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Abstract 

To improve the efficiency of the discrete unified gas kinetic scheme (DUGKS) in captur-
ing cross-scale flow physics, an adaptive partitioning-based discrete unified gas kinetic 
scheme (ADUGKS) is developed in this work. The ADUGKS is designed from the dis-
crete characteristic solution to the Boltzmann-BGK equation, which contains the initial 
distribution function and the local equilibrium state. The initial distribution function 
contributes to the calculation of free streaming fluxes and the local equilibrium state 
contributes to the calculation of equilibrium fluxes. When the contribution of the initial 
distribution function is negative, the local flow field can be regarded as the continuous 
flow and the Navier–Stokes (N-S) equations can be used to obtain the solution directly. 
Otherwise, the discrete distribution functions should be updated by the Boltzmann 
equation to capture the rarefaction effect. Given this, in the ADUGKS, the computa-
tional domain is divided into the DUGKS cell and the N-S cell based on the contribu-
tion of the initial distribution function to the calculation of free streaming fluxes. In 
the N-S cell, the local flow field is evolved by solving the N-S equations, while in the 
DUGKS cell, both the discrete velocity Boltzmann equation and the correspond-
ing macroscopic governing equations are solved by a modified DUGKS. Since more 
and more cells turn into the N-S cell with the decrease of the Knudsen number, a sig-
nificant acceleration can be achieved for the ADUGKS in the continuum flow regime 
as compared with the DUGKS.

Keywords: Boltzmann-BGK equation, Discrete unified gas kinetic scheme, Adaptive 
partitioning, Discrete characteristic solution, All flow regimes

1 Introduction
Multiscale fluid flow problems exist widely in aerospace engineering [1–3], micro-elec-
tro-mechanical systems (MEMS) [4–6], exploration and development of shale gas [7–9], 
and so on. For example, the reference Knudsen number (Kn), which is defined as the 
ratio of the mean free path of molecules of the free stream flow to the characteristic 
physical length scale, will be changed greatly at different altitudes during the launching 
and landing stages of the space vehicle. Moreover, even at a certain altitude, the local 
Knudsen number around the space vehicle, which is usually defined by the local gradi-
ent length of the density ( ρ |∇ρ| ), will also cover a wide range of values with four to 
five orders of magnitude difference [10]. With the increase of the Knudsen number, the 
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fluid flow will traverse the continuum regime (Kn < 0.001), slip regime (0.001 < Kn < 0.1), 
transition regime (0.1 < Kn < 10), and free molecular regime (Kn > 10). If different flow 
regimes exist in one computational domain, it is difficult to resolve this kind of problem 
by either the Navier–Stokes (N-S) solver [11–13] or the direct simulation Monte Carlo 
(DSMC) method [14–16]. Thus, an effective numerical algorithm is desired for captur-
ing cross-scale flow physics.

Due to the use of the continuity assumption, the N-S solver is inapplicable for the 
above problems. Different from the N-S solver, the DSMC method resolves fluid flow 
problems by mimicking the streaming and collision of simulation particles. The DSMC 
method is first proposed by Bird [17] and further developed by many researchers [18–
21], which is the most popular and effective method for solving hypersonic rarefied 
flows. But since the streaming and collision processes are decoupled, this method usually 
required that the mesh size is less than the molecular mean free path and the time step 
size is less than the averaged molecular collision time [22]. In the rarefied flow regime, 
these requirements do not influence the accuracy and efficiency of the DSMC method 
since the molecular mean free path and the averaged molecular collision time are larger 
than the mesh size and the time step size. But with the decrease of the Knudsen number, 
these requirements will lead to very small mesh size and time step size, thus limiting the 
application of the DSMC method in the near continuum and continuum flow regimes. 
To extend the application of the DSMC method to all flow regimes, the hybrid N-S/
DSMC method has been developed [23–27]. The basic idea of this method is to divide 
the computational domain into the continuous region and the rarefied region. In the 
continuous region, the N-S solver is used to simulate the flow field in the macroscopic 
scale directly, and in the rarefied region, the DSMC method is utilized to pursue the sta-
tistical solution in the microscopic scale. In this way, the cross-scale fluid flow problems 
are expected to be resolved efficiently. But since the N-S solver and the DSMC method 
are respectively the deterministic and stochastic methods, a buffer region is needed for 
the information exchange between these two methods and a criterion is required for the 
partition of different regions. Torre et al. [28] pointed out that the results given by the 
hybrid N-S/DSMC method are very sensitive to the buffer region and the partitioning 
criterion. These issues are still open for the design of the hybrid N-S/DSMC method.

Except for the DSMC method, the discrete velocity method (DVM) has emerged as a 
powerful tool for solving multiscale fluid flow problems [29–31]. The DVM solves the 
Boltzmann equation in both the molecular velocity space and the physical space. In 
the framework of DVM, various numerical methods have been developed, such as the 
gas kinetic unified algorithm (GKUA) [32, 33], the unified gas kinetic scheme (UGKS) 
[34, 35], the discrete unified gas kinetic scheme (DUGKS) [36, 37], the improved dis-
crete velocity method (IDVM) [38, 39], the general synthetic iterative scheme (GSIS) 
[40, 41], and so on. Among them, the UGKS, DUGKS and IDVM solve the discrete 
velocity Boltzmann equation (DVBE) by the finite volume method (FVM) and evalu-
ate the numerical fluxes at the cell interface by coupling the motion and collision pro-
cesses of molecules. Specifically, the UGKS utilizes the local integral solution to the 
Boltzmann-BGK equation to calculate the numerical fluxes of both the DVBE and 
the corresponding macroscopic governing equations. The original DUGKS uses the 
local discrete characteristic solution to the Boltzmann-BGK equation to evaluate the 
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numerical fluxes of DVBE and introduces several transformations to avoid the solv-
ing of macroscopic governing equations. However, to achieve better conservative-
ness, the DVBE and the macroscopic governing equations are solved simultaneously 
in the modified DUGKS [42–44]. The IDVM solves the DVBE and the macroscopic 
governing equations with different strategies. Since the DVBE mainly takes effect in 
the rarefied flow regime, the IDVM calculates the numerical fluxes of DVBE without 
considering the collision process of molecules in order to keep the simplicity of the 
original DVM. But to obtain accurate results in the near continuum and continuum 
flow regimes, the collisional effect is introduced into the solution of macroscopic gov-
erning equations, which dominate the solution in these regimes. Although the DVM-
type method can provide reasonable solutions in all flow regimes, it will lead to the 
curse of dimensionality since the discretizations are carried out in both the molecular 
velocity space and the physical space.

Like the hybrid N-S/DSMC method, several hybrid solvers based on the DVM-type 
method have been developed to alleviate the curse of dimensionality. Xiao et al. [45] pro-
posed a velocity-space adaptive unified gas kinetic scheme (AUGKS) for the simulation of 
continuum and rarefied flows. In this method, the molecular velocity space is continuous in 
the near-equilibrium region and discrete in the non-equilibrium region. In the near-equi-
librium region, only the macroscopic conservative variables are updated by the gas kinetic 
scheme (GKS) and the corresponding discrete distribution functions at the cell interface of 
different regions are reconstructed directly from the Chapman-Enskog expansion. In the 
non-equilibrium region, the UGKS is used to evolve both the discrete distribution func-
tions and the macroscopic conservative variables. Since both the GKS and the UGKS are 
deterministic methods, no buffer zone is needed for the AUGKS to connect different solv-
ers. Yang et al. [46] developed a hybrid algorithm that combines the DVM with the method 
of moments (DVM/MM) to simulate the rarefied gas flows in the transition regime. This 
hybrid method uses the DVM in the near-wall region (namely the vicinity of the Knudsen 
layer) where the method of moments is less accurate and utilizes the method of moments to 
describe the bulk flow field. Since the computational cost and the memory consumption of 
the method of moments are far less than those of DVM, the hybrid DVM/MM outperforms 
the DVM in simulating the transition flows. Besides that, Liu et al. [47] designed a hybrid 
method that couples the IDVM with the Grad 13-based gas kinetic flux solver (IDVM/
GKFS) to simulate the non-equilibrium flows. In all the above hybrid methods, an artificial 
criterion concerning the local Knudsen number/Knudsen layer is required to switch differ-
ent solvers. This artificial criterion will result in uncertainty in the calculation.

Whether the hybrid N-S/DSMC method or the DVM-type’s hybrid method, the 
criterion to switch different solvers is a key issue for their application. Even if the 
same local Knudsen number-based criterion is adopted, the threshold is usually set 
to different values for different hybrid methods [47–50]. The main reason is that a 
definite boundary to switch different solvers does not exist in the above methods. 
To overcome this defect, an adaptive partitioning-based discrete unified gas kinetic 
scheme (ADUGKS) is developed in this work. According to the discrete characteristic 
solution to the Boltzmann-BGK equation, the computational domain of multiscale 
fluid flow problems can be divided into the continuous region and the rarefied region. 
This partitioning strategy is fully based on the contribution of the initial distribution 
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function to the calculation of free streaming fluxes, i.e., (2τ − h)
/
(2τ + h) , where τ 

and h are the local collision time and the local half-time step size, respectively. If its 
contribution is negative, the local flow field can be regarded as the continuous flow; 
otherwise, it should be treated as the rarefied flow. In the continuous region, only the 
macroscopic conservative variables are evolved and the N-S solver is adopted directly, 
while in the rarefied region, both the discrete distribution functions and the mac-
roscopic conservative variables are updated by a modified DUGKS. In this way, the 
computational cost of ADUGKS can be reduced gradually with the decrease of the 
Knudsen number. Furthermore, since this partitioning strategy is fully determined by 
the local flow field and the local mesh size, and both the DUGKS and the N-S solver 
belong to the deterministic methods, the artificial criterion to switch different solvers 
and the buffer zone are not needed for the ADUGKS.

2  Boltzmann‑BGK equation and modified discrete unified gas kinetic scheme
The BGK model is proposed by Bhatnagar, Gross and Krook [51] to simplify the collision 
integral of the original Boltzmann equation. The discretization form of the Boltzmann-
BGK equation in the molecular velocity space can be written as

where NV  and the subscript α are the total number of discrete velocity points and the 
index in the discrete velocity space, respectively. ξ is the molecular velocity vector, � is 
the collision operator, τ is the collision time, f  is the distribution function and g is its 
equilibrium state. For the monatomic gas, the equilibrium state is defined by the Max-
wellian distribution function.

where ρ is the density, T  is the temperature, c = ξ− u is the molecular thermal velocity 
vector, u is the mean flow velocity, c = |c| is the magnitude of c , and Rg is the gas con-
stant. Multiplying Eq. (1) with the microscopic conservative moment ψ =

(
1, ξ, ξ2

/
2
)T 

and integrating the resultant equation in the molecular velocity space, the macroscopic 
governing equations of conservation laws can be obtained.

where the conservative flow variables W and the fluxes F are defined by

The notation 
〈
f
〉

α
=

∑

NV
fα defines the numerical quadrature of discrete distribution 

functions in the whole molecular velocity space.

(1)
∂fα

∂t
+ ξα • ∇fα = �α =

gα − fα

τ
, α = 1, · · · ,NV ,

(2)g =
ρ

(
2πRgT

)3/ 2
exp

[

−
c2

2RgT

]

,

(3)
∂W

∂t
+∇ • F = 0,

(4)W = (ρ, ρu, ρE)T =
〈
ψf

〉

α
=

〈
ψg

〉

α
,

(5)F =
(
Fρ , Fρu, FρE

)T
=

〈
ξψf

〉

α
.
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The DUGKS solves Eq. (1) by the FVM and uses the discrete characteristic solution to the 
Boltzmann-BGK equation at the cell interface to calculate the numerical fluxes. Integrating 
Eq. (1) over a control volume Vi and using the first-order explicit scheme to discretize the 
temporal derivative and the trapezoidal law to approximate the collision term, we can obtain

where the superscripts n and n+ 1 represents the current time step and the new time 
step. N (i) is the set of neighbouring cells of the cell i . nij and Sij are respectively the unit 
outward normal vector and the area of the interface shared by the cells i and j . �t is the 
time step size, which is determined by the Courant-Friedrichs-Lewy (CFL) condition. 
In the original DUGKS [36, 37], to avoid the implicit computation of gn+1

i,α  , two auxiliary 
distribution functions are introduced into Eq. (6). But in fact, gn+1

i,α  can also be predicted 
by the solution of Eq. (3) [42–44]. Similar to the discretization of Eq. (1), Eq. (3) can be 
discretized as

where the macroscopic fluxes vector is computed by

Once the predicted conservative variables Wn+1
i  are obtained by Eq. (7), gn+1

i,α  can be 
calculated by substituting Wn+1

i  into Eq. (2) directly.
As shown in Eqs. (6) and (8), the key to evolving the discrete distribution functions 

and the conservative variables is to calculate the numerical fluxes at the cell interface, 
which are determined by the discrete distribution function fij,a(t) . In the DUGKS, fij,a(t) 
is calculated by the discrete characteristic solution to the Boltzmann-BGK equation at 
the cell interface. Integrating Eq. (1) from tn = 0 to tn +�t

/
2 along the characteristic 

line and applying the trapezoidal law to approximate the collision term, we can obtain

where xij represents the location of the cell interface and h = �t
/
2 is the half-time step 

size. fa
(
xij − ξαh, 0

)
 and gα

(
xij − ξαh, 0

)
 are the discrete distribution function and its 

equilibrium state at the surrounding points of the cell interface at the current time level, 
which can be obtained by interpolating from those at the cell center.

(6)

f n+1
i,α =

2τn+1
i

2τn+1
i +�t



f ni,α −
1

Vi

�

j∈N (i)

Sij

� �t

0

nij • ξα fij,a(t)dt +
�t

2

�

gni,α − f ni,α

τni
+

gn+1
i,α

τn+1
i

�

,

(7)W
n+1
i −W

n
i +

�t

Vi

∑

j∈N (i)

Sijnij • Fij = 0,

(8)Fij =
1

�t

〈∫ �t

0

ξψfij(t)dt

〉

α

.

(9)
fij,a(h) = fα

(
xij , h

)

=
2τ − h

2τ + h
fα
(
xij − ξαh, 0

)
+

h

2τ + h

(
gα
(
xij − ξαh, 0

)
+ gα

(
xij , h

))
,

(10)φ
(
xij − ξαh, 0

)
=

{
φL

(
xij , 0

)
− hξα • ∇φ(xi, 0)L(φ, xi), nij • ξα ≥ 0

φR
(
xij , 0

)
− hξα • ∇φ

(
xj , 0

)
L
(
φ, xj

)
, nij • ξα < 0

,
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where φ stands for either fa or gα . φL and φR denote the interfacial states of fa or gα at 
the left and right sides, respectively. They can be reconstructed from those at cell centers 
with a slope limiter function L(φ, x) . gα

(
xij , h

)
 is the equilibrium distribution function at 

the cell interface and the time level of h , which is the function of conservative variables 
at the same position and time level. Multiplying Eq. (9) with the microscopic conserva-
tive moment ψ and integrating the resultant equation in the molecular velocity space, we 
can get

As a result, the conservative variables at the cell interface can be calculated by

Since fa
(
xij − ξαh, 0

)
 and ga

(
xij − ξαh, 0

)
 have been determined by Eq. (10), W

(
xij , h

)
 

can be calculated explicitly, and then gα
(
xij , h

)
 can be fully determined. Finally, the time 

integration of numerical fluxes at the cell interface can be approximated by the rectangle 
rule, namely taking fij,a(t) = fij,a(h).

3  Adaptive partitioning‑based discrete unified gas kinetic scheme
It can be seen from Eq.  (9) that, the distribution function at the cell interface consists 
of the initial distribution function f frij  and the local equilibrium state f eqij  , which can be 
rewritten into the following form:

Here, f frij  and f eqij  contribute to the calculation of free streaming fluxes and equilibrium 
fluxes, respectively. The contribution of f frij  to the calculation of free streaming fluxes 
is dependent on an adaptive parameter β = (2τ − h)

/
(2τ + h) , which is determined by 

the local flow variables and the local mesh size. Thus, its contribution will be changed in 
different regions of the computational domain.

In the region where β > 0 , the contribution of the initial distribution function to the cal-
culation of fα

(
xij , h

)
 is positive, which means that there is a β portion of “molecules” with-

out suffering collision before crossing the cell interface. In this circumstance, the rarefaction 
effect has to be considered in the calculating of numerical fluxes. But in the region where 
β < 0 , the contribution of the initial distribution function to the calculation of fα

(
xij , h

)
 is 

negative, which means that all “molecules” suffer at least one collision before crossing the 
cell interface. In other words, the local mesh size in this case is larger than the mean free 
path of molecules. Thus, the fluid flow in this region can be treated as the continuous flow 
directly. These inferences are the basis for the design of the ADUGKS in this work.

(11)

W
(
xij , h

)
=

2τ − h

2τ + h

〈
ψf

(
xij − ξαh, 0

)〉

a
+

h

2τ + h

{〈
ψg

(
xij − ξαh, 0

)〉

a
+W

(
xij , h

)}
.

(12)W
(
xij , h

)
=

2τ − h

2τ

〈
ψf

(
xij − ξαh, 0

)〉

a
+

h

2τ

〈
ψg

(
xij − ξαh, 0

)〉

a
.

(13)
fα
(
xij , h

)
=

2τ − h

2τ + h
fα
(
xij − ξαh, 0

)

︸ ︷︷ ︸

f
fr
ij

+
h

2τ + h

(
gα
(
xij − ξαh, 0

)
+ gα

(
xij , h

))

︸ ︷︷ ︸

f
eq
ij

.
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3.1  Adaptive partitioning for identification of cell types and face types

Different from other hybrid methods [23–28, 45–50], in which an artificial parameter is 
usually required to identify the cell types and/or a buffer region is needed to link differ-
ent solvers, the ADUGKS identifies the cell types based on a local adaptive parameter 
and it does not need to set a buffer region. For a control volume Vi , the adaptive param-
eter can be calculated by

with the collision time τi and the half-time step size hi defined by

where, σ is the associated CFL number for the calculation of the time step �t , ξx,max and 
ξy,max are the maximum discrete velocities in the x- and y-direction, �Sx and �Sy are the 
projections of the control volume on the y- and x-plane, respectively. In this work, σ is 
taken as 0.95 to avoid extrapolation when reconstructing the initial distribution func-
tions at the surrounding points of the cell interface.

According to the value of βi , the cell i can be classified into the DUGKS cell or the N-S 
cell as follows:

where Tcell,i is the flag of the cell type of cell i. In addition, for the convenience of the cal-
culation of numerical fluxes at the cell interface, the flag of the face type of the interface 
shared by cells i and j is defined by

It can be seen from Eq. (18) that, for the cell interface shared by the DUGKS cell and 
the N-S cell, we have Tface,ij = 0 . Otherwise, the value of Tface,ij is consistent with the flag 
of the cell type of the left and right cells. The details of the classification of cell types and 
face types are shown in Fig. 1.

In the DUGKS cell, both the discrete distribution functions fα and the conservative 
variables W are evolved, while in the N-S cell, only the conservative variables W need 
to be updated. But for the convenience of evolving fα in the DUGKS cell close to the 
interface where Tface,ij = 0 , the discrete distribution functions in the N-S cell close 
to the same interface need to be given explicitly. According to the Chapman-Enskog 
expansion, the distribution function in the N-S cell can be reconstructed directly 
from its expansion truncated to the N-S level.

(14)βi =
2τi − hi

2τi + hi
,

(15)τi =
µi

pi
,

(16)hi =
�ti

2
=

0.5σVi

ξx,max�Sx + ξy,max�Sy
,

(17)Tcell,i =

{
1, βi > 0 is the DUGKS cell
−1, βi ≤ 0 is the N - S cell

,

(18)Tface,ij =
1

2

(
Tcell,i + Tcell,j

)
.
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For the convenience of application, the temporal and spatial derivatives of g  can be 
further reformulated as the spatial derivatives of macroscopic flow variables. The final 
expression of fNS can be written as [52]

where

is the trace-free part of a symmetric tensor and � = 1
/(

2RgT
)
 . In addition, for the con-

venience of evolving W in the N-S cell close to the interface where Tface,ij = 0 , the con-
servative variables in the DUGKS cell close to the same interface are needed. They can 
be calculated from fα by Eq. (4) directly.

3.2  Evolution of discrete distribution functions and conservative variables

In the ADUGKS, the discrete distribution functions fα are only stored and evolved 
in the DUGKS cell. This process is the same as the DUGKS and the discrete distribu-
tion functions at the cell interface fij,a(h) are calculated by Eq.  (9). But note that, in 
the ADUGKS, fa

(
xij − ξαh, 0

)
 and gα

(
xij − ξαh, 0

)
 in the N-S cell close to the interface 

where Tface,ij = 0 are calculated from the conservative variables and their derivatives 
at xij − ξαh rather than by Eq. (10) since the derivatives of discrete distribution func-
tions in the N-S cell are unknown. The conservative variables in the N-S cell at the 
location xij − ξαh can be calculated by

where WL and WR are the interfacial states of W at the left and right sides. They can be 
reconstructed from those at cell centers with a slope limiter function L(W, x) . ∇W(xi, 0) 

(19)fNS = g − τ

(
∂g

∂t
+ ξ • ∇g

)

+ O
(

τ 2
)

.

(20)fNS = g − τg

{
1

T

(

�c2 −
5

2

)

ci
∂T

∂xi
+ 2�cicj

∂u<i

∂xj>

}

+ O
(

τ 2
)

,

(21)
∂u<i

∂xj>
=

1

2

(
∂ui

∂xj
+

∂uj

∂xi

)

−
1

3

∂uk

∂xk
δij

(22)W
(
xij − ξαh, 0

)
=

{
W

L
(
xij , 0

)
− hξα • ∇W(xi, 0)L(W, xi), nij • ξα ≥ 0

W
R
(
xij , 0

)
− hξα • ∇W

(
xj , 0

)
L
(
W, xj

)
, nij • ξα < 0

,

Fig. 1 Illustration of cell types and face types
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and ∇W
(
xj , 0

)
 are the spatial derivatives of W at the left and right cells. Since the sec-

ond-order scheme is used in this work, the spatial derivatives of W can be regarded as 
constant in every cell at each time step.

As a result, gα
(
xij − ξαh, 0

)
 can be calculated by substituting W

(
xij − ξαh, 0

)
 into 

Eq.  (2) and fa
(
xij − ξαh, 0

)
 can be determined by substituting W

(
xij − ξαh, 0

)
 and 

∇W
(
xij − ξαh, 0

)
 into Eq. (20).

Once the discrete distribution functions at the cell interface between different 
DUGKS cells ( Tface,ij = 1 ) and the interface shared by the DUGKS cell and the N-S cell 
( Tface,ij = 0 ) are obtained, the corresponding numerical fluxes of macroscopic govern-
ing equations Fij can be calculated by Eq.  (8). For other cell interfaces ( Tface,ij = −1 ), 
which are fully located in the N-S region as shown in Fig. 1, the numerical fluxes Fij can 
be calculated by the N-S solver directly. In this work, the improved Roe scheme is used 
to calculate the inviscid fluxes and the central difference scheme is utilized to calculate 
the viscous fluxes [53]. Finally, the conservative variables of all cells can be updated by 
Eq. (7). For the N-S cell, we can take Wn+1

i = W
n+1
i  since the discrete distribution func-

tions in this cell can be reconstructed from the Chapman-Enskog expansion directly. But 
for the DUGKS cell, these evolved conservative variables Wn+1

i  are only used to calcu-
late the predicted equilibrium distributions gn+1

i,α  . With the discrete distribution func-
tions at the cell interface fij,a(h) and the predicted equilibrium distributions gn+1

i,α  , the 
discrete distribution functions f n+1

i,α  and the conservative variables Wn+1
i  in the DUGKS 

cell can be updated by Eq. (6) and Eq. (4), respectively.
It can be seen from the above derivations that the ADUGKS can be viewed as a 

hybrid method of the DUGKS and the N-S solver. At first, the computational domain 
of ADUGKS is divided into the DUGKS region and the N-S region by the value of an 
adaptive parameter βi , which reflects the contribution of collisionless “molecules” to 
the free transport fluxes. This parameter is fully determined by the local flow variables 
and the local mesh size. Thus, it can be adjusted adaptively in the calculation without 
any manual intervention. Then, in the DUGKS cell, the discrete distribution functions 
and the conservative variables are updated by the modified DUGKS, and in the N-S 
cell, the conservative variables are updated by the N-S solver directly and the evolu-
tion of discrete distribution functions is abandoned. This is due to the fact that the 
discrete distribution functions in the N-S cell can be reconstructed from its expan-
sion truncated to the N-S level directly, which is fully determined by the macroscopic 
flow variables and their spatial derivatives. Since the number of discrete distribution 
functions is far larger than that of conservative variables, the computational cost of 
ADUGKS is mainly determined by the number of DUGKS cells. It can be inferred that 
the computational cost of ADUGKS will be reduced with the decrease of the Knud-
sen number, in which case the computational domain is mainly occupied by the N-S 
region. This expectation can be verified in Section 4.

(23)∇W
(
xij − ξαh, 0

)
=

{
∇W(xi, 0), nij • ξα ≥ 0

∇W
(
xj , 0

)
, nij • ξα < 0

.
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3.3  Analysis of asymptotic preserving property and computational sequence

As a multiscale kinetic scheme, it is important to analyze the asymptotic preserving 
property. The asymptotic behaviors of the proposed method in the collisionless limit 
and the continuous limit are discussed below.

1. Collisionless limit ( τ → ∞)

 In this case, the adaptive parameter β can be approximated as

Equation (24) shows that all cells belong to the DUGKS cell and the ADUGKS turns 
into the DUGKS in this situation. In other words, the ADUGKS solves the collision-
less Boltzmann equation in the collisionless limit by the DUGKS.

2. Continuous limit ( τ → 0)

 In this case, the adaptive parameter β can be approximated as

Equation  (25) indicates that all cells belong to the N-S cell and the ADUGKS 
turns into the N-S solver in this circumstance. As a result, the solution given by the 
ADUGKS in the continuous limit is indeed the result of N-S equations.

In the ADUGKS, there are two types of cells in the computational domain. One is 
the DUGKS cell, in which the modified DUGKS is used to update both the discrete 
distribution functions and the conservative variables, and  the other is the N-S cell, 
in which only the conservative variables are evolved and the N-S solver is applied 
directly. The computational processes of ADUGKS are summarized as follows:

 (1) In the first step, initialize the conservative variables Wn=0
i  in all cells.

 (2) Calculate the collision time τi and the half-time step size hi in each control vol-
ume by Eqs. (15) and (16), respectively.

 (3) Compute the adaptive parameter βi by Eq.  (14) and classify all cells into the 
DUGKS cell or the N-S cell by Eq. (17). At the same time, identify the face types 
by Eq. (18).

 (4) Get the initial state of discrete distribution functions f ni,α at the DUGKS cell and 
the N-S cell linked to the interface where Tface,ij = 0 . If f ni,α does not exist in the 
target cell, it can be reconstructed by Eq. (20). In the first step, we can take f ni,α as 
the equilibrium state directly, i.e., f n=0

i,α = gn=0
i,α .

 (5) Calculate the derivatives of conservative variables ∇W
n
i  at the N-S cell and the 

derivatives of discrete distribution functions ∇f ni,α at the DUGKS cell by the 
Green-Gauss approach or the least-square method [54].

(24)β = lim
τ→∞

2τ − h

2τ + h
→ 1.

(25)β = lim
τ→0

2τ − h

2τ + h
→ −1.
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 (6) Compute the discrete distribution functions at the surrounding points of cell 
interfaces where Tface,ij = 1 and Tface,ij = 0 by Eqs. (10) and (20), respectively, 
and calculate the equilibrium state at the cell interface by Eq. (12). Then, evaluate 
fα
(
xij , h

)
 by Eq. (13).

 (7) For the cell interfaces where Tface,ij = 1 and Tface,ij = 0 , calculate the macro-
scopic numerical fluxes by Eq. (8), and for the cell interface where Tface,ij = −1 , 
compute the macroscopic numerical fluxes by the N-S solver.

 (8) Update the conservative variables Wn+1
i  of all cells by Eq.  (7). For the DUGKS 

cell, Wn+1
i  are regarded as the predicted conservative variables, while for the N-S 

cell, we can take Wn+1
i = W

n+1
i  directly since the evolution of discrete distribu-

tion functions in this cell is not needed.
 (9) For the DUGKS cell, calculate the predicted equilibrium state gn+1

i,α  by substi-
tuting Wn+1

i  into Eq. (2). Then, the discrete distribution functions f n+1
i,α  and the 

conservative variables Wn+1
i  can be updated by Eq. (6) and Eq. (4), respectively.

 (10) Repeat steps (2) to (9) until the convergence result is obtained or the desired end 
time has arrived.

4  Numerical examples
In this section, the performance of ADUGKS will be verified by a series of test examples 
with different Knudsen/Reynolds numbers, including the lid-driven cavity flow, the flow 
around a flat plate, the flow around a circular cylinder and the unsteady gas expansion in 
a channel. The obtained results will be compared with those calculated by the modified 
DUGKS described in Section 2 and/or the UGKS code provided on Kun Xu’s homepage 
(https:// www. math. hkust. edu. hk/ ~makxu/? menu=6). For simplicity, the monatomic 
gas with the specific heat ratio of γ = 5

/
3 is assumed in all simulations and the Prandtl 

number is set as Pr = 1 . In addition, all computations are conducted on a PC with a pro-
cessor of Intel(R) Xeon(R) Gold 6226R CPU@2.9 GHz and the OpenMP with 4 threads 
is utilized to speed up the calculation.

4.1  Case 1: lid‑driven cavity flow

The performance of ADUGKS is first validated by the lid-driven cavity flow with different 
Knudsen/Reynolds numbers. In this test example, a square cavity with the edge length L 
is stationary except the top wall is moving with a velocity of uW = 0.15

√
2RgTref  , where 

Tref  is the wall temperature. The solution of this test case is governed by the Knudsen 
number ( Kn ) or the Reynolds numbers ( Re ). To cover different flow regimes, four cases 
with Kn = 1, Kn = 0.075, Re = 100 and Re = 1000, are considered in our simulations. For 
the cases of Kn = 1 and Kn = 0.075, the dynamic viscosity µ is calculated by

where w is a constant related to the inter-molecular interaction model. In this work, 
w = 0.81 is adopted for all simulations. The reference dynamic viscosity µref  is deter-
mined by the Knudsen number.

(26)µ = µref

(
T

Tref

)w

,

https://www.math.hkust.edu.hk/~makxu/?menu=6
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Fig. 2 Comparison of density, temperature, x-component of heat flux and y-component of heat flux 
contours for lid-driven cavity flow at Kn = 1 (ADUGKS: colored background; DUGKS: white dash-dot line; 
UGKS: red dash line)

Fig. 3 Comparison of density, temperature, x-component of heat flux and y-component of heat flux 
contours for lid-driven cavity flow at Kn = 0.075 (ADUGKS: colored background; DUGKS: white dash-dot line; 
UGKS: red dash line)
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Here, ρref  is the reference density. For the cases of Re = 100 and Re = 1000, the dynamic 
viscosity µ is determined by the Reynolds number.

In addition, the computational domain is discretized uniformly by 50× 50 
cells for the cases of Kn = 1 and Kn = 0.075 and by 150× 150 cells for the 
cases of Re = 100 and Re = 1000. For the discretization of the velocity space, 
the Newton–Cotes quadrature with 101× 101 points uniformly distributed in 
[
−4

√
2RgTref , 4

√
2RgTref

]
×

[
−4

√
2RgTref , 4

√
2RgTref

]
 is utilized for the test case of 

Kn = 1, the Gauss-Hermite quadrature rule with 28× 28 points is used for the test case 
of Kn = 0.075, and the Gauss-Hermite quadrature rule with 8× 8 points is adopted for 
the test cases of Re = 100 and Re = 1000.

The comparison of the density, temperature, x-component of heat flux and y-com-
ponent of heat flux contours for the lid-driven cavity flow at Kn = 1 and Kn = 0.075 
are shown in Figs. 2 and 3, respectively. Evidently, the results of ADUGKS are con-
sistent with those of UGKS and DUGKS. Figure  4 compares the velocity profiles 

(27)µref

L
=

5ρref
(
2πRgTref

)1/ 2

16
Kn.

(28)µ =
ρref uWL

Re
.

Fig. 4 Comparison of velocity profiles along the vertical and horizontal central lines of the cavity at different 
Knudsen/Reynolds numbers
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along the vertical and horizontal central lines of the cavity. Once again, the pre-
sent results compare well with those of UGKS and DUGKS as well as the numerical 
results of Ghia et al. [55]. The distribution of the DUGKS cell and the N-S cell for 
the lid-driven cavity flow with different Knudsen/Reynolds numbers is depicted in 
Fig. 5. It can be seen that the DUGKS cell occupies the whole computational domain 
for the cases of Kn = 1, Kn = 0.075 and Re = 100, namely both the DVBE and the mac-
roscopic governing equations are solved simultaneously in all cells by the DUGKS. 
Thus, the computational cost and the memory consumption of ADUGKS for these 
cases are almost consistent with those of DUGKS. But for the case of Re = 1000, all 
cells belong to the N-S cell, resulting in one order of magnitude acceleration.

4.2  Case 2: flow around a flat plate

In the above test example, all cells belong to either the DUGKS cell or the N-S cell, the 
performance of ADUGKS for the case in which the computational domain contains both 
types of cells has not been examined. Thus, the flow around a flat plate with different 
Reynolds numbers is simulated in this subsection. In this test example, the free stream 
temperature is Tref = 295 K and the Mach number is Ma = 0.2 [56–58]. The flat plate 

Fig. 5 Distribution of the DUGKS cell and the N-S cell for lid-driven cavity flow with different Knudsen/
Reynolds numbers



Page 15 of 30Yang et al. Advances in Aerodynamics #####################_ 

Ta
bl

e 
1 

N
um

be
r 

of
 D

U
G

KS
 c

el
ls

, m
em

or
y 

co
ns

um
pt

io
n 

(M
By

te
) 

an
d 

co
m

pu
ta

tio
na

l 
tim

e 
(h

ou
rs

) 
of

 d
iff

er
en

t 
m

et
ho

ds
 f

or
 fl

ow
 a

ro
un

d 
a 

fla
t 

pl
at

e 
w

ith
 d

iff
er

en
t 

Re
yn

ol
ds

 
nu

m
be

rs

Th
e 

su
pe

rs
cr

ip
t a  re

pr
es

en
ts

 th
e 

us
e 

of
 c

oa
rs

e 
m

es
h 

fo
r s

im
ul

at
io

n

Re
Kn

D
U

G
KS

A
D

U
G

KS
Ra

tio

Ce
lls

 ( N
D

)
M

em
or

y 
( M

D
)

Ti
m

e 
( T
D

)
Ce

lls
 (N

A
)

M
em

or
y 

(M
A
)

Ti
m

e 
(T
A
)

N
D

/
N
A

M
A

/
M
D

T
D

/
T
A

0.
2

1.
25

30
72

45
6.

1
0.

09
2

30
72

45
6.

1
0.

09
6

1.
00

0
1.

00
0

0.
95

8

0.
5

0.
49

9
69

12
10

20
.5

0.
53

9
69

12
10

20
.6

0.
56

6
1.

00
0

1.
00

0
0.

95
2

1
0.

25
0

69
12

10
20

.5
0.

58
6

69
12

10
20

.6
0.

61
5

1.
00

0
1.

00
0

0.
95

3

2
0.

12
5

69
12

10
20

.5
0.

81
9

69
12

10
20

.6
0.

82
7

1.
00

0
1.

00
0

0.
99

0

5
0.

04
99

69
12

10
20

.5
1.

06
4

69
12

10
20

.6
1.

08
8

1.
00

0
1.

00
0

0.
97

8

10
0.

02
50

76
80

11
33

.6
1.

69
4

76
18

11
30

.6
1.

75
4

1.
00

8
0.

99
7

0.
96

6

20
0.

01
25

76
80

11
33

.6
2.

16
2

74
54

11
22

.6
2.

13
9

1.
03

0
0.

99
0

1.
01

1

50
0.

00
49

9
76

80
11

33
.6

2.
76

3
70

99
11

05
.1

2.
75

6
1.

08
2

0.
97

5
1.

00
3

40
0

0.
00

06
24

84
48

12
46

.4
4.

40
6

65
56

10
63

.2
4.

14
9

1.
28

9
0.

85
3

1.
06

2

10
00

0.
00

02
50

92
16

13
59

.8
5.

94
3

62
43

10
13

.1
5.

59
7

1.
47

6
0.

74
5

1.
06

2

20
00

0.
00

01
25

92
16

13
59

.8
7.

15
4

52
04

84
5.

8
6.

24
4

1.
77

1
0.

62
2

1.
14

6

50
00

0.
00

00
49

9
99

84
14

72
.1

9.
56

2
50

96
82

5.
7

7.
77

9
1.

95
9

0.
56

1
1.

22
9

40
0a

0.
00

06
24

69
12

10
7.

0
0.

59
8

33
78

59
.6

0.
49

9
2.

04
6

0.
55

7
1.

19
8

10
00

a
0.

00
02

50
76

80
11

8.
3

0.
36

3
68

13
.2

0.
05

5
11

2.
9

0.
11

2
6.

60
0

20
00

a
0.

00
01

25
76

80
11

8.
3

0.
48

1
0

10
.3

0.
03

0
In

fin
ity

0.
08

7
16

.0
3

50
00

a
0.

00
00

49
9

84
48

10
3.

2
1.

35
0

0
10

.6
0.

03
9

In
fin

ity
0.

10
3

34
.6

2



Page 16 of 30Yang et al. Advances in Aerodynamics #####################_

Fig. 6 Temperature contours around the flat plate in the (a) transition and (b) slip flow regimes (ADUGKS: 
colored background with black solid line; DUGKS: white dashed line)

Fig. 7 Distribution of skin friction coefficient on the flat plate in the transition and slip flow regimes
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Fig. 8 Drag coefficient of the flat plate with respect to the Reynolds number in the transition and slip flow 
regimes

Fig. 9 Distribution of the DUGKS cell and the N-S cell for flow around a flat plate with different Reynolds 
numbers in the slip flow regime



Page 18 of 30Yang et al. Advances in Aerodynamics #####################_

Fig. 10 Distribution of skin friction coefficient on the flat plate in the continuum flow regime

Fig. 11 Drag coefficient of the flat plate with respect to the Reynolds number in the continuum flow regime
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Fig. 12 Distribution of the DUGKS cell and the N-S cell for flow around a flat plate with different Reynolds 
numbers in the continuum flow regime (Left: global view; Right: local view)
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with the length of L = 1 m and the temperature of Tref  is placed at the bottom bound-
ary. In the simulation, the dynamic viscosity µ is calculated by Eq. (26) and the reference 
dynamic viscosity µref  is determined by

where Re is the flat plate length-based Reynolds number. The Reynolds number, Mach 
number, and Knudsen number have a relationship as follows:

The setting of the computational domain in the physical space is the same as that of 
Ref. [58]. The convergence criterion is set as the maximum error of all primitive vari-
ables between two adjacent iteration steps being less than 5× 10−7.

First, we use the same mesh in the physical space as Ref. [58] to simulate the flow 
around a flat plate with the Reynolds number varying from Re = 0.2 to 50. The cor-
responding Knudsen number is listed in Table  1, which contains the transition flow 
regime, the slip flow regime and the continuum flow regime. In the simulation, the 

(29)µref =
Ma

Re

√
γ

2
,

(30)Kn =
2(5− 2w)(7− 2w)

15

Ma

Re

√
γ

2π
.

Fig. 13 Distribution of skin friction coefficient on the flat plate in the continuum flow regime calculated by 
the coarse mesh with different methods
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Gauss-Hermite quadrature rule with 28× 28 points is used to approximate the 
moment integration in the velocity space. Figure 6 compares the temperature contours 
around the flat plate in the transition (Re = 0.2 ~ 2) and slip (Re = 5 ~ 50) flow regimes 
computed by the ADUGKS and the DUGKS. The comparison of the skin friction coef-
ficient distribution on the flat plate in the transition and slip flow regimes is displayed 
in Fig.  7, and the comparison of the drag coefficient with respect to the Reynolds 
number is depicted in Fig.  8. Clearly, the results given by the ADUGKS are consist-
ent with those of UGKS and DUGKS, validating the accuracy of the present method 
in the transition and slip flow regimes. In fact, in the transition flow regime, all cells 
belong to the DUGKS cell and the ADUGKS turns into the DUGKS. However, with the 
increase of the Reynolds number, more and more cells are identified as the N-S cell, as 
shown in Fig. 9. The detailed numbers of total cells ( ND ) and DUGKS cells ( NA ) in the 
computational domain for the calculation of ADUGKS are listed in Table 1. With the 
decrease of NA , the efficiency of ADUGKS increases gradually. But the speed-up ratio 
is very limited in these cases since the DUGKS cell is still in the majority.

Second, the flow around a flat plate with the Reynolds number varying from Re = 400 
to 5000 is simulated by two types of meshes in both the physical space and the veloc-
ity space. One is the fine mesh, which is the same as Ref. [58] and the velocity space 
is discretized by the Gauss-Hermite quadrature rule with 28× 28 points. The other is 

Fig. 14 Comparison of u-velocity, v-velocity, pressure and temperature contours for flow around a circular 
cylinder at Ma = 5 and Kn = 0.1 (ADUGKS: colored background with black solid line; DUGKS: white dashed 
line)
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the coarse mesh as shown in Table 1 and the velocity space is discretized by the Gauss-
Hermite quadrature rule with 8× 8 points. Figure 10 compares the distribution of the 
skin friction coefficient on the flat plate in the continuum flow regime (Re = 400 ~ 5000) 
obtained by the ADUGKS and the DUGKS using the fine mesh, and the comparison 
of the drag coefficient is depicted in Fig. 11. Figure 12 shows the distribution of the 
DUGKS cell and the N-S cell for these cases. It can be seen that both the results of 
ADUGKS and DUGKS are basically consistent with those of the N-S solver. But if we 
enlarge the distribution of the skin friction coefficient on the flat plate and look at the 
distribution of the drag coefficient, it can be found that the results of ADUGKS are 
closer to those of the N-S solver than the DUGKS, especially for the cases of Re = 2000 
and 5000. The reason may be that there are more cells turning into the N-S cell at high 
Reynolds numbers in the calculation of ADUGKS, as shown in Fig. 12. To validate the 
performance of ADUGKS for the case in which the mesh size is far larger than the 
molecular mean free path, we restimulate the cases of Re = 400 ~ 5000 with the coarse 
mesh and display the results in Fig. 13 and Table 1. It can be seen that even though the 
coarse mesh is utilized, the results of ADUGKS and DUGKS are consistent with those 
of the N-S solver. In addition, as compared with the DUGKS, a speed-up ratio of 34 
and a memory consumption ratio of 0.103 are achieved for the ADUGKS in the case of 
Re = 5000, as reported in Table 1.

Fig. 15 Comparison of u-velocity, v-velocity, pressure and temperature contours for flow around a circular 
cylinder at Ma = 5 and Kn = 0.01 (ADUGKS: colored background with black solid line; DUGKS: white dashed 
line)
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4.3  Case 3: flow around a circular cylinder

To assess the performance of ADUGKS for the simulation of hypersonic flows, the 
flow around a circular cylinder at Ma = 5 and Kn = 0.001 ~ 0.1 is simulated. In this test 
example, the wall temperature is fixed at the free stream temperature of Tref = 273 K . 
The dynamic viscosity is calculated by Eq.  (26) and the reference dynamic viscosity 
is determined by Eq.  (27), in which L is chosen as the radius of the cylinder. For the 
test case of Kn = 0.001, the computational domain with a far-field boundary located 
at 15L away from the geometrical center is discretized by a non-uniform mesh with 
81 and 65 points in the radial direction and circumferential direction, respectively. 
For the test cases of Kn = 0.01 and 0.1, the same computational domain is discretized 
by a non-uniform mesh with 61 and 65 points in the radial direction and circumfer-
ential direction, respectively. The moment integration in the velocity space is approxi-
mated by the Newton–Cotes quadrature with 101× 101 points uniformly distributed in 
[
−12

√
2RgTref , 12

√
2RgTref

]
×

[
−12

√
2RgTref , 12

√
2RgTref

]
.

The comparison of u-velocity, v-velocity, pressure and temperature contours for the 
flow around a circular cylinder at Kn = 0.1, 0.01 and 0.001 are shown in Figs.  14, 15 
and 16, respectively. It can be seen that the results of ADUGKS are consistent with the 
DUGKS for all test cases. Figure 17 depicts the density, u-velocity, pressure and tem-
perature profiles along the stagnation line and Fig. 18 presents the pressure coefficient, 

Fig. 16 Comparison of u-velocity, v-velocity, pressure and temperature contours for flow around a circular 
cylinder at Ma = 5 and Kn = 0.001 (ADUGKS: colored background with black solid line; DUGKS: white dashed 
line)
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shear stress coefficient and normal heat flux distributions along the cylindrical wall 
from the stagnation point to the trailing edge. Once again, the results of ADUGKS 
compare well with those of DUGKS. The distribution of the DUGKS cell and the N-S 
cell for the flow around a circular cylinder with different Knudsen numbers is dis-
played in Fig. 19. Clearly, the number of the DUGKS cell reduces with the decrease of 
the Knudsen number. As reported in Table 2, the ratio of the number of total cells to 
the number of DUGKS cells is 1.819 for the case of Kn = 0.001, resulting in a speed-up 
ratio of 1.208 and a memory consumption ratio of 0.605 for the ADUGKS as compared 
with the DUGKS.

4.4  Case 4: unsteady gas expansion in a channel

Gas expansion in a channel is a good test case to validate the newly developed method 
for unsteady multiscale flows [59]. In this test example, we consider a channel with the 
length L and the height H = L/10, which is separated by a diaphragm located at x = L/2 
initially, as shown in Fig. 20. The initial Knudsen numbers of the gas at the left and right 
sides of the diaphragm are KnL = 0.00001 and KnR = 1 , respectively, and the corre-
sponding initial normalized density are ρL = 1 and ρR = 0.00001 . The initial normalized 
temperature and velocity are set as T0 = 1 and U0 = V0 = 1 for the gas in the whole 
channel. The temperature of the upper and bottom walls of the channel is maintained at 

Fig. 17 Comparison of density, u-velocity, pressure and temperature profiles along the stagnation line for 
flow around a circular cylinder with different Knudsen numbers
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T0 . The inlet and outlet boundary conditions are used for the left and right boundaries 
of the channel, respectively. The reference dynamic viscosity is determined by Eq. (27), 
in which the reference density, temperature and Knudsen number are consistent with 
the states of the gas at the left side of the diaphragm. In addition, the dynamic viscosity 
is calculated by Eq. (26).

In the simulation, the computational domain is discretized by a uniform mesh 
with 4000 cells, and the moment integration in the velocity space is approximated 
by the Newton–Cotes quadrature with 101× 101 points uniformly distributed 
in [−7, 7]× [−7, 7] . Figure  21  compares the density, u-velocity, temperature and 
x-component of heat flux profiles along the horizontal central line of the channel 
at times t = 0.01 and 0.05 calculated by the ADUGKS and the DUGKS. The results 
of ADUGKS are basically consistent with those of DUGKS, validating the accuracy 
of ADUGKS for unsteady multiscale flows. To compare the computational cost and 
the memory consumption of ADUGKS with DUGKS, we depict the distribution of 
the DUGKS cell and the N-S cell for this test example at different times in Fig. 22. 
It can be seen that the N-S cell occupies the left half of the channel and the inter-
face between the DUGKS cell and the N-S cell moves toward the right as time goes 
on after removing the diaphragm. Thus, the computational cost of ADUGKS will be 
reduced gradually in the process of gas expansion in a channel.

Fig. 18 Comparison of pressure coefficient, shear stress coefficient and normal heat flux distributions along 
the cylindrical wall from the stagnation point to the trailing edge at different Knudsen numbers
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5  Conclusions
In this work, an adaptive partitioning-based discrete unified gas kinetic scheme 
(ADUGKS) is developed for multiscale flow computations. This method is designed 
from the multiscale discrete characteristic solution to the Boltzmann-BGK equation, 
which contains the initial distribution function and the local equilibrium state. The 
initial distribution function contributes to the calculation of free streaming fluxes, 

Fig. 19 Distribution of the DUGKS cell and the N-S cell for flow around a circular cylinder with different 
Knudsen numbers

Table 2 Number of DUGKS cells, memory consumption (MByte) and computational time (hours) of 
different methods for flow around a circular cylinder with different Knudsen numbers

Kn DUGKS ADUGKS Ratio

Cells (ND) Memory 
(MD)

Time (TD) Cells (NA) Memory 
(MA)

Time (TA) ND

/
NA MA

/
MD TD

/
TA

0.1 3840 6568.2 6.638 3840 6558.2 6.865 1.000 1.000 0.967

0.01 3840 6568.2 9.993 3770 6505.7 10.293 1.019 0.990 0.971

0.001 5120 8755.9 27.186 2814 5297.3 22.496 1.819 0.605 1.208
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and its ratio is determined by the local flow variables and the local mesh size. If its 
contribution is negative, the local flow field can be regarded as the continuous flow 
and the N-S equations can be used to obtain the solution directly. Otherwise, both the 
DVBE and the corresponding macroscopic governing equations are solved with the 
modified DUGKS. Since more and more cells turn into the N-S cell with the decrease 
of the Knudsen number, a significant acceleration can be achieved for the ADUGKS 
in the continuum flow regime as compared with the DUGKS.

The performance of ADUGKS is examined by the lid-driven cavity flow, the flow 
around a flat plate, the hypersonic flow around a circular cylinder and the unsteady 
gas expansion in a channel in different flow regimes. Numerical results show that 

Fig. 20 Unsteady gas expansion in a channel

Fig. 21 Comparison of density, u-velocity, temperature and x-component of heat flux profiles along the 
horizontal central line of the channel at different times
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the accuracy of ADUGKS is consistent with that of  the DUGKS in all flow regimes, 
validating it as a multiscale approach. The computational cost and the memory con-
sumption of ADUGKS mainly rely on the number of the DUGKS cell in the whole 
computational domain. With the decrease of the Knudsen number, more and more 
DUGKS cells turn into the N-S cell, and thus the total computational cost and mem-
ory consumption of ADUGKS can be reduced gradually. In the continuum flow 
regime, about one order of magnitude acceleration can be achieved for the ADUGKS 
as compared with the DUGKS. However, it should be indicated that the N-S region is 
still too small in the slip flow regime, making the acceleration of ADUGKS indistinc-
tive. The key to further improving the efficiency of the present method while main-
taining its accuracy is to enlarge the N-S region as far as possible.
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