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Abstract 

For more than a century, it has been widely believed that there is a clear gap between 
molecular motions at the microscopic level and turbulent fluctuations at the mac-
roscopic level. However, recent studies have demonstrated that the thermal fluctua-
tions resulted from molecular motions have nonnegligible effects on the dissipation 
range of turbulence. To further clarify the reviving debate on this topic, we employ the 
molecular-level direct simulation Monte Carlo (DSMC) method to simulate homogene-
ous turbulence with different turbulent Mach numbers, extending the previous studies 
by considering the effect of compressibility. Our results show that, for both one-
dimensional (1D) stationary turbulence and two-dimensional (2D) decaying isotropic 
turbulence, the turbulent energy spectra are significantly changed due to thermal 
fluctuations below the spatial scale comparable to the turbulent dissipation length 
scale. The energy spectra caused by thermal fluctuations for different spatial dimen-
sions d present different scaling laws of the wavenumber k as k(d−1) . For 2D cases, we 
show that the effect of thermal fluctuations on the spectrum of compressible veloc-
ity component is greatly affected by the change of compressibility. The 2D spectra of 
density, temperature and pressure are also obtained, showing the same scaling law 
at large wavenumbers as found for the energy spectra. Moreover, it is found that the 
effects of thermal fluctuations on the thermodynamic spectra are the same as those on 
the spectra of compressible velocity component.

Keywords:  Thermal fluctuations, Homogeneous compressible turbulence, DSMC, 
Turbulent Mach number, Energy spectrum

1  Introduction
Turbulence is characterized by the random fluctuations of flow fields in both space and 
time [1]. It is known that the spectrum of turbulent velocity fluctuations inherently 
reflects the so-called “energy cascade”, which describes the successive transfer of turbu-
lent kinetic energy (TKE) from the largest scales to the smaller ones. The characteristic 
length scale below which TKE is dominantly dissipated by the viscosity is defined as the 
Kolmogorov length scale [1, 2]
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where ν is the mean kinematic viscosity, and ε is the mean dissipation rate per unit mass.
As the scale of turbulence continuously decreases, it is natural to ask whether the 

molecular effects contribute to the turbulent motions. This question for gases can be 
roughly answered by estimating the ratio of the molecular mean free path, �mic , to the 
Kolmogorov length scale as [2, 3]

where Mt is the turbulent Mach number, ReT is the turbulent Reynolds number, and Ĉ 
is a constant in the same order of magnitude as 1. Equation (2) indicates that η ≫ �mic 
for low-Mach-number, and high-Reynolds-number turbulence. Under this condition, 
it is widely believed that the microscopic molecular motions have negligible effects on 
the macroscopic turbulent fluctuations, and the Navier-Stokes (NS) equations can accu-
rately describe the turbulent fluctuations at all scales.

However, there have been a few researches presenting a different point of view. In the 
seminal work of Betchov [4, 5], he anticipated that the spontaneous thermal fluctuations 
resulted from molecular motions would act on length scales larger than the molecular 
mean free path and may have significant effects on the dissipation range of turbulence. 
Note that this conjecture cannot be validated based on the deterministic NS equations.

To investigate the effect of thermal fluctuations on turbulent flows, one can turn to the 
fluctuating hydrodynamic equations, which were first proposed by Landau and Lifshitz 
[6]. By adding stochastic fluxes into the deterministic hydrodynamic equations, the fluc-
tuating hydrodynamic equations are capable of describing the thermal fluctuations at 
the mesoscopic level [7, 8]. Recently, Bell et al. [9] simulated the three-dimensional (3D) 
incompressible homogeneous isotropic turbulence by solving fluctuating Navier-Stokes 
(FNS) equations. They found that in the turbulence dissipation range, the exponentially 
decaying turbulent kinetic energy spectrum predicted by the deterministic NS equations 
[10, 11] is altered by the thermal fluctuations, which result in the spectrum growing 
quadratically with the wavenumber k. The crossover wavenumber kc at which the ther-
mal fluctuations start to dominate the spectrum is in the same order of magnitude as 
the Kolmogorov wavenumber kη . Besides, the strong intermittency in the turbulence far-
dissipation range predicted by the deterministic NS equations [12, 13] is also replaced by 
the Gaussian thermal equipartition [9, 14].

Since thermal fluctuations are inherently caused by molecular random motions, the 
molecular-level simulation approaches, such as the molecular dynamics (MD) method 
[15, 16] and the direct simulation Monte Carlo (DSMC) method [17], can provide a 
more straightforward and physically reasonable way to study the effect of thermal fluc-
tuations. MD is a deterministic method which simulates the movement of physical real 
molecules/atoms following Newton’s equations of motion [15]. The interactions between 
molecules/atoms are accurately calculated based on the interatomic potentials. In con-
trast, the DSMC method is a stochastic approach, in which each simulated molecule 
statistically represents a fixed number of real molecules [17, 18]. Besides, the intermo-
lecular collisions in the DSMC method are treated stochastically using phenomenologi-
cal models [19]. These characteristics make the DSMC method much more efficient than 
MD in simulating gas flows. Theoretically, the DSMC method is proved to be a particle 
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algorithm for solving Boltzmann equation of monatomic gases [20], and this method has 
been successfully applied to investigate the thermal fluctuation phenomena [21–26].

With the rapid development in high performance computing, it has become possible 
to use the DSMC method to study continuum flow problems, such as the hydrodynamic 
instability [27–30] and turbulence [31–35]. For turbulence simulations, previous studies 
have demonstrated that the turbulent statistics obtained by the DSMC method, such as 
TKE and ε , are in good agreement with those obtained by the direct numerical simula-
tion (DNS) method based on the deterministic NS equations [31, 33]. To further study 
the effect of thermal fluctuations on turbulence, McMullen et al. [35] simulated the 3D 
decaying Taylor-Green (T-G) vortex flow, and they obtained the same k2 dependence 
energy spectrum at the large wavenumbers as that predicted by the FNS calculations 
[9], indicating the significant effect of thermal fluctuations on the turbulent dissipation 
range. It is also found that, at the late stage of T-G flow decay, the velocity field simulated 
by DSMC shows great irregularity comparing to that obtained from the deterministic 
DNS method [33], and this irregularity is caused by the thermal fluctuations.

It is worth noting that the previous works on the effect of thermal fluctuations on 
turbulence [9, 14, 35] mainly focus on the incompressible turbulence, and the discus-
sions are limited to the turbulent velocity fluctuations. For compressible turbulence, the 
divergence of the velocity field is non-zero, leading to the compression and expansion 
effects of the velocity field in addition to the shear and eddy motions [36, 37]. Besides, 
a unique feature of the compressible turbulence is the fluctuations of thermodynamic 
variables, such as density, temperature, and pressure [38]. The coupling between fluc-
tuating thermodynamic variables and the turbulent velocity field has been widely stud-
ied based on the compressible deterministic NS equations [38–43]. Considering the 
molecular effect on turbulence, it is noteworthy that the Kolmogorov length scale may 
get close to the molecular mean free path at large turbulent Mach numbers (see Eq. (2)). 
This implies that the local thermodynamic equilibrium (LTE) assumption inherent in the 
FNS equations may break down, especially when shocks occur in the high-Mach-num-
ber turbulence [14]. Since the DSMC method makes no assumption of LTE [35], it can 
be employed to simulate highly compressible turbulence with strong nonequilibrium 
effects.

In this work, the DSMC method is employed to simulate the homogeneous compress-
ible turbulence. The aim of this work is to study the effect of thermal fluctuations on 
turbulence with different Mt , by examining the spectra of both the velocity and ther-
modynamic variables. Specifically, the one-dimensional (1D) stationary turbulence 
is simulated, and the effect of thermal fluctuations on the turbulent energy spectra is 
investigated. Then, the two-dimensional (2D) decaying isotropic turbulence is simulated. 
By applying the Helmholtz decomposition to the velocity field [40], the effect of thermal 
fluctuations on the solenoidal and compressible velocity components can be investigated 
separately. The spectra of the fluctuating thermodynamic variables are further studied.

The remainder of this paper is organized as follows. In Section 2, we briefly introduce 
the DSMC method, and  then we describe some basic theories of thermal fluctuations 
under the DSMC framework. In Sections 3 and 4, we present our numerical investiga-
tions for the 1D stationary turbulence and the 2D decaying turbulence, respectively. 
Conclusions are drawn in Section 5.
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2 � Methodology
2.1 � DSMC method

In this work, we employ the direct simulation Monte Carlo (DSMC) method [17] to 
simulate homogeneous turbulence of gases. Figure 1 shows the schematic of DSMC 
simulations, where the simulated molecules (displayed by orange spheres) move and 
collide with each other in a 3D periodic domain. As mentioned before, each simulated 
molecule statistically represents a fixed number F of identical real molecules, and F is 
the so-called simulation ratio [31, 35].

Although the simulated molecules move in a 3D computational domain, we can 
simulate 1D and 2D turbulent flows by dividing the domain into different types of 
computational cells. As shown in Fig.  1, the computational domain is divided into 
cells only in the y direction for 1D flow simulations, while both x and y directions 
are divided into cells for 2D flow simulations. The macroscopic gas properties are 
obtained locally for each cell by taking the instantaneous average of the correspond-
ing molecular information [17, 18]. Specifically, the local number density n and mac-
roscopic velocity �u are given by

where Np is the number of simulated molecules in the computational cell, Vcell is the vol-
ume of the computational cell, and �ci is the molecular velocity. Note that the simulation 
ratio F appears in the numerator of Eq. (3), so n represents the number density of the 
real gas. For single-species gas, the mass density ρ can be calculated as ρ = nm , where m 
is the molecular mass. We further define the molecular thermal velocity as �Ci = �ci − �u , 
and the local temperature T can be calculated as [17]

(3)n = NpF

Vcell
,

(4)�u =

Np
∑

i=1

�ci

Np
,

Fig. 1  Schematic diagram of DSMC simulations for 1D (left) and 2D (right) turbulence. The simulation 
domain is displayed in the x − y plane
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where kB is the Boltzmann constant. Assuming that the gas satisfies the ideal gas law, the 
local pressure P can be further calculated as P = nkBT .

For the applications of the DSMC method, the first step is to generate simulated 
molecules according to the initial macroscopic conditions of the flow field. The fol-
lowing steps implement two sequential processes in each calculated time interval, i.e., 
the molecular motions and intermolecular collisions, which are assumed to be uncou-
pled. While the molecular motions are performed deterministically according to the 
molecular instantaneous velocities, the intermolecular collisions are implemented in 
a stochastic way based on the phenomenological models. Specifically, the widely used 
no-time-counter (NTC) technique [17] is employed to randomly choose molecules in 
the same cell as collision pairs, and the variable soft sphere (VSS) model [19] is used 
to determine the post-collision velocities of molecules.

In this work, we simulate turbulent flows of the argon gas, whose molecular mass 
m = 6.63× 10−26 kg. The VSS model parameters of argon are shown in Table 1, where 
dref  is the reference collision diameter at the reference temperature Tref  , α represents 
the scattering angle distribution of the collision, and ω is the so-called viscosity index. 
The local dynamic viscosity µ is calculated as [18]

where µref = 2.117× 10−5 Pa · s is the reference viscosity of argon at Tref=273.15 K 
[17]. The local thermal conductivity κ is determined from the viscosity µ as [18]

where γ = 5/3 is the specific heat ratio, cv = 3R/2 is the isochoric specific heat, R is the 
specific gas constant, and Pr = 2/3 is the Prandtl number. Using the VSS model param-
eters, we can further estimate the mean collision rate per molecule as [17]

and the molecular mean collision time is calculated as τ = 1/νmic . The molecular mean 
free path is defined as �mic = Cthτ , where Cth =

√

8kBT/πm  denotes the average ther-
mal speed of molecules.
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Table 1  VSS parameters of argon [17]

Tref (K) dref (Å)   α ω

273.15 4.11 1.40 0.81
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All the DSMC simulations are performed in the open-source code SPARTA [30, 44], 
which has been widely used in the simulation of rarefied gas flows as well as turbulent flows 
[31–35]. It should be emphasized that, to ensure the simulation accuracy, the simulation 
time step needs to be smaller than τ , and the cell length needs to be smaller than �mic [45, 
46].

2.2 � Spatial correlation of thermal fluctuations

In this subsection, the basic theory of thermal fluctuations under the framework of DSMC 
simulations is introduced. In general, the fluctuation of a macroscopic property a is defined 
as the deviation of its local instantaneous value from its mean, i.e., δa(�r, t) = a(�r, t)− �a� . 
For gases at global thermodynamic equilibrium, fluctuations arise spontaneously due to the 
random thermal motions of molecules [24, 26].

According to the equilibrium statistical mechanics [47–49], the mean square value of the 
y-component velocity fluctuations for a DSMC simulation cell is given as

where 〈T 〉 and 〈ρ〉 are the mean temperature and mass density, respectively. For gases at 
equilibrium, the velocity components are independent and identically distributed, so Eq. 
(9) also holds for δux and δuz [47]. For thermal fluctuations of the number density, tem-
perature and pressure, their mean square values are given as

respectively, where 〈n〉 is the mean number density, κT = 1/�P� is the isothermal com-
pressibility of the ideal gas, and 〈P〉 is the mean pressure.

In this work, we focus on the spatial correlation of fluctuations at two DSMC cell points 
�r1 and �r2 . Due to the spatial homogeneity of fluctuations, the two-point autocorrelation 
function 〈δa(�r1, t)δa(�r2, t)〉 only depends on the relative distance �r = �r2 − �r1 [1]. For gases 
at equilibrium, the thermal fluctuations are generally delta-correlated [48], that is,

where δ�r is defined as

(9)
〈

(δuy)
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,

(10)
〈

(δn)2
〉

= κTkB�T ��n�2
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,

(11)
〈

(δT )2
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,

(12)
〈

(δP)2
〉

= γ kB�T �
VcellκT

,

(13)Ra(�r) = �δa(�r1, t)δa(�r2, t)� =
〈

(δa)2
〉

δ�r ,

(14)δ�r =
{

1, �r = 0
0, �r �= 0

.
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To calculate the spectra of thermal fluctuations, we employ the discrete Fourier 
transform (DFT) of 1D and 2D as [50]

where F{·} denotes the DFT, and �k = kiqi (ki = 0, 1, · · ·Nc − 1) represents the discrete 
wave vector. qx , qy are the unit wavenumbers in x and y directions, respectively, which 
can be calculated as qi = 2π/Li , where Li denotes the length of the simulation domain 
for direction i (see Fig.  1). �r = ji�i (ji = 0, 1, · · ·Nc − 1) represents the discrete space 
point, where �i = Li/Nc denotes the cell length of direction i, and Nc is the simula-
tion cell number. For 2D DSMC simulations, the numbers of cells divided in the x and y 
directions are the same in our work.

The energy spectrum E(k) can be expressed by the DFT of two-point velocity auto-
correlation function [1]:

where the term 2πk appears in 2D cases due to the integration of the isotropic spectrum 
over the wavenumber sphere surface [1, 51]. By substituting Eqs. (9) and (13) into Eq. 
(16), one can yield the energy spectrum of equilibrium thermal fluctuations as

Therefore, it can be concluded that for gases at thermodynamic equilibrium, the 1D 
energy spectrum is independent of the wavenumber k, while the 2D energy spectrum 
grows linearly with k. Extending this to the 3D cases will lead to the conclusion that 
Eeq(k) grows quadratically with k [4, 9, 35, 51]. Similarly, the spectra of fluctuating ther-
modynamic variables can be written as

where g stands for the number density, temperature, or pressure. Substituting Eqs. (10) 
- (13) into Eq. (18) would lead to the same conclusion that the equilibrium spectra of 
thermodynamic variables are independent of k for 1D cases, while they grow linearly 
with k for 2D cases.

It should be noted that the above derivations hold exactly for physical real gases. Since 
in DSMC simulations, each simulated molecule generally represents F real molecules, 
this will lead to larger thermal fluctuations due to the limited number of simulated mol-
ecules [33, 35, 49]. This problem can be subtly circumvented in 1D and 2D simulations 
as follows. The simulation ratio F is defined as

(15)
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
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�
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{
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,

(17)Eeq(k) =
{

1D : 1
2

kB�T �
Vcell�ρ�

2D : kB�T �
Vcell�ρ� × 2πk

.

(18)Eg (k) =
{

1D : F
{

Rg

}

2D : F
{

Rg

}

× 2πk
,
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where ⟨Np

⟩ stands for the average number of simulated molecules in each DSMC cell, 
and d represents the dimension of the simulation. We assume that the values of 〈n〉 , 

〈

Np

〉

 
and Nc are fixed in Eq. (19). Therefore, for the simulations of 1D turbulence, while Ly is 
fixed, we can control the values of Lx and Lz to set F = 1 . Similarly, for the simulations of 
2D turbulence, while Lx and Ly are fixed, we can vary the value of Lz to set F = 1 . In this 
way, for both 1D and 2D simulations, each simulated molecule represents exactly one 
real molecule, and the DSMC method can reflect the thermal fluctuations of the real gas.

3 � One‑dimensional stationary turbulence
3.1 � Simulation details

In this section, we employ the DSMC method to simulate the 1D stationary homogene-
ous compressible turbulence under large-scale forcing [52]. All the simulations are per-
formed at �T � = 300K and �ρ� = 1.6 kg/m3 , where 〈T 〉 and 〈ρ〉 are the mean values of 
temperature and mass density, respectively. Based on these parameters, the molecular 
mean collision time τ as well as the molecular mean free path �mic can be calculated, 
and thus the Knudsen number Kn = �mic/Ly is determined, where Ly is the simulation 
domain length in the y direction (see Fig. 1). Following the discussions in Section 2.2, the 
domain lengths of the other two directions ( Lx , Lz ) are set equal, and they are controlled 
to set the DSMC simulation ratio F = 1 . To ensure the simulation accuracy, the simula-
tion time step �t is equal to 0.1τ and the simulation cell length Lcell = Ly/Nc is smaller 
than �mic.

During one simulation time step, a velocity increment fy�t is added to the y compo-
nent velocity of each molecule, where fy is the acceleration caused by the external force. 
For this specific case, fy is assumed to be Gaussian with zero-mean and white-in-time 
covariance as [52, 53]

where ky = k/kmin denotes the wavenumber index, kmin = 2π/Ly is the minimum wave-
number in simulations, and L0 = Ly/2π is the reference length. aky and bky are inde-
pendent Gaussian random variables with zero mean and unit variance. The acceleration 
amplitude A(ky) is expressed as [52, 53]

where nf  is the wavenumber index at which the amplitude has peak values, and τf  denotes 
the force renewal time nondimensionalized by Vy,0/L0 , where Vy,0 = 600m/s is the refer-
ence y-component velocity. In our simulations, we set nf = 5 , and vary τf  to change the 
force magnitude. Note that Eq. (20) takes the dimensionless form, and it needs to be 
multiplied by Vy,0

2/L0 to obtain the real accelerations exerted on the molecules.

(19)F = �n�Vcell
〈

Np

〉 = �n�
〈

Np

〉

LxLyLz

(Nc)
d
,

(20)fy =
10
∑

ky=1

A(ky)

[

akysin

(

ky
y

L0

)

+ bkycos

(

ky
y

L0

)]

,

(21)A(ky) = ky

[

exp(−ky
2/nf

2)/τf

]
1
2
,
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As mentioned in Section  2.1, the periodic boundary condition is assumed for the 
simulation domain. The initial conditions are (T/�T �, ρ/�ρ�, uy/Vy,0) = (1, 1, 1) for 
the local macroscopic variables. Driven by the external force, the velocity field will form 
shock wave structures, which are the typical features of the 1D Burgers turbulence [52, 
53]. To keep the turbulence at the stationary state, the thermostat needs to be imple-
mented in our simulations to prevent the temperature increase due to the turbulence 
viscosity dissipation. Specifically, after molecular motions are completed in each time 
step, the global macroscopic velocity �V  and temperature Tg are obtained by sampling the 
molecular information. Then, the molecular velocity �c for each molecule is scaled to get 
the new velocity �c∗ as [54]

where �V0=
(

Vx,0,Vy,0,Vz,0

)

 is the reference global velocity.
After the turbulent velocity field reaches the stationary state, the turbulent statistical 

properties are obtained by spatial and temporal average. Specifically, TKE is defined as 
Kturb = 0.5(u′)2 , where u′ =

〈

(δuy)
2
〉0.5 is the root mean square value of turbulent veloc-

ity fluctuations. The turbulent Mach number is defined as

where �c� =
〈√

γRT
〉

 is the mean speed of sound. The mean dissipation rate ε is calcu-
lated as

and then the Kolmogorov length scale η can be estimated (see Eq. (1)). The Taylor micro-
scale � and the corresponding Reynolds number Re� are defined as [52]

Define LT = Kturb
3/2 /ε as the characteristic length scale of the large eddies, and thus 

the turbulent Reynolds number can be estimated as ReT = K 0.5
turbLT /�ν� [1].

Note that Eqs. (24) and (25) are originally defined based on the deterministic NS equa-
tions. The stochastic noise inherent in DSMC simulations should be reduced to accu-
rately calculate the velocity gradient [14]. Specifically, the above turbulent statistical 
properties are obtained based on the “coarse-grained” cells, rather than the original cells 
for DSMC simulations. The number of the coarse-grained cell Ng is much smaller than 
the original cell number Nc , so that the signal-to-noise ratio is greatly enhanced to an 
acceptable level [16]. Meanwhile, we ensure that the resolution parameter kg ,maxη > 3.3 , 
where kg ,max = πNg/Ly denotes the largest wavenumber corresponding to the half 
of Ng . Previous studies based on the DNS method have shown that the resolutions of 
kg ,maxη > 2.0 are sufficient for obtaining the convergent small-scale statistics in highly 

(22)
ci
∗ − Vi,0

ci − Vi
=

√

�T �
Tg

,

(23)Mt =
u′

�c� ,

(24)ε =
〈

4

3
ν

(

∂uy

∂y

)2
〉

,

(25)� = u′
〈

(

∂uy/∂y
)2
〉0.5

, Re� =
u′�
�ν� .
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compressible isotropic turbulence [40, 55]. Therefore, it is believed that the turbulent 
statistics obtained from the coarse-grained cells are comparable to those obtained from 
the DNS method. The simulated parameters and the corresponding flow statistics are 
shown in Table 2.

3.2 � Numerical results

Figure  2 shows the spatial distributions of velocity fluctuations at four instants for 
the Case B, where the time t is nondimensionalized by the large eddy turnover time 
τT = LT /u

′ . At the beginning of the simulation, the velocity fluctuations are entirely 
caused by the thermal fluctuations, which are negligible compared to the reference 
velocity Vy,0 (see Fig. 2(a)). Then, driven by the large-scale force, the velocity field shows 
the typical shock wave structures, which are consistent with those obtained from the 
DNS method [52].

Table 2  Simulated parameters and flow statistics for 1D stationary turbulence. All the simulations 
are performed at �T � = 300 K and �ρ� = 1.6 kg/m3

Case Kn (10−4) Mt τf Ly (mm) Nc
〈

Np

〉

Ng ReT Re� kg,maxη

A 0.71 0.53 0.08 0.8 16384 1500 2048 652.5 66.6 5.43

B 2.84 0.52 0.27 0.2 4096 2500 512 148.7 31.4 3.73

C 2.84 0.34 0.6 0.2 4096 2500 512 80.0 21.5 4.56

D 2.84 0.19 1.8 0.2 4096 2500 256 43.1 15.3 3.35

Fig. 2  Snapshots of velocity fluctuations for the Case B
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To further verify our simulations, we calculate the turbulent kinetic energy spectrum 
as

Figure 3(a) shows the energy spectra for cases A and B, whose Knudsen numbers are dif-
ferent due to the change of the simulation domain length Ly . The abscissa in Fig. 3(a) is 
the wavenumber index ky . It can be seen that the energy spectra for both cases show an 
inertial range with the scaling law close to k−2 , corresponding to the Burgers-like shock 
wave structures of the velocity field [52]. Besides, the spectrum of case A shows a longer 
inertial range than that of the case B, because the former owns a larger Re� (see Table 2).

More interestingly, it can be observed from Fig. 3(a) that, as ky increases the spec-
tra no longer vary with ky , which is the feature of thermal fluctuations. As shown 
in Fig.  3(b), where the abscissa is the wavenumber k multiplied by the Kolmogorov 
length scale η , the DSMC calculated spectra at large wavenumbers agree well with 
the theoretical spectra predicted from Eq. (17). We can further define kc as the 
crossover wavenumber [9, 35], beyond which the thermal fluctuations dominate the 
energy spectra. As can be seen from Fig.  3(b), for both cases A and B, kc occurs at 
kcη ≈ 6.5 , or η/lc ≈ 1.03 (lc = 2π/kc) , which indicates that the thermal fluctuations 
have significant effects at spatial scales comparable to the Kolmogorov length scale. 
It is worth noting that similar conclusions were also reported by McMullen et al. [35] 
and Bell et al. [9] in their simulations of 3D turbulence, where they found kc occurs at 
η/lc ≈ 0.5.

In Fig. 4, we compare the energy spectra for B, C and D cases, whose Knudsen num-
bers are the same, while the turbulent Mach numbers are different due to the change 
of the force magnitude. It can be seen from Table  2 that as Mt increases, the tur-
bulent Reynolds number also increases. Since these three cases have the same equi-
librium conditions, their energy spectra converge to the same spectrum of thermal 

(26)E(k) = 1

2

1

Nc

∣

∣F
{

δuy
}∣

∣

2
.

Fig. 3  The energy spectra of 1D compressible turbulence in the A and B cases. The abscissa of panel (a) is the 
wavenumber index, and the abscissa of panel (b) is the wavenumber multiplied by the Kolmogorov length 
scale. The spectra of thermal fluctuations calculated from Eq. (17) are also shown in panel (b) for comparison
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fluctuations with the increase of wavenumber. Meanwhile, Fig. 4(a) shows that as Mt 
decreases, the crossover wavenumber kc also decreases. This phenomenon can be 
qualitatively explained as follows: kc represents the wavenumber at which the energy 
of turbulent velocity fluctuations balances with the energy of thermal velocity fluctua-
tions [9, 14]. As can be seen in Fig. 4(a), the cases with lower Mt also own the lower 
TKE, and thus their energy spectra would reach the spectrum of thermal fluctuations 
at a lower wavenumber.

While the crossover wavenumbers are different for cases B to D, it is interesting to 
find in Fig. 4(b), that the values of kcη are almost the same. This is due to the fact that 
in our simulations, both lc and η increase as the decrease of Mt . To summarize, the 
energy spectra of 1D turbulence are greatly affected by the thermal fluctuations at 
spatial scales comparable to the 3D cases [9, 35], but the spectral scaling law of ther-
mal fluctuations ( k0 ) is different from that of 3D ( k2).

4 � Two‑dimensional decaying turbulence
4.1 � Simulation details

In this section, we extend the DSMC simulations to the 2D decaying isotropic tur-
bulence. Following the discussions in Section 2.2, we set Lx = Ly = L for turbulence 
simulations (see Fig.  1), while we control the value of Lz to set the simulation ratio 
F = 1 . The numbers of simulation cells Nc divided in the x and y directions are the 
same. The initial values of density, temperature, and pressure are taken to be uniform 
in the whole simulation domain, while the initial divergence-free velocity field follows 
the special form of the energy spectrum as [56–58]

(27)E(k) = as

2

(u′0)
2

kp

(

k

kp

)2s+1

exp

[

−(s + 1

2
)

(

k

kp

)2
]

, as =
(2s + 1)s+1

2ss! ,

Fig. 4  The energy spectra of 1D compressible turbulence in the B, C and D cases. The abscissa of panel (a) 
is the wavenumber, and the abscissa of panel (b) is the wavenumber multiplied by the Kolmogorov length 
scale. The spectrum of thermal fluctuations calculated from Eq. (17) is also shown in panel (a) for comparison



Page 13 of 24Ma et al. Advances in Aerodynamics             (2023) 5:3 	

where u′0 =
〈

δux,0
2 + δuy,0

2
〉0.5 is the initial root mean square value of turbulent veloc-

ity fluctuations, s is a shape parameter of the spectrum, and kp is the wavenumber at 
which the spectrum has peak values. In this work we take s = 3 and kp = 9kmin , where 
kmin = 2π/L is the minimum wavenumber. The macroscopic velocity �u is randomly gen-
erated for each cell using the transfer procedures provided by Ishiko et al. [56].

Following the initial energy spectrum, the evolution of the velocity field is charac-
terized by the vortex interactions, generating the so-called “direct enstrophy cascade” 
[57, 59, 60]. During the simulations, the turbulent statistical properties at different time 
instants are obtained by spatial average. The ensemble average can be further employed 
for independent runs following the same initial conditions. Specifically, TKE and Mt are 
calculated using the same equations as 1D turbulence. The enstrophy and its dissipation 
rate are defined as [60, 61]

respectively, where �ωu = ∇ × �u is the vorticity, and PΩ = 0.5
〈

|∇ × �ωu|2
〉

 is the palin-

strophy. The Taylor microscale and the corresponding Reynolds number are defined as 
[61]

respectively. The enstrophy dissipation length scale is defined as [59, 61]

in analogy with the Kolmogorov length scale. The global Reynolds number is defined as 
Re = u′L0/�ν� , where L0=L/2π is the reference length scale. Similar to 1D turbulence 
simulations, the turbulent statistics above are also obtained on the coarse-grained cells 
to reduce the stochastic noise.

In order to isolate the effect of compressibility, the Helmholtz decomposition [40–43] 
is applied to the macroscopic velocity field as

where the solenoidal component �us and the compressible component �uc satisfy condi-
tions ∇ · �us = 0 and ∇ × �uc = 0 , respectively. The turbulent kinetic energy for the sole-
noidal and compressible component can be further defined as 
Ks
turb = 0.5

〈

(δusx)
2 + (δusy)

2
〉

 and Kc
turb = 0.5

〈

(δucx)
2 + (δucy)

2
〉

 , respectively.

(28)Ω = 0.5
〈

| �ωu|2
〉

, εΩ = 2�ν�PΩ ,

(29)� = (�ν�Ω/εΩ)0.5, Re� = Ω1.5/εΩ ,

(30)ηΩ =
(

�ν�3/εΩ
)1/6

,

(31)�u = �us + �uc,

Table 3  Simulated parameters and flow statistics for 2D decaying turbulence at t = 3 . All the 
simulations are performed with the initial conditions of T0 = 300 K, P0 = 1 bar and ρ0 = 1.6 kg/m3

Case Kn0 (10
−4) Mt0 Mt 〈T 〉 (K) L (mm) N2

c

〈

Np

〉

N2
g

Re Re� kg,maxηΩ

E 2.5 0.25 0.12 308 0.227 40962 25 642 94.8 4.5 2.37

F 2.5 0.5 0.29 326 0.227 40962 25 1282 231.7 5.9 3.00

G 2.5 1 0.48 412 0.227 40962 25 1282 351.4 7.4 2.45
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Table 3 shows the simulated parameters and the corresponding turbulent statistics for 
t = 3 , where t is the simulation time nondimensionalized by u′0/L0 . Kn0 and Mt0 denote 
the initial Knudsen number and turbulent Mach number, respectively. Note that in com-
parison to the 1D and 3D turbulence, Re� shown in Table 3 is rather small corresponding 
to the direct enstrophy cascade in 2D turbulence [39]. To ensure the DSMC simulation 
accuracy, the simulation time step �t is smaller than 0.2τ , and the simulation cell length 
Lcell = L/Nc is smaller than �mic , where τ and �mic are the molecular mean collision time 
and the mean free path estimated based on the spatial mean values of temperature and 
density.

4.2 � Basic features

Figure 5 shows the temporal evolution of the total kinetic energy Kturb and enstrophy Ω 
for the case G. Since the Reynolds number is small in our simulations, the decay rate of 
Kturb is larger than that in high-Reynolds-number turbulence [56, 58] due to the stronger 
effect of the viscous dissipation. Meanwhile, at t ≈ 10 , Kturb drops by 83% , while Ω drops 
by as much as 98% . The similar phenomenon is also found in the incompressible cases 
[56], as the decay rate of Kturb is bounded by the value of Ω [60, 61].

We define the compressibility factor χ as the ratio of the compressible kinetic energy 
Kc
turb to the total kinetic energy Kturb . As can be seen from Fig.  6, all the cases show 

χ = 0 at the beginning of the simulation, corresponding to the divergence-free initial 
velocity field. Then, χ rapidly increases, which means that part of the solenoidal kinetic 
energy is converted into the compressible kinetic energy. As Mt0 increases, the maxi-
mum value of χ increases from 0.02 to 0.13, which indicates that the compressible veloc-
ity component plays a more important role for a higher Mt.

Figures 7, 8 and 9 show the evolution of the vorticity field for cases E - G. It can be seen 
that the initial flow field consists of many small vortices, which are randomly distributed 

Fig. 5  Temporal evolution of the normalized turbulent kinetic energy and enstrophy for the case G
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according to the initial energy spectrum. Then, the small vortices start to interact with 
each other to form the larger vortices, and the vorticity filaments can be observed [57, 
62]. Besides, as Mt increases, there might be shock waves formed from the vortex inter-
actions (see Fig.  9(b)), which in turn will significantly change the vortex structure. To 
further verify the presence of shock waves, the contours of the normalized values of den-
sity ρ/〈ρ〉 , temperature T/〈T 〉 , and pressure P/〈P〉 for the case G at t = 3 are shown in 
Fig. 10, where the severe discontinuities indicate the jumps of thermodynamic variables 

Fig. 6  Temporal evolution of the compressibility factor χ = Kcturb/Kturb for cases E, F and G

Fig. 7  Contours of the vorticity field for the case E at (a) t = 0 , (b) t = 3 , (c) t = 6

Fig. 8  Contours of the vorticity field for the case F at (a) t = 0 , (b) t = 3 , (c) t = 6
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across the shock waves. Meanwhile, it can be observed that the fluctuations of P/〈P〉 are 
stronger than those of ρ/〈ρ〉 and T/〈T 〉 . This phenomenon was also reported by Wang 
et al. [41] in their simulations of 3D compressible isotropic turbulence with shock waves.

The spectrum of the turbulent total kinetic energy is determined as

To reduce the statistical noise, a short-time average procedure is employed, i.e., the 
spectra are averaged over a time scale much smaller than the dissipation time scale 
τΩ = ε

−1/3
Ω  , but much larger than the molecular mean collision time. In Fig.  11, we 

compare the spectra for cases E, F, and G at t = 3 . Note that the case with a higher Mt 
also corresponds to a higher Re (see Table 3). It can be seen from Fig. 11(a) that, as the 
increase of Re, E(k) shows a more distinct inertial range, and its scaling law approaches 
the k−3[ln(k)]−1/3 limit, in agreement with the Kraichnan-Batchelor-Leith (KBL) theory 
[57, 59, 63].

Figure 11(a) also shows that, as the wavenumber increases, the energy spectra grow 
linearly with k, which corresponds to the thermal fluctuations. As can be observed from 
Fig. 11(b), all the DSMC calculated spectra agree well with the theoretical spectra given 
by Eq. (17) at larger wavenumbers. The simulation case with a higher Mt has larger 
spectral values of thermal fluctuations due to the higher temperature rise (see Table 3). 
Comparing Fig. 11(a), (b), one can see that the crossover wavenumber kc decreases sig-
nificantly as the decrease of Mt , but its product with the enstrophy dissipation length 
scale ηΩ does not change significantly. The kcηΩ lies between 2.2 and 4, corresponding to 

(32)E(k) = πk
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Fig. 9  Contours of the vorticity field for the case G at (a) t = 0 , (b) t = 3 , (c) t = 6

Fig. 10  Contours of the normalized density ρ/〈ρ〉 (a), normalized temperature T/〈T 〉 (b), and normalized 
pressure P/〈P〉 (c) for the case G at t = 3.
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ηΩ/lc in the range of 0.35 to 0.64, indicating that the thermal fluctuations dominate the 
spectra at spatial scales slightly larger than the dissipation length scale.

4.3 � Effect of compressibility on spectra

In the previous sections, our simulation results for both 1D and 2D turbulence show that 
the thermal fluctuations dominate the turbulent kinetic energy spectra at spatial scales 
comparable to the viscous dissipation length scale, which is in good agreement with the 
previous conclusion on 3D turbulence [9, 35]. In this subsection, we extend our simula-
tions of 2D turbulence to study the effect of compressibility on the interactions between 
thermal fluctuations and turbulence.

To start with, we decompose the total energy spectrum E(k) into the spectra of sole-
noidal and compressible velocity component, denoted by Es(k) and Ec(k) respectively, 
in order to separate the effects of thermal fluctuations. In Fig. 12, we present the instan-
taneous results of E(k), Es(k) and Ec(k) for cases E - G at t = 3 . As can be seen from 
Fig. 12, Es(k) almost overlaps with E(k) in the range of kηΩ < 1.2 , corresponding to the 
relatively small values of the compressibility factor χ . As Mt increases, the intensity of 
Ec(k) increases significantly, and the spectra show an inertial range with the scaling law 
close to k−2 . Note that the reported inertial scaling law of Ec(k) for the 2D compressible 
turbulence remains controversial in the literature. While some researches reported the 
inertial spectra steeper than k−2 [36, 39], a recent numerical study by Kritsuk [64] shows 
that the inertial scaling law is close to k−2 , which corresponds to the acoustic waves in 
turbulence. Since in our simulations, the flow field is characterized by shock wave struc-
tures at a higher Mt (see Fig. 10), it is reasonable that Ec(k) forms a scaling law close to 
k−2 [41].

As can be seen from Fig. 12, both Es(k) and Ec(k) grow linearly with k at large wave-
numbers, which is the typical feature of thermal fluctuations. In order to study the 
effect of thermal fluctuations under different Mt , we define kcs and kcc as the crossover 

Fig. 11  The energy spectra of 2D decaying compressible turbulence in the E, F and G cases at t = 3 . The 
abscissa of panel (a) is the wavenumber, and the abscissa of panel (b) is the wavenumber multiplied by 
the enstrophy dissipation length scale. The spectra of thermal fluctuations calculated from Eq. (17) are also 
shown in panel (b) for comparison
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wavenumbers correspond to Es(k) and Ec(k) , respectively. As Mt increases, kcsηΩ 
remains unchanged around 2.2, indicating that the effect of thermal fluctuations on 
Es(k) is insensitive to the change of compressibility. However, this conclusion does not 
hold for Ec(k) , as kccηΩ changes significantly from 1.3 to 4 as the increase of Mt . Spe-
cifically, at Mt = 0.12 , the compressibility factor χ is so small that Ec(k) decays rapidly, 
leading to a lower kccηΩ . As Mt increases, Ec(k) gets closer to Es(k) (see Fig. 12(b) for 
Mt = 0.29 ) , and then Ec(k) will dominate the energy content at high wavenumbers (see 
Fig.  12(c) for Mt = 0.48 ), as expected for the highly compressible turbulence [55, 64]. 
Consequently, kcc gradually exceeds kcs as Mt increases. The crossover wavenumber kc 
for the total energy spectrum E(k) is always determined as the larger value between kcs 
and kcc , as shown in Fig. 12.

Since the compressible turbulence owns distinguishing features of the fluctuations in 
thermodynamic variables [38–43], it is of great interest to study the effect of thermal 
fluctuations on the spectra of thermodynamic variables under different Mt . We calculate 
the thermodynamic spectra as

Fig. 12  Energy spectra for the velocity field and its two components at t = 3 , for the case (a) E, (b) F and (c) G
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where g stands for the number density n, temperature T, or pressure P. Figures 13, 14 and 
15 show the results of En(k) , ET (k) and EP(k) for cases E - G at t = 3 . As Mt increases, 
the spectra for the three thermodynamic variables show the same inertial range scaling 
law close to k−2 . As the increase of wavenumber, the thermodynamic spectra grow lin-
early with k, corresponding to the thermal fluctuations. The DSMC results are in good 
agreement with the spectra of thermal fluctuations calculated from Eq. (18) at large 
wavenumbers. We define the crossover wavenumbers for the density, temperature, and 
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Fig. 13  Spectra of number density fluctuations for the cases E, F and G at t = 3 . The spectra of thermal 
fluctuations calculated from Eq. (18) are also shown for comparison

Fig. 14  Spectra of temperature fluctuations for the cases E, F and G at t = 3 . The spectra of thermal 
fluctuations calculated from Eq. (18) are also shown for comparison



Page 20 of 24Ma et al. Advances in Aerodynamics             (2023) 5:3 

Fig. 15  Spectra of pressure fluctuations for the cases E, F and G at t = 3 . The spectra of thermal fluctuations 
calculated from Eq. (18) are also shown for comparison

Fig. 16  Normalized spectra of the compressible velocity component, number density, temperature, and 
pressure at t = 3 , for the case (a) E, (b) F, and (c) G
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pressure as kn , kT , and kP . It is interesting to find that all the values of knηΩ , kTηΩ , and 
kPηΩ increase from 1.3 to 4 as Mt increases, which is consistent with the aforementioned 
trend for kccηΩ . To further verify the coupling relationship between the spectra of ther-
modynamic variables and the spectrum of compressible velocity component, we com-
pare the instantaneous spectra in Fig. 16 under different Mt , following the normalized 
rules that the integral of the spectrum over the entire wavenumber range is equal to 1. 
It can be seen that all the spectra of thermodynamic variables are consistent with Ec(k) , 
indicating that the spatial correlations of thermodynamic fluctuations are dominated by 
the compressible mode of the velocity field. In this way, the effects of thermal fluctua-
tions on the turbulence thermodynamic spectra under different Mt are the same as those 
on Ec(k).

5 � Concluding remarks
In this work, we employed the DSMC method to simulate 1D stationary homogeneous 
turbulence and 2D decaying isotropic turbulence at the molecular level, in order to study 
the effect of thermal fluctuations on turbulence under different turbulent Mach numbers 
Mt . Our results show that the DSMC method can obtain the expected turbulent flow 
structures, and the spectral scaling laws of the inertial range are consistent with those 
obtained based on the deterministic NS equations. More interesting, the DSMC results 
predict that the turbulent energy spectra E(k) are greatly affected by thermal fluctuations 
in the dissipation range, which obviously cannot be revealed by the deterministic NS 
equations.

It is found that the crossover length scale lc at which the thermal fluctuations dominate 
E(k) occurs in the same order of magnitude as the viscous dissipation length scale ( η for 
1D cases, and ηΩ for 2D cases), which shows good agreement with the previous conclu-
sion on 3D turbulence [9, 35]. Meanwhile, the wavenumber scaling laws of the energy 
spectra caused by thermal fluctuations depend on the spatial dimensions d as k(d−1).

For 2D turbulence, we further decomposed E(k) into the spectra of solenoidal and 
compressible velocity components, and the corresponding crossover wavenumbers (i.e., 
kc

s and kcc ) were determined under different Mt . It is found that the values of kcsηΩ are 
almost unchanged, while the values of kccηΩ increase significantly with Mt , indicating 
that the effect of thermal fluctuations on the spectrum of compressible velocity compo-
nent is greatly affected by the change of compressibility.

We also calculated the spectra of density, temperature and pressure for 2D turbulence. 
The results show that all the thermodynamic spectra grow linearly with k at large wave-
numbers, revealing the similar effect of thermal fluctuations as found for the energy 
spectra. More importantly, it is found that the thermodynamic spectra are dominated by 
the compressible mode of velocity field, leading to the fact that the crossover wavenum-
bers for the thermodynamic spectra are the same as kcc.

Together with the previous study [35], our work demonstrates that the DSMC 
method serves as a powerful tool to investigate the interactions between thermal fluc-
tuations and turbulence, which cannot be described by the deterministic NS equations. 
While the present studies are limited to 1D and 2D cases, it will be of great interest to 
explore whether the conclusions we drawn can be extended to 3D cases in the future, 
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particularly for the compressibility effect. Previous studies of 3D turbulence have shown 
that the computational cost of the DSMC method would become notoriously large [31], 
so the multiscale stochastic particle methods, such as the particle Fokker-Planck method 
[54, 65] or the unified stochastic particle (USP) method [66, 67], are expected to investi-
gate the effect of thermal fluctuations on compressible turbulence with higher computa-
tional efficiency.
Acknowledgements
The authors thank Prof. Guice Yao, Prof. Jian Yu, Peng Tian and Ziqi Cui for helpful discussions about this work.

Authors’ contributions
The contribution of the authors to the work is equivalent. All authors read and approved the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of China (Grant No. 92052104). The results were 
obtained on the Zhejiang Super Cloud Computing Center M6 Partition.

Availability of data and materials
All data generated or analyzed during this study are included in this published article.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 1 November 2022   Accepted: 29 November 2022

References
	1.	 Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge
	2.	 Tennekes H, Lumley JL (1972) A first course in turbulence. MIT press, Cambridge, Massachusetts
	3.	 Moser RD (2006) On the validity of the continuum approximation in high Reynolds number turbulence. Phys Fluids 

18(7):078105
	4.	 Betchov R (1957) On the fine structure of turbulent flows. J Fluid Mech 3(2):205–216
	5.	 Betchov R (1964) Measure of the intricacy of turbulence. Phys Fluids 7(8):1160–1162
	6.	 Landau LD, Lifshitz EM (1959) Fluid mechanics: course of theoretical physics, vol. 6. Pergamon Press, Oxford
	7.	 Garcia AL, Mansour MM, Lie GC et al (1987) Numerical integration of the fluctuating hydrodynamic equations. J Stat 

Phys 47:209–228
	8.	 de Zárate JMO, Sengers JV (2006) Hydrodynamic fluctuations in fluids and fluid mixtures. Elsevier, Amsterdam
	9.	 Bell JB, Nonaka A, Garcia AL et al (2022) Thermal fluctuations in the dissipation range of homogeneous isotropic 

turbulence. J Fluid Mech 939:A12
	10.	 Khurshid S, Donzis DA, Sreenivasan KR (2018) Energy spectrum in the dissipation range. Phys Rev Fluids 3(8):082601
	11.	 Buaria D, Sreenivasan KR (2020) Dissipation range of the energy spectrum in high Reynolds number turbulence. 

Phys Rev Fluids 5(9):092601
	12.	 Kraichnan RH (1967) Intermittency in the very small scales of turbulence. Phys Fluids 10(9):2080–2082
	13.	 Chen S, Doolen G, Herring JR et al (1993) Far-dissipation range of turbulence. Phys Rev Lett 70(20):3051–3054
	14.	 Bandak D, Goldenfeld N, Mailybaev AA et al (2022) Dissipation-range fluid turbulence and thermal noise. Phys Rev E 

105(6):065113
	15.	 Rapaport DC (2004) The art of molecular dynamics simulation, 2nd edn. Cambridge University Press, Cambridge
	16.	 Smith ER (2015) A molecular dynamics simulation of the turbulent Couette minimal flow unit. Phys Fluids 

27(11):115105
	17.	 Bird GA (1994) Molecular gas dynamics and the direct simulation of gas flows. Clarendon Press, Oxford
	18.	 Boyd ID, Schwartzentruber TE (2017) Nonequilibrium gas dynamics and molecular simulation. Cambridge University 

Press, Cambridge
	19.	 Koura K, Matsumoto H (1991) Variable soft sphere molecular model for inverse-power-law or Lennard-Jones poten-

tial. Phys Fluids A Fluid Dyn 3(10):2459–2465
	20.	 Wagner W (1992) A convergence proof for Bird’s direct simulation Monte Carlo method for the Boltzmann equation. 

J Stat Phys 66(3):1011–1044
	21.	 Garcia AL (1986) Nonequilibrium fluctuations studied by a rarefied-gas simulation. Phys Rev A 34(2):1454–1457
	22.	 Mansour MM, Garcia AL, Lie GC et al (1987) Fluctuating hydrodynamics in a dilute gas. Phys Rev Lett 58(9):874–877
	23.	 Bruno D, Capitelli M, Longo S et al (2006) Monte Carlo simulation of light scattering spectra in atomic gases. Chem 

Phys Lett 422:571–574
	24.	 Zhang J, Fan J (2009) Monte Carlo simulation of thermal fluctuations below the onset of Rayleigh-Bénard convec-

tion. Phys Rev E 79(5):056302
	25.	 Bruno D (2019) Direct simulation Monte Carlo simulation of thermal fluctuations in gases. Phys Fluids 31(4):047105



Page 23 of 24Ma et al. Advances in Aerodynamics             (2023) 5:3 	

	26.	 Ma Q, Yang C, Bruno D et al (2021) Molecular simulation of Rayleigh-Brillouin scattering in binary gas mixtures and 
extraction of the rotational relaxation numbers. Phys Rev E 104(3):035109

	27.	 Manela A, Zhang J (2012) The effect of compressibility on the stability of wall-bounded Kolmogorov flow. J Fluid 
Mech 694:29–49

	28.	 Gallis MA, Koehler TP, Torczynski JR et al (2015) Direct simulation Monte Carlo investigation of the Richtmyer-
Meshkov instability. Phys Fluids 27(8):084105

	29.	 Gallis MA, Koehler TP, Torczynski JR et al (2016) Direct simulation Monte Carlo investigation of the Rayleigh-Taylor 
instability. Phys Rev Fluids 1(4):043403

	30.	 Plimpton SJ, Moore SG, Borner A et al (2019) Direct simulation Monte Carlo on petaflop supercomputers and 
beyond. Phys Fluids 31(8):086101

	31.	 Gallis MA, Bitter NP, Koehler TP et al (2017) Molecular-level simulations of turbulence and its decay. Phys Rev Lett 
118(6):064501

	32.	 Gallis MA, Torczynski JR, Bitter NP et al (2018) Gas-kinetic simulation of sustained turbulence in minimal Couette 
flow. Phys Rev Fluids 3(7):071402

	33.	 Gallis MA, Torczynski JR, Krygier MC et al (2021) Turbulence at the edge of continuum. Phys Rev Fluids 6(1):013401
	34.	 McMullen R, Krygier M, Torczynski J et al (2022) Gas-kinetic simulations of compressible turbulence over a mean-

free-path-scale porous wall. Paper presented at the AIAA SCITECH 2022 Forum, San Diego & Virtual, 3-7 January 
2022

	35.	 McMullen RM, Krygier MC, Torczynski JR et al (2022) Navier-Stokes equations do not describe the smallest scales of 
turbulence in gases. Phys Rev Lett 128(11):114501

	36.	 Passot T, Pouquet A (1987) Numerical simulation of compressible homogeneous flows in the turbulent regime. J 
Fluid Mech 181:441–466

	37.	 Andreopoulos Y, Agui JH, Briassulis G (2000) Shock wave—turbulence interactions. Annu Rev Fluid Mech 
32(1):309–345

	38.	 Donzis DA, Jagannathan S (2013) Fluctuations of thermodynamic variables in stationary compressible turbulence. J 
Fluid Mech 733:221–244

	39.	 Terakado D, Hattori Y (2014) Density distribution in two-dimensional weakly compressible turbulence. Phys Fluids 
26(8):085105

	40.	 Wang J, Gotoh T, Watanabe T (2017) Spectra and statistics in compressible isotropic turbulence. Phys Rev Fluids 
2(1):013403

	41.	 Wang J, Wan M, Chen S et al (2018) Effect of shock waves on the statistics and scaling in compressible isotropic 
turbulence. Phys Rev E 97(4):043108

	42.	 Chen S, Wang J, Li H et al (2018) Spectra and Mach number scaling in compressible homogeneous shear turbu-
lence. Phys Fluids 30(6):065109

	43.	 Wang J, Wan M, Chen S et al (2019) Cascades of temperature and entropy fluctuations in compressible turbulence. J 
Fluid Mech 867:195–215

	44.	 Chen S, Stemmer C (2022) Modeling of thermochemical nonequilibrium flows using open-source direct simulation 
Monte Carlo kernel SPARTA. J Spacecr Rockets 59(5):1634–1646

	45.	 Alexander FJ, Garcia AL, Alder BJ (1998) Cell size dependence of transport coefficients in stochastic particle algo-
rithms. Phys Fluids 10(6):1540–1542

	46.	 Hadjiconstantinou NG (2000) Analysis of discretization in the direct simulation Monte Carlo. Phys Fluids 
12(10):2634–2638

	47.	 Landau LD, Lifshitz EM (1980) Statistical physics, part 1. Pergamon Press, Oxford
	48.	 Lifshitz EM, Pitaevskii LP (1980) Statistical physics, part 2. Pergamon Press, Oxford
	49.	 Hadjiconstantinou NG, Garcia AL, Bazant MZ et al (2003) Statistical error in particle simulations of hydrodynamic 

phenomena. J Comput Phys 187(1):274–297
	50.	 Press WH, Teukolsky SA, Vetterling WT et al (2007) Numerical recipes. The art of scientific computing. 3rd edn. Cam-

bridge University Press, Cambridge
	51.	 Verma MK (2020) Boltzmann equation and hydrodynamic equations: their equilibrium and non-equilibrium behav-

iour. Philos Trans Royal Soc A 378(2175):20190470
	52.	 Ni Q, Shi Y, Chen S (2013) Statistics of one-dimensional compressible turbulence with random large-scale force. Phys 

Fluids 25(7):075106
	53.	 Boldyrev S, Linde T, Polyakov A (2004) Velocity and velocity-difference distributions in Burgers turbulence. Phys Rev 

Lett 93(18):184503
	54.	 Zhang J, Tian P, Yao SQ et al (2019) Multiscale investigation of Kolmogorov flow: From microscopic molecular 

motions to macroscopic coherent structures. Phys Fluids 31(8):082008
	55.	 Wang J, Shi Y, Wang LP et al (2012) Effect of compressibility on the small-scale structures in isotropic turbulence. J 

Fluid Mech 713:588–631
	56.	 Ishiko K, Ohnishi N, Ueno K et al (2009) Implicit large eddy simulation of two-dimensional homogeneous turbu-

lence using weighted compact nonlinear scheme. J Fluids Eng 131(6):061401
	57.	 San O, Staples AE (2012) High-order methods for decaying two-dimensional homogeneous isotropic turbulence. 

Comput Fluids 63:105–127
	58.	 Yu J, Yan C, Jiang Z (2014) On the use of the discontinuous Galerkin method for numerical simulation of two-dimen-

sional compressible turbulence with shocks. Sci China Phys Mech Astron 57(9):1758–1770
	59.	 Kraichnan RH (1967) Inertial ranges in two-dimensional turbulence. Phys Fluids 10(7):1417–1423
	60.	 Boffetta G, Ecke RE (2012) Two-dimensional turbulence. Ann Rev Fluid Mech 44(1):427–451
	61.	 Herring JR, Orszag SA, Kraichnan RH et al (1974) Decay of two-dimensional homogeneous turbulence. J Fluid Mech 

66(3):417–444
	62.	 Kevlahan NKR, Farge M (1997) Vorticity filaments in two-dimensional turbulence: creation, stability and effect. J Fluid 

Mech 346:49–76
	63.	 Kraichnan RH (1971) Inertial-range transfer in two- and three-dimensional turbulence. J Fluid Mech 47(3):525–535



Page 24 of 24Ma et al. Advances in Aerodynamics             (2023) 5:3 

	64.	 Kritsuk AG (2019) Energy transfer and spectra in simulations of two-dimensional compressible turbulence. In: 
Gorokhovski M, Godeferd FS (eds) Turbulent cascades II. ERCOFTAC Series, vol 26. Springer, Cham

	65.	 Zhang J, John B, Pfeiffer M et al (2019) Particle-based hybrid and multiscale methods for nonequilibrium gas flows. 
Adv Aerodyn 1(1):12

	66.	 Fei F, Zhang J, Li J et al (2020) A unified stochastic particle Bhatnagar-Gross-Krook method for multiscale gas flows. J 
Comput Phys 400:108972

	67.	 Fei F, Jenny P (2021) A hybrid particle approach based on the unified stochastic particle Bhatnagar-Gross-Krook and 
DSMC methods. J Comput Phys 424:109858

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Effect of thermal fluctuations on homogeneous compressible turbulence
	Abstract 
	1 Introduction
	2 Methodology
	2.1 DSMC method
	2.2 Spatial correlation of thermal fluctuations

	3 One-dimensional stationary turbulence
	3.1 Simulation details
	3.2 Numerical results

	4 Two-dimensional decaying turbulence
	4.1 Simulation details
	4.2 Basic features
	4.3 Effect of compressibility on spectra

	5 Concluding remarks
	Acknowledgements
	References


