
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Liu et al. Advances in Aerodynamics (2023) 5:18
https://doi.org/10.1186/s42774-023-00150-4

Advances in Aerodynamics

ISpliter: an intelligent and automatic
surface mesh generator using neural networks
and splitting lines
Zengsheng Liu1†, Shizhao Chen1†, Xiang Gao1,2,3* , Xiang Zhang1,2,3, Chunye Gong2,3, Chuanfu Xu1,2,3 and
Jie Liu2,3

Abstract

In this paper, we present a novel surface mesh generation approach that splits B-rep
geometry models into isotropic triangular meshes based on neural networks and
splitting lines. In the first stage, a recursive method is designed to generate plentiful
data to train the neural network model offline. In the second stage, the implemented
mesh generator, ISpliter, maps each surface patch into the parameter plane, and then
the trained neural network model is applied to select the optimal splitting line to
divide the patch into subdomains continuously until they are all triangles. In the third
stage, ISpliter remaps the 2D mesh back to the physical space and further optimizes
it. Several typical cases are evaluated to compare the mesh quality generated by
ISpliter and two baselines, Gmsh and NNW-GridStar. The results show that ISpliter can
generate isotropic triangular meshes with high average quality, and the generated
meshes are comparable to those generated by the other two software under the same
configuration.

Keywords: Surface mesh generation, Artificial neural network, Splitting line, Triangular
element, Feature extraction

1 Introduction
For modern numerical simulations like computational fluid dynamics and computational
structural mechanics, surface mesh serves as a key bridge connecting Computer-Aided
Design (CAD) models and numerical algorithms. The surface meshing process aims to
generate a discrete mesh that uses triangular/quadrilateral elements to approximate the
given CAD model. Subsequently, the volumetric mesh generation and numerical algo-
rithms are performed based on it. The quality and efficiency of surface mesh generation
are important factors that affect subsequent volumetric mesh generation and the results
of numerical simulations. Therefore, it is of great practical value to develop fully auto-
matic and high-quality surface meshing technology to promote the development of sci-
entific engineering computing.

Although various mesh generation algorithms have developed in recent 30 years,
automatically generating correct and satisfying meshes for complex models is still a

†Zengsheng Liu and Shizhao
Chen share co-first authorship.

*Correspondence:
gaoxiang12@nudt.edu.cn

1 State Key Laboratory of High
Performance Computing,
National University of Defense
Technology, Changsha 410073,
China
2 College of Computer,
National University of Defense
Technology, Changsha 410073,
China
3 Laboratory of Digitizing
Software for Frontier Equipment,
National University of Defense
Technology, Changsha 410073,
China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42774-023-00150-4&domain=pdf
http://orcid.org/0000-0002-8216-7482

Page 2 of 25Liu et al. Advances in Aerodynamics (2023) 5:18

big challenge [1, 2]. Among all types of surface meshes, triangular meshing attracts
the most attention because of its simplicity and flexibility. Its mainstream approaches
can be divided into two categories: algorithms based on Delaunay Triangulation (DT)
[3], and algorithms based on Advancing Front Technique (AFT) [4]. The Delaunay
method has excellent mathematical properties. It maximizes the minimum angle of
the triangulation for a given point set. For this reason, Delaunay triangulation is often
called the MaxMin triangulation. It also ensures that no other points are included in
the circumcircle of any triangular element [5]. However, the Delaunay-based method
encounters difficulties in recovering surface boundaries [6]. In contrast, the AFT
method starts from the boundary of the surface and gradually generates elements
inward. This method can better maintain the integrity of the boundaries and the mesh
quality near boundaries is guaranteed. However, the AFT-based method generates
only one element at each step, which is inefficient, and colliding fronts are easy to
appear [7]. From another perspective, surface meshing can also be divided into direct
methods [8] and mapping methods [9]. Direct methods generate mesh directly on the
3D surface in the physical space, while mapping methods first perform 2D meshing
approaches in the parametric space, and then project the mesh back to the physi-
cal space. In order to synthesize the advantages of these two methods, a lot hybrid
approaches have been proposed in recent studies [10, 11]. Nevertheless, generating
engineering-practical meshes still requires a lot of manual labor. The level of automa-
tion and intelligence in this field needs to be improved.

In recent years, the vigorous development of Artificial Intelligence (AI) technologies
such as deep learning has brought new impetus to the mesh generation research. For
example, to predict the local mesh density throughout the domain before meshing, Z.
Zhang et al. [12] presented an artificial neural network named MeshingNet to guide a
standard mesh generator, and further extended it to 3D tetrahedral mesh generation
[13]. L. Zhang et al. [14] used a neural network model as the point selection strategy
for the AFT method to replace complex calculations. The model can obtain the target
point by inputting the coordinates of the reference front and template points. Subse-
quently, they further developed an anisotropic hybrid meshing technique for viscous
flow simulations by training two AI models, which were used to predict the advancing
direction and control the element size, respectively [15]. J. Liu et al. [16, 17] proposed
an automatic framework based on convolutional neural networks to evaluate the
overall mesh quality for 2D/3D structured meshes, which helps the generator to iden-
tify good meshes. X. Liu et al. [18] developed a mesh optimization method embedded
a machine learning regression model into the variational mesh adaptation, which can
automatically move the mesh points to the domains where the flow field varies drasti-
cally. To make the tetrahedral meshing easier, S. Owen et al. [19] used machine learn-
ing approaches to defeature CAD models by predicting mesh quality for geometric
features before meshing. In the field of 3D reconstruction, there are also many studies
using deep learning to generate meshes [20, 21].

Page 3 of 25Liu et al. Advances in Aerodynamics (2023) 5:18

In this paper, we focus on generating isotropic triangular surface meshes from B-rep
CAD models, and develop a mesh generator named ISpliter based on artificial neural
networks and the idea of splitting line [22, 23]. Specifically, the main contributions of
this paper are summarized as follows:

• Extending the 2D splitting line method to surface mesh generation, and a machine
learning framework is proposed to select the best splitting line. Furthermore, the
algorithm can be easily generalized to quadrilateral surface meshing.

• A novel and promising surface mesh generator that could handle industrial CAD
models is developed. With proper detection of the discrete surface loops, it can
remove unnecessary small geometrical features automatically.

• In terms of skewness and minimum angle to evaluate the mesh quality, the presented
mesh generator is compared with two well-known software through several typical
cases, and satisfactory results have been achieved.

2 Overview
The input of the proposed algorithm is a standard CAD model, which is represented
by a collection of trimmed parametric surface patches, G = {Pi}

m
i=1 . Each patch Pi

is a B-spline surface represented by an analytically defined mapping, denoted as
S(u, v) = (x(u, v), y(u, v), z(u, v)) , from a bounded two-dimensional domain called para-
metric space, into the three-dimensional physical space. m is the number of patches.
On each patch, there are one or several loops, each of which is defined by a closed and
ordered set of curves. Moreover, if a patch has more than one loop, it means there are
holes on the surface patch. Our approach can only deal with clean geometries at pre-
sent, which means the common boundary of adjacent patches is the same curve stored
in the geometry data structure. For dirty CAD models with gaps, overlaps, or topologi-
cal loss, another topic about CAD fixing before mesh generation needs to be studied.
In our approach, we first generate meshes for all boundary curves, and then the sur-
face meshing is processed patch by patch. Therefore, new mesh points and elements are
directly added to the global mesh data structure, and finally the complete object surface
can be formed.

The output of the algorithm is the generated surface mesh, M = {ti}
n
i=1 . Where ti is

each triangular element, and n is the number of mesh elements. The proposed algorithm
requires to specify only one parameter, Lmax , as the maximum edge length of the target
mesh. In addition, specifying the desired number of mesh points on the curves is sup-
ported. As presented in Fig. 1, the workflow of our algorithm is divided into the follow-
ing five steps:

(a) Geometry reading. At first, the B-rep type geometry G is read in. Some preproc-
essing such as face normal/area calculation and validity check is done with third-party
CAD engines.

Page 4 of 25Liu et al. Advances in Aerodynamics (2023) 5:18

(b) Loop sampling. The loops of each patch are retrieved and the curves of each loop
are sorted by traversing common vertexes. In addition, we separate loops that form
outer boundaries and holes. Then loop sampling is performed by dividing each curve
into straight edges according to Lmax.

(c) Point mapping. Based on the expression of each B-spline surface, the sampled
points of the loops are mapped to the corresponding parametric plane. Therefore, each
patch is converted to a polygon on the plane.

(d) Polygon splitting. Guided by a well-trained artificial neural network, two non-
adjacent points of the polygon are connected at each step for splitting, and then the
polygon is split into two subdomains. Further, mesh points are added to discretize this
splitting line. The above process will be repeated until all polygons are decomposed
into triangles.

(e) Mapping back. After the mesh for each patch in the parametric plane is generated,
we map it back to the 3D surface and further optimize the mesh by applying Laplacian
smoothing and surface projection.

With appropriate modification, the proposed algorithm can also be applied to stereo-
lithography-type geometric models. Implementation details of each step are described
in the following sections.

3 Methodology
3.1 Loop sorting and sampling

In our implementation of the proposed algorithm, we use Open Cascade [24] to get the
geometry information. After getting the loops, curves and vertexes, we merge overlap-
ping vertexes and remove degenerate curves and empty loops. Then, the curves of each
surface patch are sorted, as presented in Algorithm 1. The algorithm starts from the first
curve of the patch, and then looks for the next curve with a common vertex. If the end
vertex of the current curve is the same as the first vertex of the loop, it means that the
current curve has formed a sub-loop, and then the nearest new curve is found as the
start of a new sub-loop.

Fig. 1 The pipeline of our algorithm based on the idea of splitting line

Page 5 of 25Liu et al. Advances in Aerodynamics (2023) 5:18

Algorithm 1 Sorting the loop by traversing directed curves

After sorting the loops for each patch, we need to place points on each curve of the
CAD model. First, curves that have specified the desired number of mesh points are uni-
formly discretized according to the number and the curve length. The remaining curves
distribute the points according to their length and the maximum edge length Lmax . On
each mesh point, we define an element size value to guide interior element generation.

Page 6 of 25Liu et al. Advances in Aerodynamics (2023) 5:18

For mesh points on geometric curves, its value is calculated from the average length of
the edges on both sides. Advanced density control strategies such as density sources
or sizing functions [25] can also be applied in our method. To represent the loops dis-
cretely, Algorithm 2 is performed by splicing the corresponding discrete curves. Now
the patch boundary is represented by several continuous, closed sub-loops of simply
connected points instead of curves.

Algorithm 2 Loop discretization

Page 7 of 25Liu et al. Advances in Aerodynamics (2023) 5:18

For CAD models containing tiny features or irrelevant details that will have little effect
on simulation results, we can remove these features at this step, making mesh generation
and numerical simulation more efficient. For discrete polygons of the surfaces, tiny holes
with an area smaller than the threshold can be directly deleted, and small patch loops
could be removed by merging near points.

3.2 Surface patch mapping

While after the loops of each patch are discretized, we convert the 3D coordinates of
these discrete points into 2D coordinates in the parametric space. Moreover, in order
to keep the same proportional shape after mapping and improve numerical accuracy
during mesh generation, we scale the parametric coordinates to the same size as in the
physical space. Specifically, we multiply the u, v coordinates by the scaling coefficients
scaleu, scalev , respectively, as shown in Eq. (1).

where scaleu and scalev are equal to the lengths of the patch in two directions in
the physical space divided by their lengths in the parametric space, respectively. Because
the lengths of the patch in the physical space are not directly available, they can be calcu-
lated as shown in Eq. (2).

where n is the number of sampling points, which can be set to the number of mesh
points on that loop, or a constant. �·� means the Euclidean distance of two points. lu, lv
are the lengths of the patch in the parametric space, respectively. It should be noted that
the element size value on each point is computed after patch mapping.

For very distorted and complex surfaces, the mesh generated by the mapping method
may result in poor quality after being remapped back to the original space. Further work
could be studied to find optimal splitting lines in the parametric space, but split the sur-
face patch in the physical space for meshing.

3.3 Intelligent optimal splitting line selection

In the parametric plane of each patch, the proposed algorithm splits the domain into
two parts by connecting two mesh points each time, then puts points on the splitting
line, and further splits these subdomains until they are all triangles. For patches with
holes, it needs to connect each sub-loop first to form a single connected domain, as
shown in Fig. 2. For the selection of splitting line at each step, our strategy is to find all
feasible splitting lines first, and then use a machine learning method to select the opti-
mal one.

(1)
S(u, v) =(x(u, v), y(u, v), z(u, v)) → (u, v),

U =scaleu · u,

V =scalev · v,

(2)

Lu =

n

i=1

�S(ui, vmid)− S(ui−1, vmid)�,ui = u0 +
i

n
lu, vmid = v0 +

1

2
lv ,

Lv =

n

i=1

�S(umid , vi)− S(umid , vi−1)�, vi = v0 +
i

n
lv ,umid = u0 +

1

2
lu,

Page 8 of 25Liu et al. Advances in Aerodynamics (2023) 5:18

To connect sub-loops as one continuous loop, the intuitive method is to connect
points on different sub-loops, and determine whether they intersect with other parts.
If there is no intersection, then it is a feasible splitting line. When all sub-loops are con-
catenated into a ring, it forms a simple polygonal area. In this case, we have more effi-
cient ways to find feasible splitting lines as presented in [23, 26] based on the concept of
visibleness.

Point q is visible from point p whenever the line connecting p and q does not pass
outside the boundary. For convex loops, all non-adjacent points are visible to each
other. For a given point p on the concave loop, the visible points are determined by
two scans around the loop in two directions. Let the two segments connected to point
p be reference line 1 and 2, respectively. The angles between reference line 1 and a line
formed by connecting every other point on the loop to point p are computed. This
angle θ keeps changing as the scan progresses. The first scan only records points with
increasing angles, and the second scan in the reverse order only records points with
decreasing angles. The points recorded in both scans are the visible points of point p.
That is, the point whose angle changes monotonically in both directions is the visible
point. Although this method may miss some extreme points than necessary, it is very
efficient because of its linear complexity. A more detailed discussion can be found in
[23].

After finding all feasible splitting lines for the current subdomain, the next task is to
choose the best one among them, and this is the core algorithm developed in ISpliter.
Previous studies used a weighting function to represent the quality of the splitting line,
and considered the influence of angle, length, area, and point distribution according to
different weights. However, the weight coefficients are obtained empirically, and it is dif-
ficult to find a configuration that works well in all situations. Therefore, we thought of
training a machine learning model to score the splitting lines.

Since the quantity and characteristics of the raw data of the loops are protean, it is dif-
ficult to represent it as an end-to-end model. We extract a fixed number of features from
the splitting line on the loop as the input of the model, and an artificial neural network
(or called multi-layer perception [27]) with two hidden layers is proposed as shown in

Fig. 2 The schematic diagram of n− 1 splitting lines connecting n sub-loops. Each of these lines can be seen
as two lines in opposite directions, and the direction of the holes should be opposite to the direction of the
outer sub-loop

Page 9 of 25Liu et al. Advances in Aerodynamics (2023) 5:18

Fig. 3. The input layer has 9 neurons, the two hidden layers have 20 and 10 neurons,
respectively, depending on the representation capability and computational efficiency,
and all adjacent layers are fully connected. The output layer gives the score for that split-
ting line, and thus the splitting line with the highest score is the final choice.

The nine input features of the splitting line are presented as follows. The first four fea-
tures relate to the angles αi (i = 1, .., 4) between the splitting line and the loop, as shown
in Fig. 4. In order to make the generated elements close to equilateral triangles, the inte-
rior angle after split should be a multiple of 60◦ as close as possible. Hence, these four
features are calculated as Eq. (3) shows.

(3)fi = min

∣

∣αi −
π
3
· j
∣

∣

π
, i = 1, .., 4, j = 1, .., 5.

Fig. 3 The structure of the proposed artificial neural network in ISpliter

Fig. 4 The schematic diagram of features of the splitting line

Page 10 of 25Liu et al. Advances in Aerodynamics (2023) 5:18

The fifth feature describes the relative length of the splitting line, f5 = l/l0 , where l is
the length of the splitting line, and l0 is the diagonal length of the bounding box of the
loop. The sixth feature represents the distance from the splitting line to the boundary,
which can be expressed as f6 = d/d0 , where d denotes the length of the shortest line seg-
ment after the splitting line is discretized. This can be measured as the shortest distance
between one of the two endpoints of the splitting line and its neighbors on the loop. d0 is
the shortest distance from the points on the loop to the splitting line, as shown in Fig. 4.
The seventh feature represents the error between the actual number of elements m and
the ideal number of elements m0 on the splitting line, f7 = |m0 −m|/m0 . The specific
calculation methods of these two variables are presented in Section 3.4. The eighth fea-
ture gives the ratio of the number of elements on the splitting line to the number of ele-
ments on one side of the loop, f8 = m/ns . ns is the minimum number of points on one
of the two loop sides. The last feature computes the symmetry of the two loop sides after
splitting, f9 = |2 · ns − n|/n , where n denotes the number of elements on the loop. In
general, for all features, a smaller value indicates a better feature.

Our neural network is implemented in the Pytorch framework [28], and the model is
exported after being trained. Then we read in the model by Libtorch (Pytorch C++ ver-
sion) that has been integrated in ISpliter and do inference scoring for candidate splitting
lines. It should be noted that our model only needs to be trained once, and will be reused
for every selection. For more details about the model configuration and training data,
see Section 4.1.

3.4 Point placement on splitting line

After connecting the selected splitting line, the next step is to place points on the line to
discretize it. Unlike the linear spacing used in literature [23, 26], we apply equal spacing
and geometric spacing methods according to the difference in element size values at two
endpoints of the splitting line. When the gradient of the element size value along a split-
ting line is high, the linear spacing method tends to make large elements to monopolize
the spacing, and this will make the transition region uneven.

As shown in Fig. 5, the element size value at endpoints of a splitting line is determined
by the average length of the line segments on both sides of the point on the boundary. Set

Fig. 5 The schematic diagram of point placement on the splitting line

Page 11 of 25Liu et al. Advances in Aerodynamics (2023) 5:18

it as la , lb respectively. When la , lb are about the same, say 1/(1+ h) < lb/la < (1+ h) ,
we adopt the equal spacing method, otherwise the geometric spacing method is used.
In this work we set h = 0.01 . For equal spacing method, the ideal number of elements
(newly created points) on the splitting line is calculated as shown in Eq. (4). The actual
number of elements is the integer closest to the ideal value, i.e. m = ⌊m0 + 1/2⌋.

Therefore, the relative coefficients of the created equidistant points are shown in Eq. (5),
and the coordinates of these points can be calculated from Eq. (6), where a and b denote the
coordinates of the two endpoints, respectively.

For the geometric spacing method, the ideal number of elements m0 on the splitting
line can be calculated as shown in Eq. (7), and the relative coefficients of the created
points are shown in Eq. (8).

After placing points on the splitting line, it splits the loop into two complete sub-loops
for simple loops. For loops with a hole, it connects the loop into one simple loop. Fur-
ther, the algorithm keeps splitting these sub-loops until they are all triangles. We handle
this process in a queue data structure.

3.5 Post processing

Applying the approach presented above, each surface patch generates a triangular mesh in
the parameter plane, and then it needs to be inversely mapped back to the physical space.
Specifically, the coordinates of each mesh point need to be divided by the scaling coeffi-
cients and then converted to 3D coordinates, as shown in Eq. (9).

(4)m0 =
2 · l

la + lb
.

(5)li =
i

m+ 1
, i = 1, ..,m.

(6)pi = (1− li) · a+ li · b, i = 1, ..,m, 0 < li < 1.

(7)m0 =
ln (lb/la)

ln

(

lb−la
l+la

+ 1

) − 1.

(8)li =
(lb/la)

i+1
m+2 − (lb/la)

1
m+2

(lb/la)− (lb/la)
1

m+2

, i = 1, ..,m.

(9)
u =U/scaleu,

v =V /scalev ,

(u, v) → (x(u, v), y(u, v), z(u, v)).

Page 12 of 25Liu et al. Advances in Aerodynamics (2023) 5:18

Furthermore, smoothing technique is applied to fine-tune the generated mesh and equal-
ize the element size. The smoothing method used here is the Laplacian method [29]. The
core idea of Laplacian method is to move any given internal point to the centroid of its
neighbors, as presented in Eq. (10).

After smoothing each internal point, it needs to be reprojected onto the surface.
Smoothing can be performed multiple times until the number of iterations reaches the
upper limit, or the maximum distance between the points before and after smoothing is
less than the threshold. Finally, the Cuthill-McKee renumbering algorithm [30] is used
to reduce the bandwidth of the generated mesh.

In addition, the algorithm proposed in this paper can be easily accelerated by paralleli-
zation, and the related discussion of parallelization can refer to literature [26]. In further
work, we will apply multi-level parallelism between patches, subdomains, and splitting
lines.

4 Results
In this section, we first present the generation of training data for the proposed neural
network model, and then the detailed configuration and training method of the model
is given. Subsequently, the results of ISpliter and two well-known mesh generators are
compared through several typical cases. One of the two generators is the open source
software Gmsh [31] maintained by Professor C. Geuzaine and J. Remacle, and the other
is the unstructured version of NNW-GridStar [32] launched by China Aerodynamics
Research and Development Center (CARDC). Their version numbers are 4.10.5 and
V3.0.0 respectively.

4.1 Model training

To generate the sample data for training, the key is how to score the splitting line. First,
we define the quality of a triangular element by skewness, which is equal to the actual
area divided by the optimal area, as shown in Eq. (11), and higher value means better
quality.

where the optimal area So is the area of an equilateral triangle having the same circum-
circle. Then, the quality of a subdomain mesh is represented by the minimum skewness
of the elements. The quality of a sub-loop is represented by the best meshing results of
that subdomain among all possible meshes using the splitting line method. Therefore,
the score of a splitting line can be represented by the lower quality of the sub-loops on
either side of it. This recursive process is shown in Algorithm 3.

(10)xi =
1

Ni

Ni
∑

j=1

xj , yi =
1

Ni

Ni
∑

j=1

yj , zi =
1

Ni

Ni
∑

j=1

zj , j ∈ neighbor(i).

(11)skewness =
Sa

So
, 0 ≤ skewness ≤ 1,

Page 13 of 25Liu et al. Advances in Aerodynamics (2023) 5:18

Algorithm 3 Compute features and scores of splitting lines for training

According to Algorithm 3, a simple loop will generate many different types of split-
ting line samples. Hence we use a triangular loop with 9 points and a square loop with
8 points to generate the training data, and a circular loop with 8 points to generate the
test data. There are 230,037 samples in total. Figure 6 shows the three sample loops, and
the first best splitting line selected by Algorithm 3 for each loop is the red dotted line.
It should be noted that the number of possible splitting lines in Algorithm 3 increases
exponentially. Therefore, it is impossible to directly use it to find the optimal line in
the real mesh generation process.

In the hidden layers, we use the conventional rectified linear unit (ReLU) as the activa-
tion function to enhance the nonlinearity of the neural network model, and apply drop-
out to prevent the neural network from overfitting [33]. The mean-squared error (MSE)

Fig. 6 Three loops for training data and test data generation. The red line is the first best splitting line
selected for that loop

Page 14 of 25Liu et al. Advances in Aerodynamics (2023) 5:18

loss is used to train the regression model. We train the model with the adaptive moment
estimation (Adam) optimizer for 40 epochs. The batch size is set as 10, and the learning
rate is set as 0.001. The average and maximum loss after each epoch in the training pro-
cess is shown in Fig. 7. It can be seen that the training converges quickly. Furthermore,
the average and maximum loss of the test dataset for the trained model is 0.026 and
0.163, respectively.

4.2 Comparisons

To demonstrate the performance of ISpliter, based on 8 typical geometries, we compare
the surface meshes generated by ISpliter, Gmsh and GridStar from multiple perspec-
tives. For each case, we specify the same maximum edge length Lmax in the three gen-
erators. GridStar has to specify another parameter, curvature adaptive angle, and we use
its default value 18◦ for all cases. The Delaunay-Frontal algorithm that is recommended
to generate high quality elements is selected in Gmsh. Table 1 presents the number of
points and elements of the generated meshes. We can see that, except for the X43 and
M6 cases, the meshes generated by the three software are comparable in size. Since the
geometric curvature of the X43 case varies greatly, GridStar automatically performs

Fig. 7 The average and maximum loss in the training process of the proposed artificial neural network

Table 1 The number of points and elements of the meshes generated by the baselines and ISpliter.
L is the characteristic length of the geometry. Lmax is the maximum edge length of the mesh

Cases Triangle L=10 Lmax=1 Square L=10 Lmax=1 Circle L=2R=10 Lmax=1 Hole L=1 Lmax=0.02

Gmsh 66/100 145/248 122/210 3054/5750

GridStar 72/112 174/278 105/177 2785/5213

ISpliter 66/100 135/228 108/183 2674/4997

Cases Capsule L=25 Lmax=1 X43 L=3.7 Lmax=0.05 Missile L=25397 Lmax=200 M6 L=1376 Lmax=33

Gmsh 2052/4100 5659/10712 18289/35806 47489/92396

GridStar 4891/9778 100941/201792 14949/29894 7289/14574

ISpliter 2006/4008 4895/9694 20776/41548 44258/88512

Page 15 of 25Liu et al. Advances in Aerodynamics (2023) 5:18

adaptive refinement on it, making its mesh size larger. For the M6 case, we set to gener-
ate 300 points on the curves in the spanwise direction, but GridStar does not support
specifying the number of points on the specific curve, so the number of generated ele-
ments is less.

In this paper, we use the skewness ([0,1], as shown in Eq. (11)) and minimum interior
angle ([0◦,60◦]) to quantify the quality of a triangle element. While the closer the skew-
ness value is to 1 or the closer the minimum angle is to 60 degree, the closer the element
is to an equilateral triangle, which means that the better its isotropy is. Therefore, the
quality and anisotropy of a triangular mesh can be represented by the average, minimum
and distribution of these two values for its all elements. Table 2 summarizes the overall
qualities of the meshes generated by the baselines and ISpliter for all cases. It can be seen
that Gmsh generally generates the best meshes for simple plane geometries, but it may
easily generate degenerate element for complex surfaces. In contrast, the quality of the
worst element generated by GridStar is the highest for complex models. This may relate
to its curvature adaptation ability. For ISpliter, it generates meshes with the highest aver-
age quality, and the quality of its worst elements is not too far from the best results.
Specific resulting meshes and quality distributions are presented in the following figures.

Figure 8 shows the generated meshes of a triangle geometry, and gives the skewness
distributions and histograms of the minimum angle. Three software generate high
quality results, but it is particularly noteworthy that ISpliter generates the ideal mesh
with all equilateral triangles. This preliminarily demonstrates the effectiveness of the
splitting line method scored by neural networks. In addition, because the number of
points distributed on the loop is different, the triangle and square geometries used to
generate splitting line samples in the training stage are not exactly the same as those
in the experiments.

Similarly, Fig. 9 presents the meshes generated for the square geometry. It can be
seen that the elements near the boundaries generated by Gmsh and ISpliter are better

Table 2 The quality of the meshes generated by the baselines and ISpliter. They are the average
skewness, the minimum skewness, the average minimum angle, and the minimum minimum angle
of all elements, respectively. The best values are bolded

Cases Triangle Square Circle Hole Capsule X43 Missile M6

Gmsh 0.98 0.97 0.96 0.97 0.91 0.90 0.97 0.97

0.59 0.83 0.77 0.68 0.17 0.01 0.00 0.00

57.75 55.23 53.76 55.41 51.13 50.22 55.60 55.84

37.74 43.72 43.42 36.21 21.54 0.54 0.00 0.00

GridStar 0.97 0.91 0.95 0.97 0.89 0.87 0.98 0.87

0.64 0.56 0.81 0.76 0.09 0.01 0.07 0.08
55.82 49.22 51.61 55.63 45.54 44.83 57.17 45.18

34.00 27.82 40.93 40.45 13.71 0.09 4.54 3.00
ISpliter 1.00 0.97 0.96 0.98 0.96 0.93 0.88 0.99

1.00 0.77 0.62 0.77 0.55 0.01 0.01 0.03

60.00 55.11 52.20 53.78 54.02 52.20 44.55 57.39
60.00 41.45 31.49 37.13 26.35 0.97 1.42 2.82

Page 16 of 25Liu et al. Advances in Aerodynamics (2023) 5:18

Fig. 8 The meshes of the triangle generated by the baselines and ISpliter

Fig. 9 The meshes of the square generated by the baselines and ISpliter

Page 17 of 25Liu et al. Advances in Aerodynamics (2023) 5:18

than GridStar, although GridStar places more points on the boundaries. All the qual-
ity indicators of Gmsh are the highest, and the results of ISpliter are also very close to
it. Their smallest angles are all greater than 40◦.

To investigate the behavior of each interior step of the proposed approach, the mesh
of the square geometry generated by ISpliter in different stages is presented in Fig. 10.
It first splits the geometry into two domains with equal area, and four interior angles
of the splitting are all close to 60◦ or 120◦ . The second level splitting even forms two
nearly equilateral triangles, and the selection of splitting lines in further levels is the
same for domains with the same shape after rotation. This shows the effectiveness of fea-
ture extraction of the proposed approach. The generated initial mesh before smoothing
is shown in Fig. 10(e). It can be seen that the difference before and after optimization is
not significant. The statistics of the mesh quality are summarized in Table 3.

Fig. 10 The mesh of the square generated by ISpliter in different stages

Table 3 The statistics of the mesh quality distribution of the square generated by ISpliter before and
after smoothing. The first part is the number of elements with corresponding quality. The last two
columns are the average and minimum values

Skewness 0-0.2 0.2-0.4 0.4-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1 Ave Min

Before 0 0 4 2 14 18 190 0.95 0.51

After 0 0 0 0 4 16 208 0.97 0.77

Min angle 0-9 9-18 18-27 27-36 36-45 45-54 54-60 Ave Min

Before 0 0 0 6 20 44 158 54.66 33.82

After 0 0 0 0 12 60 156 55.11 41.45

Page 18 of 25Liu et al. Advances in Aerodynamics (2023) 5:18

The meshes and their quality distributions of the circle geometry generated by the
three software are presented in Fig. 11. Again, the best mesh is still generated by Gmsh,
especially its middle region is almost all uniform equilateral triangles. Although the tran-
sition between the middle and bottom regions of the mesh generated by ISpliter is not
very smooth, its average skewness and minimum angle are pretty high. The first three
simple cases examine the mesh generation capabilities of the three software for basic
planar shapes, which is the basis for the surface mesh generation of real CAD models.
The results show that ISpliter is comparable to the baselines in planar mesh generation.

Figure 12 shows the mesh results of a curved surface with complex topology struc-
tures. From the perspective of skewness and minimum angle, the mesh generated by
Gmsh is the worst. It can also be seen from Table 2 that the quality of all meshes of
the subsequent geometries generated by Gmsh is inferior to GridStar and ISpliter. Com-
bined with the results of previous plane cases, it shows that Gmsh has slightly poor
processing ability for 3D surfaces. For this surface with 5 holes, the mesh generated by
ISpliter has the best skewness values, and GridStar has the best minimum angles. More-
over, it can be inferred from the elements around the inner holes that GridStar adopts
the AFT method.

The latter four cases are the CAD models with multiple trimmed surfaces. The capsule
model has 60 curves and 32 surfaces, and the generated meshes are shown in Fig. 13. It

Fig. 11 The meshes of the circle generated by the baselines and ISpliter

Page 19 of 25Liu et al. Advances in Aerodynamics (2023) 5:18

can be found that, as the mesh density increases, ISpliter generates better meshes for the
circular plane compared with Fig. 11. This is because it has larger space to choose more
suitable splitting lines. From the distributions of skewness and minimum angle we can
easily see that the mesh generated by ISpliter is of the best quality. Moreover, because
the size and shape of patches in different regions of the geometry may vary greatly, if the
size of the patch is too small in certain dimensions compared with Lmax , the nonuniform
distribution of elements will inevitably occur. For example, for the long and thin band at
the edge of the capsule in Fig. 13, the three software generate elements smaller than Lmax
in that area. GridStar even generates denser elements based on the curvature factor. In
such cases, one can specify smaller mesh size parameters if a uniform mesh is wanted.

Figure 14 shows the meshes of the X43 aircraft generated by the baselines and ISpliter.
The X43 aircraft model has 211 curves and 90 surfaces, and there are very thin edges at
the wings. Since the relative large value of Lmax is set, the minimum angle of the gener-
ated elements near the wings is small. The minimum skewness of these three meshes all
equals 0.01 in Table 2, but under the same conditions, ISpliter still generates a mesh with
better quality.

Figure 15 gives the results of a missile model. This missile model has 125 curves and
32 surfaces. From the distributions of the skewness and minimum angle, it can be seen

Fig. 12 The meshes of the curved surface with holes generated by the baselines and ISpliter

Page 20 of 25Liu et al. Advances in Aerodynamics (2023) 5:18

that Gmsh and GridStar generate elements with higher quality. However, it can be found
from Table 2 that Gmsh generates several degenerate triangles, which have interior
angles with zero degree. The mesh generated by ISpliter has a minimum angle of 1.4◦ and
its average quality is not bad, and the 6 worst elements are shown in Fig. 15. In this case,
the mesh generated by GridStar has the best quality.

The M6 wing model has 12 curves and 6 surfaces, and its size span from thickness
to length is close to 3 orders of magnitude. Therefore, we set 4 curves in the spanwise
direction to place 300 points on each of them to generate fine meshes (in ISpliter and

Fig. 13 The meshes of the capsule generated by the baselines and ISpliter

Page 21 of 25Liu et al. Advances in Aerodynamics (2023) 5:18

Gmsh). This allows for a comparative analysis with the results of the X43 aircraft case.
The generated meshes of the three software are shown in Fig. 16. We can see that Grid-
Star does not generate denser elements on the trailing edge of the wing by its curvature
adaptive refinement. ISpliter and Gmsh generate similar meshes with smooth density
transitions.

For meshes generated by ISpliter and Gmsh, the banding phenomenon is formed at
the middle part of the wing meshes. In our method, the number of points on the split-
ting line is determined by the size value of its two endpoints, as shown in Eqs. (4) and

Fig. 14 The meshes of the X43 aircraft generated by the baselines and ISpliter

Page 22 of 25Liu et al. Advances in Aerodynamics (2023) 5:18

(7), and it tends to choose shorter splitting lines due to the fifth feature of the neural
network. Therefore, the mesh near the splitting lines connecting the leading and trailing
edges of the wing is denser. However, it can be seen from Table 2 that Gmsh once again
generates several degenerate elements. This indicates that Gmsh is less robust on com-
plex surfaces. Overall, ISpliter generates the mesh that meets expectations and is of the
best quality.

5 Conclusions
In this paper, a novel surface mesh generator ISpliter is developed based on the splitting
line method using neural networks. Nine features of a splitting line are extracted to rep-
resent it in the neural network, and the best splitting line selected by the neural network
is then applied to split the surface into triangles. In addition, a recursive approach is

Fig. 15 The meshes of the missile generated by the baselines and ISpliter

Page 23 of 25Liu et al. Advances in Aerodynamics (2023) 5:18

proposed that can easily generate abundant data to train the model. The detailed experi-
mental results show that ISpliter can generate high-quality isotropic triangular surface
meshes for CAD models with boundary representation. In future work, we will make
minor modifications to extend ISpliter to generate quadrilateral meshes, and apply
multi-level parallelism to improve its performance. In the meanwhile, more test cases
are expected to further verify the codes.

Fig. 16 The meshes of the M6 wing generated by the baselines and ISpliter

Page 24 of 25Liu et al. Advances in Aerodynamics (2023) 5:18

Acknowledgements
Not applicable.

Authors’ contributions
The research output comes from joint effort. All authors read and approved the final manuscript.

Funding
This work is supported by the National Key Research and Development Program of China (No. 2021YFB0300101), the
National Natural Science Foundation of China (Nos. 12102467 and 12102468), the Foundation of National University
of Defense Technology (No. ZK21-02), and the Foundation of State Key Laboratory of High Performance Computing of
China (Nos. 202101-01 and 202101-19).

Availability of data and materials
The data sets used and/or analyzed during the current study are available from the corresponding author upon reason-
able requests.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 2 January 2023 Accepted: 17 April 2023

References
 1. Baker TJ (2005) Mesh generation: Art or science? Prog Aerosp Sci 41(1):29–63
 2. Shimada K (2011) Current issues and trends in meshing and geometric processing for computational engineering

analyses. J Comput Inf Sci Eng 11(2):021008
 3. Schroeder WJ, Shephard MS (1988) Geometry-based fully automatic mesh generation and the Delaunay triangula-

tion. Int J Numer Methods Eng 26(11):2503–2515
 4. George PL, Seveno E (1994) The advancing-front mesh generation method revisited. Int J Numer Methods Eng

37(21):3605–3619
 5. Rivara MC, Diaz J (2020) Terminal triangles centroid algorithms for quality Delaunay triangulation. Comput Aided

Des 125:102870
 6. Liu Y, Lo SH, Guan ZQ et al (2014) Boundary recovery for 3D Delaunay triangulation. Finite Elem Anal Des 84:32–43
 7. Adamoudis LD, Koini G, Nikolos IK (2012) Heuristic repairing operators for 3D tetrahedral mesh generation using the

advancing-front technique. Adv Eng Softw 54:49–62
 8. Nakahashi K, Sharov D (1995) Direct surface triangulation using the advancing front method. In: Proceedings of the

12th Computational Fluid Dynamics Conference. AIAA, Reston, pp 442–451
 9. Borouchaki H, Laug P, George PL (2000) Parametric surface meshing using a combined advancing-front generalized

Delaunay approach. Int J Numer Methods Eng 49(1–2):233–259
 10. Marchandise E, Remacle JF, Geuzaine C (2012) Quality surface meshing using discrete parametrizations. In: Quadros

WR (ed) Proceedings of the 20th international meshing roundtable. Springer, Berlin, Heidelberg, pp 21–39
 11. Guo J, Ding F, Jia X et al (2019) Automatic and high-quality surface mesh generation for CAD models. Comput

Aided Des 109:49–59
 12. Zhang Z, Wang Y, Jimack PK et al (2020) MeshingNet: a new mesh generation method based on deep learning. In:

Krzhizhanovskaya VV, Závodszky G, Lees MH et al (eds) Computational science - ICCS 2020. Lecture notes in com-
puter science, vol 12139. Springer, Cham, pp 186–198

 13. Zhang Z, Jimack PK, Wang H (2021) MeshingNet3D: Efficient generation of adapted tetrahedral meshes for compu-
tational mechanics. Adv Eng Softw 157–158:103021

 14. Wang N, Lu P, Chang X et al (2021) Preliminary investigation on unstructured mesh generation technique based on
advancing front method and machine learning methods. Chin J Theor Appl Mech 53(3):740–751 (in Chinese)

 15. Lu P, Wang N, Chang X et al (2022) An automatic isotropic/anisotropic hybrid grid generation technique for viscous
flow simulations based on an artificial neural network. Chin J Aeronaut 35(4):102–117

 16. Chen X, Liu J, Pang Y et al (2020) Developing a new mesh quality evaluation method based on convolutional neural
network. Eng Appl Comput Fluid Mech 14(1):391–400

 17. Chen X, Liu J, Gong C et al (2021) MVE-Net: An automatic 3-D structured mesh validity evaluation framework using
deep neural networks. Comput Aided Des 141:103104

 18. Wu T, Liu X, An W et al (2022) A mesh optimization method using machine learning technique and variational mesh
adaptation. Chin J Aeronaut 35(3):27–41

 19. Owen SJ, Shead TM, Martin S (2020) CAD defeaturing using machine learning. In: Proceedings of the 28th Interna-
tional Meshing Roundtable. CERN Data Centre, Geneva, pp 348–365

 20. Wen C, Zhang Y, Li Z et al (2019) Pixel2Mesh++: Multi-view 3D mesh generation via deformation. In: Proceedings of
the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, Piscataway

 21. Wei X, Chen Z, Fu Y et al (2021) Deep hybrid self-prior for full 3D mesh generation. In: Proceedings of the 2021 IEEE/
CVF International Conference on Computer Vision (ICCV). IEEE, Piscataway

 22. Schoofs AJG, Van Beukering LHThM, Sluiter MLC (1979) A general purpose two-dimensional mesh generator. Adv
Eng Softw 1(3):131–136

Page 25 of 25Liu et al. Advances in Aerodynamics (2023) 5:18

 23. Talbert JA, Parkinson AR (1990) Development of an automatic, two-dimensional finite element mesh generator
using quadrilateral elements and Bezier curve boundary definition. Int J Numer Methods Eng 29(7):1551–1567

 24. OCCT (2022) http:// www. openc ascade. com. Accessed 15 Aug 2022
 25. Chen J, Xiao Z, Zheng Y et al (2017) Automatic sizing functions for unstructured surface mesh generation. Int J

Numer Methods Eng 109(4):577–608
 26. Chen JJ (2006) Unstructured mesh generation and its parallelization. Dissertation, Zhejiang University (in Chinese)
 27. Hagiwara K (2003) A review of research for multi-layer perception. IEICE Tech Rep Neurocomputing 103:7–12
 28. Paszke A, Gross S, Massa F et al (2019) PyTorch: an imperative style, high-performance deep learning library. In:

Proceedings of the 33rd International Conference on Neural Information Processing Systems (NeurIPS 2019). Neural
Information Processing Systems Foundation, Inc., Vancouver

 29. Mittal K, Fischer P (2019) Mesh smoothing for the spectral element method. J Sci Comput 78:1152–1173
 30. Liu WH, Sherman AH (1976) Comparative analysis of the Cuthill–McKee and the reverse Cuthill–McKee ordering

algorithms for sparse matrices. SIAM J Numer Anal 13(2):198–213
 31. Geuzaine C, Remacle JF (2009) Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing

facilities. Int J Numer Methods Eng 79(11):1309–1331
 32. Lu F, Qi L, Jiang X et al (2020) NNW-GridStar: Interactive structured mesh generation software for aircrafts. Adv Eng

Softw 145:102803
 33. Srivastava N, Hinton G, Krizhevsky A et al (2014) Dropout: a simple way to prevent neural networks from overfitting.

J Mach Learn Res 15(1):1929–1958

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://www.opencascade.com

	ISpliter: an intelligent and automatic surface mesh generator using neural networks and splitting lines
	Abstract
	1 Introduction
	2 Overview
	3 Methodology
	3.1 Loop sorting and sampling
	3.2 Surface patch mapping
	3.3 Intelligent optimal splitting line selection
	3.4 Point placement on splitting line
	3.5 Post processing

	4 Results
	4.1 Model training
	4.2 Comparisons

	5 Conclusions
	Acknowledgements
	References

