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Abstract 

Modeling high-dimensional aerodynamic data presents a significant challenge in 
aero-loads prediction, aerodynamic shape optimization, flight control, and simulation. 
This article develops a machine learning approach based on a convolutional neural 
network (CNN) to address this problem. A CNN can implicitly distill features underlying 
the data. The number of parameters to be trained can be significantly reduced because 
of its local connectivity and parameter-sharing properties, which is favorable for solving 
high-dimensional problems in which the training cost can be prohibitive. A hypersonic 
wing similar to the Sanger aerospace plane carrier wing is employed as the test case 
to demonstrate the CNN-based modeling method. First, the wing is parameterized by 
the free-form deformation method, and 109 variables incorporating flight status and 
aerodynamic shape variables are defined as model input. Second, more than 7000 
sample points generated by the Latin hypercube sampling method are evaluated by 
performing computational fluid dynamics simulations using a Reynolds-averaged 
Navier–Stokes flow solver to obtain an aerodynamic database, and a CNN model is 
built based on the observed data. Finally, the well-trained CNN model considering 
both flight status and shape variables is applied to aerodynamic shape optimization to 
demonstrate its capability to achieve fast optimization at multiple flight statuses.

Keywords:  Aerodynamic data modeling, High-dimensional problem, Machine 
learning, Convolutional neural network, Computational fluid dynamics

1  Introduction
Aircraft aerodynamic data modeling is conducted to establish an explicit or implicit 
relationship between input variables and output responses through a trained physics-
informed or data-driven model. It provides a rapid evaluation and prediction of aero-
dynamic characteristics for an aircraft instead of conducting flight tests, wind tunnel 
experiments, or numerical simulations such as computational fluid dynamics (CFD).

Although sufficient samples are invariably required to build an adequate model with 
respect to the independent variables, such as flight status variables (or aircraft shape var-
iables) and corresponding aerodynamic characteristics, it still can significantly reduce 
the cost of building a database covering the entire flight envelope compared with these 
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traditional approaches. The increase in the number of aerodynamic modeling inde-
pendent variables resulting from the need for more high-dimensional designs leads to 
increased sample points and training costs to obtain desired model accuracy.

Generally, aerodynamic modeling methods can be divided into physics-informed 
modeling and data-driven modeling methods. A physics-informed model’s physical 
laws or flow mechanisms determine its structure or terms, and the mapping between 
the input variables and output aerodynamic functions can be approximated from limited 
data. Physics-informed models include aerodynamic derivative models [1], linear incre-
mental models [2], linear superposition aerodynamic models [3, 4], triangular series 
models [5, 6], and reduced-order models (ROM) [7]. These models are physically inter-
pretable because they are closely related to the aerodynamic configuration. However, the 
accuracy of a physics-informed model is frequently insufficient, especially when the lin-
ear hypothesis at small angles of attack or control surface deflections is no longer valid. 
By contrast, data-driven models can achieve higher accuracy in fitting linear and non-
linear relationships between input variables and their corresponding responses when 
the model parameters are well-tuned. Data-driven models are represented by machine 
learning (ML) models, such as kriging [8–11], radial basis function (RBF) neural net-
works [12], support vector machine (SVM) [13], and artificial neural networks (ANNs) 
[14–20].

Machine learning approaches have recently been increasingly applied to aerodynamic 
modeling with the rapid development of data science and artificial intelligence tech-
niques [21, 22]. Bouhlel [23] proposed a modified Sobolev training for an artificial neural 
network (mSANN) to model airfoil aerodynamic force coefficients in the subsonic and 
transonic regimes. About 42,000 training sample points and 22,000 validation sample 
points, obtained by solving the Reynolds-averaged Navier–Stokes (RANS) equations 
with different shapes parameterized by 14 modes and flight statuses incorporating dif-
ferent Mach numbers and angles of attack, were used.

Du [20] adopted a combination of a multi-layer perceptron (MLP), a recurrent neural 
network (RNN), and mixture of experts (MoE) to predict airfoil lift and drag coefficients 
for various shapes defined by 26 B-spline curve variables and two flight status variables. 
Compared with airfoil aerodynamic modeling, more design variables are required for 
wings or aircraft. Secco [24] used an MLP to predict the lift and drag coefficients of a 
wing–fuselage aircraft configuration with different wing planar variables, shape varia-
bles in three airfoil profiles (10 variables describe each airfoil profile), and flight statuses, 
totaling 40 input variables.

Barnhart [25] proposed several ML methods to predict the lift and pitching moment 
coefficient for a blown wing configuration with 20 design variables. Karali [26] used an 
MLP model trained by 94,500 samples that can predict the aerodynamic characteristics 
of unmanned aerial vehicle (UAV) configurations with 22 input variables (21 geometric 
variables and the angle of attack). Li [27] chose 60 design variables, including the Mach 
number, altitude, angle of attack, seven twist angles, and 50 wing modes. The model was 
trained by 135,108 samples and further verified in multiple single-point, multi-point, 
and multi-objective wing design optimization problems.

In terms of combining the meta-modeling of CFD and ML techniques, most of the 
existing interdisciplinary work employs the learning architecture belonging to the 
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multi-layer perceptron category. The trade-off between the size and learning capabil-
ity of standard MLP is highly quantified, with more complex problems requiring larger 
scale data and more complex network structures, yielding wasteful connectivity and a 
high tendency to overfitting. It is noted that no more than 60 independent input vari-
ables are introduced into existing aerodynamic modeling using an MLP, limiting more 
refined designs.

Convolutional neural networks have rapidly replaced standard MLP techniques in 
many challenging ML tasks (e.g., image recognition [28, 29]) because of their local con-
nectivity and parameter-sharing scheme. Aerodynamic modeling research using airfoil 
images as input shows that it is advantageous for high-dimensional aerodynamic mod-
eling. Thuerey [30] used a CNN to predict the airfoil flow fields for different Reynolds 
numbers ranging from 5 × 105 to 5 × 106 and angles of attack ranging from -22.5ºto 22.5º, 
comparing their results with those calculated from the RANS equations. The prediction 
error of pressure and velocity contours was less than 3% when the number of training 
sample points was 12,800.

Zhang [19] proposed a CNN-based prediction method for airfoil lift coefficients for 
various shapes at multiple free-stream Mach numbers, Reynolds numbers, and angles 
of attack. After data augmentation, about 80,000 sample points of the airfoil coordinates 
were fed to a CNN instead of shape variables from parameterization. Yu [31] proposed a 
feature-enhanced image approach to perform aerodynamic modeling of an SC1095 air-
foil with a CNN trained with 11,550 pairs of normal input/output training data. Chen 
[32] also adopted a graphical prediction method for multiple airfoil aerodynamic coef-
ficients based on CNN trained by 3360 samples and tested on 840 samples. CNNs have 
also been used to predict the aerodynamic characteristics of iced airfoils. He [33] pro-
posed a prediction method for the aerodynamic characteristics of iced airfoils based 
on a CNN, using 11,200 training samples to realize rapid prediction from ice images to 
aerodynamic characteristics with prediction errors below 8%. The relevant aerodynamic 
modeling studies using ML-based methods for aerodynamic coefficient and flow field 
prediction are listed in Table 1.

It is noted that most aerodynamic modeling methods using CNNs adopt the idea of 
using airfoil graphics as input, which is limited to processing two-dimensional structured 

Table 1  Statistics of some related studies

Reference Aerodynamic shape Number of independent variables Model

Bouhlel [23] Airfoil 16 mSANN

Du [20] Airfoil 28 MLP

Secco [24] Aircraft 40 MLP

Barnhart [25] Wing 20 MLP

Karali [26] Aircraft 22 MLP

Li [27] Wing 60 MLP

Thuerey [30] Airfoil Pixels of airfoil image CNN

Zhang [19] Airfoil CNN

Yu [31] Airfoil CNN

Chen [32] Airfoil CNN

He [33] Airfoil CNN



Page 4 of 31Zan et al. Advances in Aerodynamics            (2022) 4:39 

image data. For the three-dimensional aerodynamic shape, there is no research on mod-
eling considering more than 100 parameterized independent variables, motivating the 
research described in this article.

The purpose of this study is to develop a CNN-based method for high-dimensional 
aerodynamic modeling to alleviate the “curse of dimensionality” [34] and apply it to 
surrogate-based aerodynamic shape optimization [35–37]. The convolution operation 
implicitly extracts feature information underlying the aerodynamic data and slightly 
squeezes the tensor’s dimensionality. Usually, pooling layers are added after the convo-
lutional layers to further reduce the number of neural network parameters (weights and 
biases) to be trained. With the assistance of local connectivity and parameter sharing, 
CNNs have better resistance to overfitting.

The remainder of this article is organized as follows. Section  2  presents a detailed 
introduction to multi-layer perceptrons and convolutional neural networks. Then, the 
CNN-based aerodynamic data modeling process is described in Section 3. In Section 4, 
a well-trained CNN is built by investigating the influence of the hyperparameters and 
applying it to fast aerodynamic shape optimization for a wing. Concluding remarks are 
provided in Section 5.

2 � Fundamentals of convolutional neural networks
A convolutional neural network (CNN) is a supervised deep learning algorithm devel-
oped based on the multi-layer perceptron (MLP), and its basic theory is outlined in this 
section.

2.1 � Multi‑layer perceptron

The MLP is a machine learning model known as a fully-connected feedforward neural 
network. The typical MLP, shown in Fig. 1, receives an input (a single vector) and trans-
forms it through a series of hidden layers. Each hidden layer consists of a set of neurons, 
where each neuron is fully connected to all neurons in the previous layer and where neu-
rons in a single layer function independently and do not share any connections.

For the forward propagation of an MLP, the output of the kth layer, H (k) , can be 
expressed as follows:

Fig. 1  Typical multi-layer perceptron
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where w(k)
i,j  is a scalar of weights to be determined between the ith neuron on the kth layer 

and the jth neuron on the previous layer, x(k−1)
j  is the input of this layer, i.e., the output of the 

jth neuron on the k − 1 layer, and b(k)i  denotes a bias scalar of the ith neuron on the kth layer.

2.2 � Convolutional neural network

A CNN is a type of ANN specifically designed for large-scale structured data such as 
images. Its structure makes the implementation more efficient and significantly reduces 
the number of parameters in the network through convolution and pooling operations 
[38, 39]. The CNN architecture mainly consists of convolutional, pooling, and fully-con-
nected layers. A schematic of a typical CNN architecture for handwritten digit recogni-
tion is shown in Fig. 2.

Unlike a fully-connected neural network, the number of a CNN’s free parameters 
describing their shared weights does not depend on the input dimensionality, which avoids 
the pressure caused by the surge of high-dimensional input parameters in a neural net-
work. The following section focuses on the convolutional and pooling layers. The structure 
of the fully-connected layer is consistent with that of an MLP mentioned above.

Inspired by the conventional two-dimensional CNN, we propose a modified structure 
(Fig. 3) that takes the one-dimensional tensor for parameterized variables. These vari-
ables taken as model inputs include shape variables (defined by the free-form deforma-
tion method, class-function shape-function transformation, and related methods), flight 
status variables (such as Mach number, angle of attack, Reynolds number, and flight alti-
tude), and wing control surface deflection variables. The outputs are the predicted aero-
dynamic characteristics such as, CL , ĈD and ĈM.

2.2.1 � Convolutional layer

The convolution layer processes the input data using a convolution filter and distills the 
local and global information. If two-dimensional input data are taken as the input of a 
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Fig. 2  Conventional CNN architecture applied to a handwritten digit recognition task
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convolution layer (I with coordinates (m,n)), the convolution filter is a two-dimensional 
matrix (K), and the output data is a two-dimensional matrix S with coordinates (i,j). 
Therefore, the convolution process can be expressed by the following formula:

Unlike the full connectivity of an MLP, only the dynamic connection between the con-
volutional filters and the neurons covered by the receptive field is established, signifi-
cantly reducing the number of parameters to be trained in the CNN and contributing to 
the alleviation of overfitting.

2.2.2 � Pooling layer

It is common to periodically insert a pooling layer between successive convolutional 
layers in a CNN architecture. A pooling layer’s function is to progressively reduce the 
representation’s spatial size to reduce the number of parameters and computations in 
the network and control overfitting [40, 41]. Common pooling operations are maximum 
pooling and average pooling. The pooling layer keeps the maximum or average value in 
the pooling filter’s receptive field and transfers it to the next layer while discarding the 
other values and moving the filter with a given stride to the next local region to perform 
the same operation.

2.2.3 � Fully‑connected layer

The last pooling layer is usually followed by several fully-connected layers whose struc-
ture is the same as the MLP. The depth and width of the fully-connected layers are 
defined according to the problem’s complexity and the data size.

3 � CNN‑based aerodynamic data modeling method
The steps of the aerodynamic data modeling method using CNN, shown in Fig. 4, can be 
described as follows:

(2)S
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Fig. 3  Modified CNN architecture for aerodynamic data modeling
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a)	 Parameterization and design of experiments (DoE): Specify the parameter space by 
defining the input variables and their range. Generate samples based on DoE theory.

b)	 Mesh generation and CFD simulation: Set up the flow field computational block and 
meshing. Obtain the aerodynamic data at the sample points by conducting CFD sim-
ulations.

c)	 Establishment of aerodynamic database preparation: Organize the design space and 
its corresponding aerodynamic characteristics into a database.

d)	 Model training: Update model parameters using an optimization algorithm itera-
tively.

e)	 Optimum prediction: Output the optimum prediction if achieving the required accu-
racy. Otherwise, refine the model through sample augmentation and hyperparameter 
adjustment.

Sufficient samples are required to build a data-driven model with reasonable accuracy. 
To obtain enough samples to train the model, we use CFD simulations to compute the 
aerodynamic force coefficients, such as lift coefficient, drag coefficient, and pitching 
moment coefficient, corresponding to different flight statuses (with a given range for the 
free-stream Mach number and angle of attack), and different shapes described by the 
wing planar variables and profile variables.

The Sanger aerospace plane carrier wing (the aircraft’s configuration is shown in 
Fig. 7) is employed as a test case to validate the prediction capability of the CNN model. 
The following sections detail the five procedures for obtaining the aerodynamic data and 
building the CNN.

3.1 � Validation of RANS flow solver

The flow solver must be validated before using the CFD simulation to obtain aerody-
namic data. The RANS solver is validated by simulating the hypersonic flow over the 

Fig. 4  Aerodynamic data modeling flowchart
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FDL-5A configuration. An AUSM (advection upstream splitting method) scheme is 
used for the spatial discretization, and a k-ω SST turbulence model is adopted for tur-
bulence closure. An image showing the unstructured computational mesh is provided 
in Fig. 5, and the number of computational cells in the mesh is 0.48 million.

Fig. 5  Sketch of the computational mesh for the FDL-5A configuration

Fig. 6  Comparison of computed force coefficients with experimental data for the FDL-5A configuration
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The hypersonic flow over the FDL-5A is simulated at Ma = 7.98, Re = 3.832 × 106. Fig-
ure 6 compares the computed force coefficients with the corresponding experimental 
data. The lift, drag, and pitch moment coefficients accurately match the experimental 
data at different angles of attack. Although the calculated Mach number for the flow 
solver verified here is 7.98, above that of data for aerodynamic modeling, they are both 
in the hypersonic regime. Consequently, it makes sense to validate the flow solver.

3.2 � Parameterization

The wing is parameterized into 100 control point variables for five profiles at spanwise 
locations by the free-form deformation (FFD) method and planar shape variables for 
seven wing configuration variables. As shown in Fig. 7, five wing profiles are parameter-
ized by the two-dimensional FFD method. New wings are obtained by independently 
perturbing the planar shape variables and the FFD control point variables, and the five 
perturbed wing profiles are assembled on the corresponding spanwise locations. Thus, 
the FFD control point variables are decoupled from the planar shape variables.

Figure 8 shows the seven design variables used to parameterize the planar shape of the wing. 
These design variables are the root chord, leading-edge sweep angle of the inner wing segment, 
leading-edge sweep angle of the outer wing segment, trailing-edge sweep angle of the inner wing 
segment, trailing-edge sweep angle of the outer wing segment, span of the inner wing segment, 
and wingspan.

In total, there are 107 variables describing this configuration and two flight status vari-
ables (free-stream Mach number and angle of attack). The boundaries of these varia-
ble values are presented in Table 2. In particular, the 100 wing profile variables (Index ϵ 

Fig. 7  Schematics of FFD control points in five wing profiles of the Sanger aerospace plane carrier wing

Fig. 8  Schematic of parameterization for the planar shape of the Sanger aerospace plane carrier wing
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[10,109]) represent the Z-coordinates of the FFD control points, varying from -10% to 
10% on the benchmark of the wing.

3.3 � Design of experiments

Latin hypercube sampling (LHS) is used as the design of experiments (DoE) method to 
establish the distribution of input variables. LHS is a method of approximate random 
sampling from a multivariate parameter distribution belonging to hierarchical sampling 
technology and is often used in DoE. Samples xij obtained using the LHS method can be 
expressed as follows:

where i denotes the ith sample, j denotes the jth design variable, U denotes a random 
number in [0,1], and πj denotes a random permutation in {0, 1,…, N-1}. An example in 
which the LHS method selects 20 sample points in a DoE problem of two-dimensional 
input is shown in Fig. 9.

3.4 � Mesh generation and CFD simulation

This work uses the mesh reconstruction method to generate meshes for different shapes. 
A mesh independence study [42, 43] is performed to ensure sample data accuracy. As 
shown in Figs. 10 and 11, three meshes are generated: coarse, medium, and fine meshes 
having 0.41 million, 1.34 million, and 2.86 million cells, respectively. The results for the 
three meshes are in good agreement.

The variation in force coefficients with mesh size is shown in Fig. 12. The lift coefficient, 
drag coefficient and moment coefficient calculated by the coarse mesh differ from those cal-
culated by the fine mesh by 0.00016, 1 count (1 count = 0.0001) and 0.000012, respectively.

(3)xij =
π i
j+Ui

j

N , 1 ≤ j ≤ d, 1 ≤ i ≤ N ,

Table 2  Upper and lower boundaries of the input variables for the CNN

Type Variable Index Lower boundary Upper boundary

Flight status Angle of attack 1 0° 5°

Mach number 2 5 6

Wing planar Root chord 3 900 1100

Span of the inner wing segment 4 59.5854 72.8266

Wing span 5 205.083 250.657

Leading edge sweep angle of the 
inner wing segment

6 80.9° 85.1°

Leading edge sweep angle of the 
outer wing segment

7 18.4° 73.7°

Trailing edge sweep angle of the 
inner wing segment

8 4.5° 5.5°

Trailing edge sweep angle of the 
outer wing segment

9 4.5° 5.5°

Wing profile FFD control points in profile 1 10–29 Z-coordinates varying from -10% to + 10% on 
the baselineFFD control points in profile 2 30–49

FFD control points in profile 3 50–69

FFD control points in profile 4 70–89

FFD control points in profile 5 90–109
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The coarse mesh is chosen (Fig. 13) to build the aerodynamic dataset at a minimal com-
putational cost. The same topology and mesh parameters are used for all sample points 
to keep the physical problem consistent. CFD simulations are conducted using the RANS 
equations, and a two-equation k-ω SST turbulence model is adopted for turbulence closure. 
An aerodynamic dataset consisting of 7431 sample points is constructed.

3.5 � CNN Training

The CNN network weights and biases are optimized using the backpropagation algo-
rithm [44]. For the regression problem, the mean square error (MSE) loss function of the 
model is expressed as:

(4)L =
1

N

N∑

i=1

(
yi − ŷi

)2
,

Fig. 9  Schematic of 20 sample points selected by Latin hypercube sampling

Fig. 10  The surfaces of the coarse (left), medium (middle), and fine (right) meshes
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where N denotes the number of sample points in the training dataset, yi is the numeri-
cal simulation value calculated by the CFD simulation, and ŷi denotes the prediction 
value.

The dataset is divided into training and test datasets in a 19:1 ratio. The reason why 
the validation dataset is not used is that this article does not use techniques such as 

Fig. 11  Comparison of aerodynamic force coefficients calculated using the three meshes

Fig. 12  Variation of the force coefficients with the mesh size
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early stopping and dynamic learning rate adjustment. Hence, there are 7059 wing sam-
ple points used to tune the parameters of the network and 372 sample points used to 
test the predicted accuracy of the CNN. The Adam [45] method optimizes the model 
to approximate the input data’s underlying mapping. The initial learning rate is set at 
0.0001, and the initial batch size is set to 128. The training procedure is performed on a 
GPU (NVIDIA RTX 3080).

4 � Results and discussion
4.1 � Influence of CNN hyperparameters

The hyperparameters directly affect the training and predictive performance of neural 
networks. In this section, we investigate several CNN hyperparameters. Better hyperpa-
rameters can be found by observing the convergence performance of the loss function 
on the training and test datasets.

4.1.1 � Number of convolutional layers

Four CNN models (CNN-1, CNN-2, CNN-3, and CNN-4) were set up, having 1, 2, 3, 
and 4 convolutional layers, respectively. The network structures and parameters are 
shown in Table 3. In the first convolutional layer of CNN-1, 16 indicates the number 

Fig. 13  Sketch of the computational mesh for the Sanger aerospace plane carrier wing

Table 3  CNN architecture with its layers and parameters

Layer type CNN-1 CNN-2 CNN-3 CNN-4

Input 109×1 109×1 109×1 109×1

First convolution 16, 3×1, 2×1 16, 3×1, 2×2 16, 3×1, 2×1 16, 3×1, 2×1

Second convolution - 32, 3×1, 2×2 32, 3×1, 2×1 32, 3×1, 2×1

Third convolution - - 64, 3×1, 2×1 64, 3×1, 2×1

Fourth convolution - - - 128, 3×1, 2×1

Fully-connected 3×128 3×128 3×128 3×128

Output 3×1 3×1 3×1 3×1
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of filters, 3 × 1 indicates the convolutional filter size, and 2 × 1 indicates the pooling 
filter size. In the fully-connected layer of CNN-1, 3 × 128 indicates 3 layers with 128 
neurons.

Without loss of generality, each CNN structure is trained 10 times to exclude the 
influence of random processes on the training results. The average values and stand-
ard deviation of the MSE are taken for comparison. Training is implemented for all 
four architectures, and the MSE convergences of the CNNs are shown in Fig. 14. The 
training histories of the four CNN structures with a  learning rate of 0.00001 are given 
here. Although CNN-4 converges rapidly and performs better on the training dataset, 
significant overfitting occurs, i.e., the MSE on the test dataset is larger, while the MSE 
on the test dataset increases as the MSE on the training set decreases. Because it has the 
minimum MSE, CNN-2 is selected as the benchmark architecture for further parameter 
studies.

4.1.2 � Number of convolutional filters

The influence of the number of filters is investigated by increasing them from 8 (NCF8) 
to 64 (NCF64) for CNN-2’s first convolutional layer and from 16 to 128 for its second 
convolutional layer (see Table 4). Figure 15 shows the effect of the number of filters on 
the MSE convergence of the model. An increase in the number of filters significantly 
reduces the training MSE and also accelerates the MSE convergence. However, the MSEs 
of NCF8 and NCF64 are slightly higher than those of  NCF16 and NCF32 on the test 
dataset. The MSE of NCF16 is the lowest and tends to decrease continuously. Therefore, 
NCF16 is chosen as the next setting for the study.

Fig. 14  MSE convergence histories of CNN-1, CNN-2, CNN-3, and CNN-4 in training dataset (left) and test 
dataset (right)

Table 4  Variation of CNN-2 with the number of convolutional filters

Layer type CNN-2-NCF8 CNN-2-NCF16 CNN-2-NCF32 CNN-2-NCF64

Input 109×1 109×1 109×1 109×1

First convolution 8, 3×1, 2×1 16, 5×1, 2×1 32, 6×1, 2×1 64, 8×1, 2×1
Second convolution 16, 3×1, 2×1 32, 5×1, 2×1 64, 6×1, 2×1 128, 8×1, 2×1
Output 3×1 3×1 3×1 3×1
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4.1.3 � Number of fully‑connected layers

CNN-2 is modified to have one, two, and four fully-connected layers (CNN-2-FC1, 
CNN-2-FC3, and CNN-2-FC4) to investigate the effect of the number of fully-
connected layers, as shown in Table  5. The MSE convergence histories are given in 
Fig. 16. More fully-connected layers improve the MSE convergence, and CNN-2-FC4 
has the best training MSE convergence. However, CNN-2-FC3 finally achieves the 
minimum MSE on the test dataset. In addition, CNN-2-FC3 tends to decrease even 
further, which is better than CNN-2-FC4.

Fig. 15  MSE convergence histories with different numbers of convolutional filters in training dataset (left) 
and test dataset (right)

Table 5  Variation of CNN-2 with different numbers of fully-connected layers

Model Fully-connected 
layers, 
depth×neurons

CNN-2-FC1 1×128

CNN-2-FC2 2×128

CNN-2-FC3 3×128

CNN-2-FC4 4×128

Fig. 16  MSE convergence histories of CNN-2 with different numbers of fully-connected layers in training 
dataset (left) and test dataset (right) (e.g., FC2 indicates two fully-connected layers)
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4.1.4 � Learning rate

As a vital hyperparameter in CNN training, the learning rate (LR) largely determines the 
model convergence efficiency and final convergence level. In general, a high, inappropri-
ate learning rate leads to model convergence failure, while a low, unsuitable learning rate 
results in higher training time costs and the risk of falling into a local optimum.

The MSE convergence histories with different learning rates (1 × 10–2, 1 × 10–3, 
1 × 10–4, and 1 × 10–5) are shown in Fig.  17. These results indicate that LR0.01 and 
LR0.001 exhibit poor MSE convergence and severe oscillations. This may be because 
the optimization algorithm skips the optimal path because of a large initial learning rate 
[46]. Compared with LR0.00001, LR0.0001 achieves faster convergence, and then over-
fitting occurs. Ultimately, we consider LR0.00001, which converges smoothly and retains 
a downward trend, to be the superior learning rate, despite its longest training time.

4.1.5 � Batch size

A study on the effect of batch size (BS) on MSE convergence is carried out for a series of 
batch sizes decreasing from 2048 (BS2048) to 64 (BS64) by factors of 2. The BS mainly 
impacts the amount of computation, i.e., a larger BS produces a faster computation but 
requires access to more samples to achieve the same error because there are fewer updates 

Fig. 17  MSE convergence histories of CNN-2 with different learning rates in training dataset (left) and test 
dataset (right)

Fig. 18  MSE convergence histories of CNN-2 with different batch sizes in training dataset (left) and test 
dataset (right)
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per epoch [47]. From Fig. 18, it is observed that a smaller batch size leads to a smaller MSE 
in the training dataset. Because BS128 has the minimum MSE in the test dataset and retains 
the descent gradient, we use a minibatch of 128 as the optimum for the training.

The effect of the convolutional filter size on CNN training is also investigated. These 
results show that its influence is very small, so the commonly used 3×3 filter size is used.

4.2 � Validation of CNN prediction performance

Based on the preceding investigations, we adopt a CNN containing two convolutional 
layers with a 3 × 1 filter size, two pooling layers with a 2 × 1 filter size, and three fully-
connected hidden layers with 128 neurons per layer as the model structure. There are 
16 convolutional filters in the first convolutional layer and 32 convolutional filters in the 
second convolutional layer. The learning rate and batch size are set to 0.00001 and 128, 
respectively. For full convergence of the model, the epoch is set to 6000.

The relative error ε, coefficient of determination R2, relative root-mean-square error 
(RRMSE), and relative maximum absolute error (RMAE) are employed as the metrics to 
validate the CNN’s predictive performance, and their equations are

where yi is the simulation value of the ith test sample calculated by CFD simulation, ŷi 
denotes the predicted value of the ith test sample, and N is the number of test samples. 
The model is perfectly accurate when R2 = 1.0, whereas R2 = 0.0 indicates an extremely 
poor approximation. The RRMSE reflects the model’s global accuracy, and the RMAE is 
a criterion indicating the local prediction performance.

Figure 19 shows the MSE convergence history of the CNN training. The MSEs of 
both the training and test datasets decrease smoothly, with no oscillation or over-
fitting. Figure  20 compares predicted versus CFD simulation values for the three 
aerodynamic coefficients in the test dataset. Nearly all the sample points of the test 
dataset are clustered near the 45° line, demonstrating the CNN’s very reliable predic-
tion error. Among them, the predictive performance for CL and CM is better but is 
relatively poor for CD . The distribution plot of the absolute error is shown in Fig. 21. 
The y-axis indicates the number of samples corresponding to the absolute error in the 
x-axis. It is apparent that the error distribution is Gaussian. From Fig. 21, the predic-
tion errors for CD in the test dataset are less than 10 counts for most of the samples, 
and the prediction errors for CL and CM in the testing dataset are less than 0.002 for 
most of the samples.

(5)
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)2
,

RMAE = 1
STDmax

∣∣yi − ŷi
∣∣,

STD =

√
1

N−1

N∑
i=1

(
yi − yi

)2
, i = 1, 2, . . . ,N ,



Page 18 of 31Zan et al. Advances in Aerodynamics            (2022) 4:39 

As described in Table  1, the two-dimensional convolution operation is used in 
most previous works to process the pixel points of airfoils. The proposed architecture 
(CNN_1D shown in Fig. 3) in this article is also compared here with CNN_2D (using a 

Fig. 19  Convergence history of MSE for the CNN

Fig. 20  Predicted versus CFD simulation values of CL , CD , and CM

Fig. 21  Absolute error distribution of the CNN prediction for CL , CD , and CM
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two-dimensional convolution operation for the FFD control point variables and the rest 
of the variables directly as inputs to the fully-connected layer) and MLP.

The three architectures are shown in Table 6. “Conv_2D” represents a two-dimensional 
convolution layer, “10 × 10” denotes a 10-row, 10-column matrix including 100 FFD con-
trol point variables, and “9 × 1” denotes the remaining 9 variables. The “128” refers to the 
number of neurons in the fully-connected layer, “16, 3 × 3, 2 × 2” denotes that the layer 
contains 16 convolutional filters with a 3 × 3 filter size and a 2 × 2 pooling filter size. The 
hyperparameters of CNN_2D are the same as those of CNN_1D. The commonly used 
hyperparameters with a 0.001 learning rate, batch size of 128, and epoch of 6000 are 
adopted for MLP.

Figure 22 shows the scatter plots of the absolute error and the corresponding box plots. 
The scatter plots at the top provide the absolute errors of the predicted force coefficients 
for each wing configuration and flight status, and the box plots at the bottom provide the 
statistics for these absolute errors. The white lines in the box plots indicate the median of 
these errors. The right and left edges of the box are the upper and lower quartiles, respec-
tively. The triangle’s location below the box refers to the average of these errors.

Specifically, the largest CNN error for CL is 0.0031. The CNN predicts 82.80% of the 
sample points with an error of less than 0.001. For CD , the largest CNN error is 17 

Table 6  Architectures of MLP, CNN_2D, and CNN_1D

Model MLP CNN_2D CNN_1D

Layer type Parameter Layer type Parameter Layer type Parameter

Input - 109×1 - 10×10, 9×1 - 109×1

1st layer Fully-connected 128 Conv_2D 16, 3×3, 2×2 Conv_1D 16, 3×1, 2×1

2nd layer Fully-connected 128 Conv_2D 32, 3×3, 2×2 Conv_1D 32, 3×1, 2×1

3rd layer Fully-connected 128 Fully-connected 128 Fully-connected 128

4th layer Fully-connected 128 Fully-connected 128 Fully-connected 128

5th layer Fully-connected 128 Fully-connected 128 Fully-connected 128

Output - 3×1 - 3×1 - 3×1

Fig. 22  Comparison of the box plots and absolute errors of the predictions obtained by MLP, CNN_2D, and 
CNN_1D
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counts. The percentages of test sample points with errors below 1, 5, and 10 counts 
are 38.44%, 91.13%, and 97.58%, respectively. For CM , the largest CNN error is 0.0030, 
and 86.83% of test sample points have an error below 0.001. Three other accuracy 
metrics are computed for a more detailed comparison (Table  7), from which it is 
noted that CNN_1D performs significantly better than MLP and slightly better than 
CNN_2D.

The ability of the trained MLP and CNN models to predict the aerodynamic coef-
ficients of the baseline configuration at different flight statuses, such as Mach num-
ber and angle of attack, is also evaluated. 121 additional sample points obtained by 
the  uniform sampling method are calculated by conducting CFD simulation. These 
test sample points are plotted as white spheres in Fig. 23, with Mach numbers ranging 
from 5 to 6 and angles of attack in the range of 0 to 5 degrees. The response surfaces 
predicted by MLP and CNN are shown in Fig. 23(a), (d), and (g), respectively, from 
which several curves are sliced to obtain the variations of lift coefficient, drag coef-
ficient, and pitch moment coefficient with respect to Mach number or angle of attack. 
CNN produces smoother response surfaces that conform to the flow mechanism and 
are a better match to the CFD simulation values than MLP, although the prediction 
error for the drag coefficient at α =1° is relatively large.

Figure  24 shows contour plots of the absolute error between the CFD simulation 
values and values predicted by MLP and CNN for the three aerodynamic coefficients. 
The CNN’s absolute error is significantly smaller than that of MLP. Four accuracy 
metrics are computed for a more detailed comparison (Table  8), from which it is 
observed that the CNN outperforms the MLP.

Table 7  Comparison of accuracy metrics for predictions of aerodynamic performance by MLP, 
CNN_2D, and CNN_1D in high-dimensional aerodynamic modeling for flight status and wing shape 
variables

Object Model Relative error ε R2 RRMSE RMAE

CL MLP 7.69% 0.9813 0.1366 0.4638

CNN_2D 3.42% 0.9963 0.0606 0.2998

CNN_1D 2.62% 0.9978 0.0466 0.1779
CD MLP 9.97% 0.9076 0.3036 3.3977

CNN_2D 9.58% 0.9147 0.2917 2.3320

CNN_1D 6.04% 0.9661 0.1840 0.9539
CM MLP 7.16% 0.9815 0.1357 0.5212

CNN_2D 3.56% 0.9954 0.0676 0.3425

CNN_1D 2.91% 0.9970 0.0551 0.2391

(See figure on next page.)
Fig. 23  Comparison of predicted aerodynamic coefficients using MLP and CNN as a function of Mach 
number and angle of attack. (a) Predicted CL by MLP (left) and CNN (right), (b) Predicted CL by MLP and CNN 
at Ma = 5.2, (c) Predicted CL by MLP and CNN at α = 1º, (d) Predicted CD by MLP (left) and CNN (right), (e) 
Predicted CD by MLP and CNN at Ma = 5.2, (f) Predicted CD by MLP and CNN at α = 1º, (g) Predicted CM by 
MLP (left) and CNN (right), (h) Predicted CM by MLP and CNN at Ma = 5.2, (i) Predicted CM by MLP and CNN at 
α = 1º
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(a)

(d)

(g)

(b) (c)

(e) (f)

(h) (i)
Fig. 23  (See legend on previous page.)
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4.3 � Preliminary application to fast aerodynamic shape optimization

4.3.1 � Optimization problem statement

The modeling approach proposed in this paper is now used with a genetic algo-
rithm (GA) implemented on the well-trained CNN to optimize the five wing profiles 
to support fast aerodynamic shape optimization. In addition, three aerodynamic 
shape optimization cases are performed to verify the efficiency and convenience 

Fig. 24  Comparison of absolute error contours of CL (left), CD (middle), and CM (right) for MLP and CNN 
predictions

Table 8  Comparison of accuracy metrics for aerodynamic coefficient predictions of the baseline 
wing by MLP and CNN at different Mach numbers and angles of attack

Object Model Relative error ε R2 RRMSE RMAE

CL MLP 7.10% 0.9855 0.1198 0.3143

CNN 1.55% 0.9993 0.0262 0.0699
CD MLP 4.61% 0.9745 0.1591 0.4046

CNN 1.16% 0.9984 0.0402 0.0798
CM MLP 5.74% 0.9893 0.1029 0.2550

CNN 2.23% 0.9984 0.0399 0.0913

Table 9  Design cases for wing profile optimization

Optimization 
case

Optimization problem Mach number Altitude (km) Reynolds number Angle of 
attack 
(α)

1 max fobj(x) = CL/CD
s.t . |t − t0| < 0.04t0

5.2 25 4.29 × 106 1°

2 max fobj(x) = CL/CD
s.t . |t − t0| < 0.04t0

5.2 25 4.29 × 106 2°

3 min fobj(x) = CD
s.t . |t − t0| < 0.04t0

CL ≥ CL,0

5.2 25 4.29 × 106 1°
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advantages of the modeling approach, considering both flight status and shape vari-
ables for multiple flow statuses and optimization objectives. The details of the three 
optimization cases are shown in Table  9, where t represents the maximum profile 
thickness. All notations with subscript “0” indicate the baseline configuration, and 
the maximum profile thickness is also constrained by the structural requirements. 
An additional 5290 samples are added to the training dataset to further improve the 
model accuracy of the validation in this section.

Scaling the flow conditions from a three-dimensional swept wing to a two-dimen-
sional profile is not considered here because the scaling rule for small- or medium-
swept subsonic or transonic wings may not apply to low aspect ratios and highly 
swept hypersonic wings. Although it is necessary to scale the flow conditions in a 
real-world design, it is still sensible to validate and demonstrate the applicability of 
the CNN-based modeling method for efficient aerodynamic shape optimization.

Note that the five wing profiles selected as the baseline for optimization already 
have good aerodynamic characteristics in the hypersonic regime, so we use adequate 
design variables incorporating 100 FFD control points for a more refined optimiza-
tion to further improve the aerodynamic performance.

Fig. 25  Convergence history of aerodynamic shape optimization for the wing (optimization case 1)

Table 10  Comparison of aerodynamic performance obtained from the CNN prediction and the 
CFD validation for the baseline and optimized wings (optimization case 1)

CL CD CL/CD CM

CNN prediction Baseline wing 0.00921 0.00405 2.2741 -0.00937

Optimized wing 0.01186 0.00294 4.0315 -0.01048

Δ +28.77% -27.41% +77.28% +11.85%

CFD validation Baseline wing 0.00952 0.00389 2.4442 -0.00897

Optimized wing 0.01068 0.00377 2.8335 -0.00960

Δ +12.18% -3.08% +15.93% +7.02%
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4.3.2 � Optimization results

As seen from Fig. 25 and Table 10, with the support of the CNN providing the cor-
rect optimization direction, CL/CD = 2.8335, which is 15.93% larger than for the base-
line wing, although the CD prediction is not very accurate, resulting in relatively poor 
CL/CD predictions.

Figure  26 shows a comparison of the baselines and optimized geometric profiles. 
The maximum thickness of all profiles satisfies the constraints. The pressure coeffi-
cient contours and pressure distributions at three wing spanwise locations using the 

(a) (b)

(d) (e)

(c)

Fig. 26  Comparison of five baseline and optimized wing profiles (optimization case 1). (a) Profile 1, (b) Profile 
2, (c) Profile 3, (d) Profile 4, (e) Profile 5

Fig. 27  Comparison of pressure coefficient contours and sectional pressure coefficient distributions at three 
wing spanwise locations for the baseline and optimized profiles (optimization case 1)
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baseline and optimized wing profiles are shown in Fig.  27. A larger high-pressure 
regime is observed on the wing’s lower surface using the optimized profiles, and a 
slightly larger low-pressure regime is observed on the upper surface.

As seen from Fig. 28 and Table 11 for optimization case 2, CL/CD = 5.3551, which 
is 6.59% larger than for the baseline wing. Figure 29 compares the five baseline and 
optimized wing profiles. Pressure coefficient contours and sectional pressure distri-
butions are presented in Fig. 30.

Fig. 28  Convergence history of aerodynamic shape optimization for the wing (optimization case 2)

Table 11  Comparison of aerodynamic performance obtained from the CNN prediction and the 
CFD validation for the baseline and optimized wings (optimization case 2)

CL CD CL/CD CM

CNN prediction Baseline wing 0.02157 0.00451 4.7826 -0.01832

Optimized wing 0.02374 0.00341 6.9523 -0.01925

Δ +10.06% -24.39% +45.37% +5.08%

CFD validation Baseline wing 0.02221 0.00442 5.0238 -0.01825

Optimized wing 0.02292 0.00428 5.3551 -0.01852

Δ +3.20% -3.17% + 6.59% +1.48%
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Fig. 29  Comparison of five baseline and optimized wing profiles (optimization case 2). (a) Profile 1, (b) Profile 
2, (c) Profile 3, (d) Profile 4, (e) Profile 5
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Fig. 30  Comparison of pressure coefficient contours and sectional pressure coefficient distributions at three 
wing spanwise locations for the baseline and optimized profiles (optimization case 2)

Fig. 31  Convergence history of aerodynamic shape optimization for the wing (optimization case 3)

Table 12  Comparison of aerodynamic performance obtained from the  CNN prediction and 
the CFD validation for the baseline and optimized wings (optimization case 3)

CL CD CL/CD CM

CNN prediction Baseline wing 0.00921 0.00405 2.2741 -0.00937

Optimized wing 0.01001 0.00258 3.8769 -0.00939

Δ +8.65% -36.30% +70.48% +0.21%

CFD validation Baseline wing 0.00952 0.00389 2.4442 -0.00897

Optimized wing 0.00978 0.00370 2.6434 -0.00896

Δ + 2.73% -4.88% +8.15% -0.11%
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(a) (b) (c)

(d) (e)
Fig. 32  Comparison of five baseline and optimized wing profiles (optimization case 3). (a) Profile 1, (b) Profile 
2, (c) Profile 3, (d) Profile 4, (e) Profile 5

Fig. 33  Comparison of pressure coefficient contours and sectional pressure coefficient distributions at three 
wing spanwise locations using baselines and optimized profiles (optimization case 3)

Table 13  GA parameters and time cost for the three optimization cases

Optimization case Population Generation Evaluation Total time used (Intel 
core i9 11900 K@3.50 
Hz)

1 500 1000 500,000 40 min 57 s

2 500 1000 500,000 40 min 24 s

3 500 1000 500,000 41 min 10 s
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For optimization case 3, CD = 0.00370 from Fig. 31 and Table 12, which is 4.88% less 
than for the baseline wing, while CL is also improved. A comparison of the five base-
line and optimized wing profiles is given in Fig. 32. The thicknesses of the five wing 
profiles are decreased by varying degrees. Figure  33 shows the pressure coefficient 
contours and the sectional pressure coefficient distributions.

5 � Discussion
Table 13 shows the GA parameters and the time cost for the three wing optimization 
cases. It is observed that the CNN-based high-dimensional aerodynamic modeling 
method considering the flight status and shape variables can quickly yield better aero-
dynamic shapes for all three cases, i.e., different design points and different optimization 
problems.

From the results of the three optimization cases, the aerodynamic coefficient pre-
diction errors of the CNN for the optimized solutions are somewhat larger than the 
global error, reflecting the fact that the current database size used to model a design 
space containing up to 100 variables is not sufficient. Therefore, the model cannot 
provide very accurate global predictions but can give the correct optimization ori-
entation. Hence, it can still demonstrate the advantages of the proposed modeling 
approach in high-dimensional aerodynamic modeling and the ability to achieve fast 
aerodynamic shape optimizations for multiple flight statuses.

6 � Conclusions
This article proposes a CNN-based machine learning approach for high-dimensional 
aerodynamic data modeling to provide fast and reliable aerodynamic performance 
predictions. This modeling approach is demonstrated by an aerodynamic modeling 
case similar to the Sanger aerospace plane carrier wing with a 109-dimensional input 
incorporating both the flight status and aerodynamic shape variables. The following 
conclusions can be drawn:

a)	 The MLP adapts to the augmentation of samples by expanding the network scale 
when dealing with high-dimensional problems, resulting in an overfitting trend. The 
CNN, having the advantages of sparse connection and weight sharing, can alleviate 
this problem.

b)	 The network’s convergence depends largely on the CNN’s hyperparameters. A learn-
ing rate (LR) between 1 × 10–5 and 1 × 10–4 is a good choice, with a higher LR lead-
ing to oscillation (or even a failure to converge) and a lower LR leading to increased 
training costs. Increasing the number of convolutional layers enhances the ability to 
distill information, but networks that are too deep are prone to overfitting. A smaller 
batch size gives rise to faster MSE convergence and greater computational intensity 
for the same epoch.

c)	 Compared with the MLP, the CNN-based modeling method is dramatically more 
accurate, not only for high-dimensional modeling problems with respect to both 
aerodynamic shape variables and flight status variables but also for response surface 
prediction at different Mach numbers and angles of attack.
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d)	 A surrogate model considering both the flight status and the shape enables fast aero-
dynamic shape optimization for multiple flight statuses without the need to conduct 
expensive CFD simulations to build additional surrogate models.

The CNN-based aerodynamic modeling approach emerges as a gradient-free, fast, 
and accurate tool that complements other traditional methods in aerodynamic research 
and provides a novel way to conduct practical design optimization. Furthermore, the 
targeted augmentation of sample points during modeling can further improve the pre-
dictive accuracy and is conducive to enhancing the quality of the optimization solution, 
which will be the subject of future research work.
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