

�i(xf , tn + δt)+�i(xf − ξ iδt, tn)
]

.

(14)f̄ = f −
δt

2
�, f̄ + = f +

δt

2
�.

(15)f̄i(xf , tn + δt) = f̄ +i (xf − ξ iδt, tn).

(16)f̄ + = f + δt

2
� = 2τ − δt

2τ
f + δt

2τ
f E.

(17)f +i (xf − ξ iδt, tn) = f +i (xf , tn)− ξ iδt · ∇f +i (xf , tn).

(18)f̄ +i (xf − ξ iδt) =
{

f̄ +i (xL)+ (xf − xL − ξ iδt) · ∇ f̄ +i (xL)+ 1

2
(xf − xL − ξ iδt)

2:∇2 f̄ +i (xL), ξ i · n ≤ 0,

f̄ +i (xR)+ (xf − xR − ξ iδt) · ∇ f̄ +i (xR)+ 1
2
(xf − xR − ξ iδt)

2:∇2 f̄ +i (xR), ξ i · n ≥ 0,
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Thereafter the kinetic flux Fn+1/2 can be evaluated according to Eq.  (10) and the aux-
iliary distribution function at time tn+1 can be updated via Eq.  (12). The cell-averaged 
primitive DF then can be obtained according to

To obtain the primitive DFs in Eq.  (19) and (20), the value of equilibrium DFs that 
depend on the conservative variables should be first determined via Eq.  (4). With the 
help of Eq. (5), the corresponding conservative variables can be evaluated by

on cell interfaces and by

at cell centers.
To date, the evolution process of DUGKS without considering force effects has been 

basically explained. To incorporate the influence of external forces, another discrete 
distribution function f Si  accounting for the force effects should be introduced:

To correctly recover the macroscopic equations, the moments of discrete force DF 
should obey

where F = F s + G is the external force in total. In present research the force DF f S is 
evaluated by

where f S =
{

f S0 , f
S
1 , · · · , f S8

}

 represents the column vector constituted by the discrete 
force DFs, M is the identical transformation matrix appeared in Eq. (4), and mS signifies 
the macroscopic force terms expressed as

To circumvent the force effects on the interface flux, the Strang-splitting scheme is 
employed to evaluate the force influences. With such a treatment, the force effects are 
incorporated before and after the DUGKS procedure in a way that 

(19)f = 2τ

2τ + δt
f̄ +

δt

2τ + δt
f E.

(20)f = 2τ

2τ +�t
f̃ +

�t

2τ +�t
f E.

(21)ρ =
∑

i

fi =
∑

i

f̄i, ρu =
∑

i

ξ ifi =
∑

i

ξ i f̄i

(22)ρ =
∑

i

fi =
∑

i

f̃i, ρu =
∑

i

ξ ifi =
∑

i

ξ i f̃i

(23)∂fi

∂t
+ ξ i · ∇xfi = �i ≡ −

fi − f Ei
τ

+ f Si .

(24)
∑

i

f Si = 0,
∑

i

ξ if
S
i = F ,

∑

i

ξ iξ if
S
i = uF + Fu,

(25)f S = M−1mS,

mS =
{

0, 6u · F ,−6u · F , Fx,−Fx, Fy,−Fy, 2(Fxux − Fyuy), Fxuy + Fyux
}

.
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As Eq.  (26b) remains identical to Eq.  (6), it can be solved by the DUGKS procedure 
addressed previously. Eq. (26a) and (26c) can be numerically solved by the Euler forward 
method:

The conservative variables should be accordingly updated via

2.3  Pseudopotential multiphase model

In the pseudopotential multiphase model, the interaction effects between/among different 
phases are mimicked by a volumetric force defined as

where ψ represents the interaction potential, G indicates the interaction strength, ω 
stands for the weights, x′i denotes the nearby position that is related to x by x′i = x + ξ iδ

′
t , 

among which ξ i is the ith discrete velocity and δ′t is the transporting time. A utilization of 
nine discrete velocity points leads to the following relation:

In fact, the role of expression 
N
∑

i=1

ω(|x′i − x|2)ψ(x′i)
(

x′i − x
)

 in Eq.  (29) is equivalent to 

evaluating the gradient of ψ through an isotropic finite-difference scheme [54]. A Taylor 
expansion of Eq. (29) gives

where δx = ξxδ
′
t = ξyδ

′
t = 1 measures the grid spacing. To analytically derive the pres-

sure tensor, Eq. (31) could be reformulated as [20]

(26a)
∂fi

∂t
=

1

2
f Si ,

(26b)∂fi

∂t
+ ξ i · ∇xfi = �i ≡ −

fi − f Ei
τ

,

(26c)
∂fi

∂t
=

1

2
f Si .

(27)f ∗i = f ni +
�t

2
f S,ni .

(28)ρ∗ = ρn,u∗ = un + �t

2

Fn

ρn
.

(29)F s = −Gψ(x)

N
∑

i=1

ω(|x′i − x|2)ψ(x′i)
(

x′i − x
)

,

(30)ω(1) = 1/3,ω(2) = 1/12,N = 8, δ′t = 1.

(31)F s = −Gδ2x

[

ψ∇ψ +
δ2x

6
∇
(

∇2ψ

)

]

+ O(∇5),

(32)F s = −
Gδ2x

2
∇ ·

(

ψ2
I

)

−
Gδ4x

6
∇ ·

[(

ψ∇ · ∇ψ +
1

2
∇ψ · ∇ψ

)

I −∇ψ∇ψ

]

+ O(∇5),
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where I represents the identity matrix. However, Sbragaglia et al. [21] demonstrate that 
the transformation of Eq. (31) into Eq. (32) does not necessarily guarantee uniqueness. 
As a matter of fact, Eq. (31) can be reformulated as

providing the prefactors satisfy

It can be identified that Eq.  (32) represents a special case of Eq.  (33) at 
a1 = −1, a2 = 0, a3 = 1/2, a4 = 1.

The continuum pressure tensor is defined as [26]

where cs stands for the model speed of sound and S represents the additional term intro-
duced from the discretization of DUGKS. Due to the reconstruction approaches utilized, 
the additional term S contributed from DUGKS lacks of isotropy. To balance the aniso-
tropic influences, a free parameter α has been introduced in Eq. (4). As the discretization 
approaches utilized in DUGKS appear to be complex, it is quite difficult to obtain the 
general expression of P . Nevertheless, the normal pressure Pn in such a condition could 
be similarly postulated as [55]

where n denotes the direction normal to the interface. The normal component of the 
pressure tensor Pn at the equilibrium state should be equal to the bulk pressure p0 [22]. 
The mechanical stability condition can then be obtained as [8]

where ψ ′ = dψ/dρ , ǫ = k1/k2 , p0 = p(ρl) = p(ρg ) denotes the bulk pressure and pEOS 
represents the non-ideal equation of state (EOS) in terms of the pseudopotential model:

Providing the coexistence densities ( ρl and ρg ) have been estimated by DUGKS, the 
value of the produced parameter ǫ can then be determined numerically [25]. To consider 
the effects of various non-ideal equations of state, He and Doolen [19] pointed out that 
the pseudopotential ψ should be evaluated as

(33)
F s =−

Gδ2x

2
∇ ·

(

ψ2I
)

−
Gδ4x

6
∇ · (a1∇ψ∇ψ + a2ψ∇∇ψ)

−
Gδ4x

6
∇ · (a3∇ψ · ∇ψ + a4ψ∇ · ∇ψ)I +O(∇5),

(34)







a1 + a2 + 2a3 = 0,

a1 + a4 = 0,

a2 + a4 = 1.

(35)∇ · P = ∇
(

ρc2s

)

− F s − S,

(36)Pn = ρRT +
Gδ2x

2
ψ2 +

Gδ4x

12

[

−k1

(

dψ

dx

)2

+ 2k2ψ
d2ψ

dx2

]

,

(37)
∫ ρl

ρg

(p0 − pEOS)
ψ ′

ψ1+ǫ
dρ = 0,

(38)pEOS = ρc2s +
Gδ2x

2
ψ2.
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where pEOS should be one of the non-ideal equations of state in the thermodynamic the-
ory. In present research, the dimensionless van der Waals equation of state (vdW-EOS) 
expressed as

is employed, with a = 9/392 and b = 2/21 . The critical density ρc and temperature Tc 
hold the value of 7/2 and 1/14 in such a condition [56]. With the incorporation of the 
dimensionless vdW-EOS, the pseudopotential ψ could be directly calculated through 
Eq. (39).

3  Numerical tests
The capacity of pseudopotential-based DUGKS is validated by three benchmark tests. 
Firstly, the fundamental capability to predict coexistence densities is verified by the flat 
interface test. Subsequently, the nonisotropic property is investigated by the quiescent 
droplet test and the isotropy-preserving parameter α is tuned to cancel out the noni-
sotropic effects. Finally, the spinodal decomposition test is conducted to examine its 
isotropy-preserving property in transient conditions. For steady tests, the computing 
process terminates when the L2-norm-based velocity error E(u) falls below a critical 
value e:

where u denotes the velocity field, tn−1000 indicates the moment 1000 time steps ahead 
of tn and e is given as 10−8 if not otherwise specified. The CFL number is fixed at 0.8 
across all the tests.

3.1  Flat interface

The flat interface problem serves as a fundamental benchmark for validating the basic 
capability of newly proposed multiphase models. Consider an infinitely long horizontal 
channel filled with binary fluids of different phases. The liquid resides in the middle half 
of the channel while the gas occupies the upper and bottom region. The computational 
domain is confined to a 16×256 rectangular region uniformly divided into Cartesian 
grids, where the grid spacing holds a fixed value of unity. Periodical boundary conditions 
are applied to all sides. The density field is initialized by

where ρl and ρg correspond to the liquid and gas densities, yL and yH represent the lower 
and upper bound of the fluid in liquid phase, and W denotes the interface thickness. Fig-
ure 1 presents the coexisting densities produced respectively by DUGKS and LBM at τ = 

(39)ψ =

√

2(pEOS − ρc2s )

Gδ2x
,

(40)pEOS =
ρT

1− bρ
− aρ2

(41)E(u) =

√

∑

x |u(x, tn)− u(x, tn−1000)|2
∑

x |u(x, tn)|2
< e,

(42)ρ(x, y) = ρg +
ρl − ρg

2

[

tanh
2(y− yL)

W
− tanh

2(y− yH )

W

]

,
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0.3, α = 1.0. It can be identified that the results provided by DUGKS agree well with the 
theoretical solutions obtained through the Maxwell equal-area law [27] while the results 
offered by LBM deviate significantly from the theoretical solutions. Moreover, DUGKS 
operates properly in conditions of low temperatures whereas LBM fails to work when 
Tr < 0.75 . The inferior results produced by the standard LBM could be attributed to the 
superfluous terms recovered in the momentum equation [56]. The stability superiority 
of DUGKS might result from the coupling of transport and collision process. The influ-
ences of isotropy-preserving parameter α on the coexisting densities are investigated and 
the corresponding results are presented in Fig. 2. Numerical results remain unchanged 
despite the varying parameter α . As the density distributions in the horizontal direction 
stay unaltered, which has no impact on the fluid behavior, it is reasonable to obtain iden-
tical results with varying α . The density profiles along the vertical direction produced by 
DUGKS at different temperatures are illustrated in Fig. 3. With the increasing tempera-
ture, the flat interface gets sharpened, which is due to the strong coupling of physical 
properties originating from the pseudopotential model [27]. The varying interface thick-
ness also suggests that W in Eq. (42) has no concrete meaning and remains useful only 
during the initialization process.

3.2  Quiescent droplet

The quiescent droplet provides another fundamental benchmark for validating the 
model’s capability. With this test, we specially investigated the isotropic property of 
pseudopotential-based DUGKS. Initially, a circular droplet is placed at the center of a 
L0×L0 square domain according to

Fig. 1 Coexisting curves produced by DUGKS and LBM, τ = 0.3 , α = 1.0
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where ρl and ρg correspond respectively to the liquid and gas density, (xc, yc) represents 
the center position of the square domain, and Rd denotes the droplet radius. The param-
eters in this test are set as L0 = 256 , Rd = 0.24L0 , W = 5 . The computing process ter-
minates once the L2-norm-based velocity error meets the relation defined by Eq.  (41). 
Figure  4 shows the density distribution at the initial moment. The ultimate density 
contours produced by DUGKS using different reconstruction schemes are illustrated 
in Fig.  5. The square droplet presented in Fig.  5a is obtained with the second-order 
face-based reconstruction scheme, i.e., the central-difference scheme [28]. The nearly 
circular droplet shown in Fig. 5b is produced by the second-order cell-based reconstruc-
tion scheme, also known as the upwind scheme [57]. As a matter of fact, it is Dr. Wang 
Peng [51] who first identified the nonisotropic property of the pseudopotential-based 
DUGKS. In the spring of 2018, Wang and Zhu [57] dropped in at NWPU and gave a brief 
presentation themed around DUGKS. During a casual conversation, we talked about the 
nonisotropic property of the pseudopotential-based DUGKS. Wang suggests that the 
upwind reconstruction approach, together with the Strang-splitting scheme, should be 
employed to obtain an isotropic interface. Following this idea, we conducted a few simu-
lations with the pseudopotential-based DUGKS. It turned out that although the noni-
sotropic problem could be relieved to some extent, the pseudopotential-based DUGKS 
still fails to produce a perfectly isotropic interface, which has been demonstrated by the 
interface profile presented in Fig. 5b. The droplet produced with a third-order accuracy 
of CRS is illustrated in Fig. 5c. It can be observed that employing a high-order upwind 

(43)ρ(x, y) =
ρl + ρg

2
−

ρl − ρg

2
tanh





2

�

�

|x − xc|2 + |y− yc|2 − Rd

�

W



,

Fig. 2 Coexisting curves produced by DUGKS with varying values of isotropy-preserving parameter α , 
τ = 0.3



Page 13 of 26Yang et al. Advances in Aerodynamics             (2022) 4:32 

reconstruction scheme contributes little to the elimination of nonisotropic deficiency. 
Through a third-order Chapman-Enskog analysis, Huang et al. [26] identified the non-
isotropic and isotropic terms in the pseudopotential model. Numerical results proved 
that the free parameter α played a key role in preserving the isotropic property. With 
this proof, we introduced the isotropy-preserving parameter α in the calculation of the 
equilibrium distribution function. By adjusting α to an appropriate value, a perfectly iso-
tropic interface can be produced and maintained. In the condition of τ = 0.3, Tr = 0.95, 
the corresponding value of α is 1.304. The circular droplet produced is illustrated in 
Fig. 5d. In practical computations, the density criterion and the velocity criterion have 
been compared to identify the optimal criterion for the determination of α . The density 
criterion compares the final density field with the initial density field and recognizes the 
value of α that creates the minimum density difference as the most appropriate choice. 
The velocity criterion considers the value of α that generates the minimum L2 norm of 
velocity as the most appropriate choice. An optimal criterion should help maintain the 
quiescent interface as isotropic as possible. The isotropic level of an interface is assessed 
by comparing the horizontal density profile with the diagonal density profile produced at 
a final moment. Through a series of comparisons, it has been identified that the veloc-
ity criterion best determines the value of α . Figure  6 illustrates the density contour 

Fig. 3 Density profile produced by DUGKS with varying temperatures, τ = 0.3
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produced by DUGKS on different criteria. It can be observed that the interface gener-
ated under the density criterion suffers from a nonisotropic problem while the interface 
created under the velocity criterion maintains excellent isotropy. Numerical experiments 
also revealed that the appropriate value of α varies along with changes in the relaxation 
time τ or the reduced temperature Tr . Through repeated calibration, we ascertained the 
specific values of α for preserving an isotropic interface. Figure 7 illustrates the ternary 
relation diagram for α , τ and Tr . Table 1 presents the detailed data. With this informa-
tion, it is now possible to interpolate the specific value of α for a wide range of Tr and 
τ . Considering the situation of τ = 0.63 and Tr = 0.72 , the most appropriate value of α 
determined by numerical simulations is 1.025 while the interpolated value of α in such 
a condition is 1.02494, which is pretty close to the calibrated value. Figure 8 compares 
the density profiles extracted from various directions. The density profile along the hori-
zontal direction coincides completely with the profile along the vertical direction. The 
profile along the diagonal direction deviates slightly from them, which could be partially 
attributed to the additional error introduced during data extraction. Nevertheless, the 
nearly indistinguishable deviation demonstrates the well-maintained isotropic property 
of the interface. It is worth mentioning that we failed to find an analytical expression to 
describe the mapping relation between τ , Tr , and α , which might be beneficial for the 
application of pseudopotential-based DUGKS.

Fig. 4 Distribution of density field at initial moment, τ = 0.3 , Tr = 0.95
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Fig. 5 Density contours produced by DUGKS employing different reconstruction schemes, τ = 0.3 , Tr = 0.95

Fig. 6 Density contours produced by DUGKS on different criteria, τ = 0.75 , Tr = 0.95
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To quantitatively examine the accuracy of the  current scheme, we further vali-
dated the Laplace’s law by simulating a number of quiescent droplets with varying 
radii. Figure 9 illustrates the relation between the pressure jump �P and the recipro-
cal of radius. Obvious linear relation could be identified from the results produced 
by DUGKS with different temperatures, which is in accordance with the Laplace’s 
law: �P = σ/Rd . Due to the strong coupling effects of the pseudopotential model, it 
is generally difficult to determine the theoretical value of surface tension coefficient 

Table 1 Variation of isotropy-preserving parameter α with regard to relaxation time τ and reduced 
temperature Tr

τ 0.3 0.33 0.36 0.4 0.45 0.5 0.6 0.7 0.8 0.9 1.0

Tr0.95 1.304 1.234 1.186 1.141 1.105 1.081 1.052 1.036 1.027 1.02 1.016

Tr0.9 1.308 1.238 1.189 1.144 1.107 1.082 1.053 1.036 1.026 1.019 1.014

Tr0.85 1.309 1.238 1.188 1.143 1.105 1.08 1.05 1.033 1.022 1.015 1.01

Tr0.8 1.305 1.234 1.185 1.139 1.101 1.076 1.045 1.027 1.016 1.009 1.004

Tr0.75 1.298 1.227 1.177 1.131 1.094 1.068 1.037 1.020 1.009 1.001 0.996

Tr0.7 1.286 1.215 1.166 1.121 1.083 1.059 1.027 1.010 0.999 0.992 0.987

Tr0.65 1.269 1.200 1.151 1.107 1.071 1.045 1.016 0.999 0.989 0.982 0.977

Tr0.6 1.247 1.179 1.132 1.089 1.054 1.030 1.002 0.986 0.977 0.971 0.967

Fig. 7 Variation of isotropy-preserving parameter α with regard to relaxation time τ and reduced 
temperature Tr
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σ . For the same reason, the droplet radius obtained at the final moment could deviate 
slightly from the initialization value. Nevertheless, the linear relation reflected by the 
numerical results could surely demonstrate the fundamental capability of pseudopo-
tential-based DUGKS.

Fig. 8 Density profiles along horizontal direction (Y = 128), vertical direction (X = 128), and diagonal 
direction, τ = 0.63 , Tr = 0.72 , α = 1.025

Fig. 9 Validation of Laplace’s law, τ = 0.3
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3.3  Spinodal decomposition

The previous two benchmark tests belong to steady-state problems. To examine the 
capacity of DUGKS in dealing with transient problems, spinodal decomposition tests 
are conducted. Spinodal decomposition, also referred to as phase separation, occurs 
when a homogeneous mixture contains compositional fluctuations. The computa-
tional region is a L0×L0 square domain, with the side length L0 set to 512. The relaxa-
tion time τ is fixed at 0.3 and the reduced temperature Tr is given as 0.8. The density 
field is initialized according to

where random(0, 1) generates the fluctuations by returning a random number between 
0 and 1. Usually the evolution time should be scaled by a reference time relating to the 
surface tension coefficient σ . Due to the strong coupling effects of the pseudopoten-
tial model, it is difficult to determine the reference time. Here the simulation time t is 
directly used to indicate the time evolution. Figures 10, 11, 12, 13, 14, 15, 16, 17, 18 and 
19 illustrate the comparative snapshots of the phase separation process produced by 

(44)ρ(x, y) = (ρl + ρg )/3+ random(0, 1)/100,

Fig. 10 Snapshots of the spinodal decomposition process, τ = 0.3 , Tr = 0.8 , t = 80

Fig. 11 Snapshots of the spinodal decomposition process, τ = 0.3 , Tr = 0.8 , t = 400
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DUGKS at τ = 0.3 , Tr = 0.8 . The complete separation process is successfully predicted 
and no instability phenomenon has ever been detected. In the early stages depicted by 
Fig. 10, the tiny fluctuations evolve into local inhomogeneities that initialize the phase 

Fig. 12 Snapshots of the spinodal decomposition process, τ = 0.3 , Tr = 0.8 , t = 800

Fig. 13 Snapshots of the spinodal decomposition process, τ = 0.3 , Tr = 0.8 , t = 4000

Fig. 14 Snapshots of the spinodal decomposition process, τ = 0.3 , Tr = 0.8 , t = 8000
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separation. As the system evolves, the inhomogeneities induce the nucleation of heavy 
liquid, which can be observed in Fig.  11. With the continual development, interfaces 
separating different phases can be clearly detected in Fig.  12. Then the small droplets 

Fig. 15 Snapshots of the spinodal decomposition process, τ = 0.3 , Tr = 0.8 , t = 20000

Fig. 16 Snapshots of the spinodal decomposition process, τ = 0.3 , Tr = 0.8 , t = 40000

Fig. 17 Snapshots of the spinodal decomposition process, τ = 0.3 , Tr = 0.8 , t = 80000
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keep coalescing into large droplets. Eventually, a single quiescent droplet illustrated in 
Fig. 19 is formed. At the final moment, the interface produced with α = 1.035 appears 
to be isotropic while the interface produced with α = 1.0 suffers from a lack of isot-
ropy. The same phenomenon can also be detected in the process of droplet coalescence 
depicted by Figs. 14, 15, 16, 17 and 18. This fact demonstrates the effectiveness of the 
isotropy-preserving property in a transient condition. The separation process produced 
with α = 1.0 deviates slightly from the corresponding process built with α = 1.305 , 
which could be partially attributed to the differences in initial fluctuations.

4  Conclusion
A pseudopotential-based discrete unified gas-kinetic scheme for multiphase fluid flows 
is proposed by coupling the pseudopotential model into the Strang-splitting DUGKS. 
Due to the strict requirements of the scheme isotropy by the pseudopotential model, a 
direct coupling of pseudopotential model into DUGKS could not maintain an isotropic 
interface. To cancel out the nonisotropic terms introduced during the flux reconstruc-
tion process, the equilibrium distribution functions are expressed in a moment-based 
form and an isotropy-preserving parameter α is introduced. By adjusting this parameter 

Fig. 18 Snapshots of the spinodal decomposition process, τ = 0.3 , Tr = 0.8 , t = 200000

Fig. 19 Snapshots of the spinodal decomposition process, τ = 0.3 , Tr = 0.8 , t = 400000
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to the appropriate value, pseudopotential-based DUGKS managed to produce and main-
tain an isotropic interface. With a sequence of numerical experiments, we calibrate the 
value of α to facilitate DUGKS simulating isotropic interfaces in a wide range of con-
ditions. Results produced in the spinodal decomposition tests further demonstrate the 
effectiveness of its isotropy-preserving property in the transient state. Comparative 
results of coexistence curves also proved the superior stability of DUGKS over that of 
LBM. The fundamental capacity of pseudopotential-based DUGKS has been demon-
strated by the basic benchmark tests. Further investigations are needed to explore its 
capacity in specific fields.

5  Appendix
5.1  The nonisotropic property of DUGKS

The nonisotropic property caused by the kinetic flux reconstruction of DUGKS is 
explained. The discretized Boltzmann-BGK equation actually solved via DUGKS reads

where |Vc| measures the volume of cell Vc centered at xc , N indicates the total number 
of surface elements bounding cell Vc , �Sl represents the area of lth surface element and 
nl denotes the unit vector normal to the surface element �Sl . The auxiliary distribution 
function f̃ + could be expanded as

which denotes a conservative collision process. The primitive distribution function 
f n+1/2 on cell surface is evaluated via Eq. (19), which can be reformulated as the follow-
ing collision process:

With this information, the flux term in Eq. (45) could be expanded as

Multiplying Eq. (48) by ξ i and taking summation over i, we can obtain the following dis-
crete momentum equation:

where the subscript c denotes the cell-averaged variable located at cell center xc , the sub-
script l denotes the faced-averaged variable located at face center xl and π l represents 
the viscous stress recovered from the nonequilibrium part. Considering the summation 
of force distributions in Eq. (26), the discrete momentum equation becomes

(45)f̃ n+1
i = f̃ +,n

i − �t

|Vc|

N
∑

l

(

ξ i · nl
)

f
n+1/2
i �Sl ,

(46)f̃ +,n
i = f̃ ni − 2�t

2τ +�t

(

f̃ ni − f E,ni

)

,

(47)f
n+1/2
i = f̄

n+1/2
i −

δt

2τ + δt

(

f̄
n+1/2
i − f

E,n+1/2
i

)

.

(48)f̃ n+1
i = f̃ +,n

i − �t
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(
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)

[
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)
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�Sl .

(49)[ρcuc]
n+1 = [ρcuc]
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l

[

ρlulul · nl + c2s ρlnl − π l · nl
]

�Sl ,
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where F c denotes the cell-averaged volumetric force.
Physically, the velocity field should be zero for a quiescent droplet system at the 

equilibrium state, at which Eq. (50) could be simplified to

Eq. (51) can be viewed as the discretization of the following equation:

which corresponds exactly to the continuum pressure tensor defined by Eq.  (35). As 
Eq.  (52) is practically solved by Eq.  (51), an addition term S will be introduced due to 
the discretization. According to Eq. (21), the face density ρl is obtained from the zeroth 
moment of f̄  , which in turn is evaluated by Eq. (15). For a quiescent droplet system at 
the equilibrium state, both f̄  and f̄ + would be reduced to f E . Taking the zero veloc-
ity condition into consideration, the face density ρl can be viewed as being directly 
reconstructed from the adjacent cell densities via the corresponding scheme defined by 
Eq. (17) or (18).

For the face-based reconstruction scheme utilized in current research, Eq.  (51) 
turns into

where ρcl indicates the averaged density of cell Vcl that is adjacent to surface element �Sl . 
Mindful that �Sl = 1 and |Vc| = 1 for the Cartesian mesh, Eq. (53) can be further simpli-
fied as

where �l = (0,�x) or (�x, 0) . Apparently, the gradient of density is computed by a 
central difference scheme which lacks the property of isotropy. Hence, nonisotropic 
interface will be produced by DUGKS employing the central difference face-based 
reconstruction scheme.

For the cell-based reconstruction scheme, the face density ρl is reconstructed by 
replacing the distribution function f̄ + in Eq. (18) with the equilibrium distribution f E 
and taking the summation of i. For convenience, the derivative terms are packed into 
O(�x) . The face density ρl then can be estimated by

(50)

[ρcuc]
n+1 = [ρcuc]

n − �t

|Vc|

N
∑

l

[

ρlulul · nl + c2s ρlnl − π l · nl
]
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2
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,

(51)�tF c −
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(52)F − ∇
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(54)�tF c = �tc2s
ρ(xc +�l)− ρ(xc −�l)

2
,
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Substituting the above equation into Eq.  (51) will eventually result in Eq.  (54), which 
indicates a nonisotropic discretization of ∇ρ . Hence, nonisotropic interface will be simi-
larly generated by DUGKS employing the cell-based reconstruction scheme.

5.2  The lattice Boltzmann method

The evolution equation solved by LB method reads

where

The equilibrium distribution function f E is evaluated via Eq. (4). The force distribution 
function f S is evaluated by Eq. (25). The conservative variables are calculated by

where Fs denotes the interaction force defined by Eq. (29). The time step �t has an iden-
tical value of the grid spacing �x , which remains 1.0 in current research. The parameter 
α also holds a constant value of 1.0.
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