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Abstract 

In this paper, we present a novel surface mesh generation approach that splits B-rep 
geometry models into isotropic triangular meshes based on neural networks and 
splitting lines. In the first stage, a recursive method is designed to generate plentiful 
data to train the neural network model offline. In the second stage, the implemented 
mesh generator, ISpliter, maps each surface patch into the parameter plane, and then 
the trained neural network model is applied to select the optimal splitting line to 
divide the patch into subdomains continuously until they are all triangles. In the third 
stage, ISpliter remaps the 2D mesh back to the physical space and further optimizes 
it. Several typical cases are evaluated to compare the mesh quality generated by 
ISpliter and two baselines, Gmsh and NNW-GridStar. The results show that ISpliter can 
generate isotropic triangular meshes with high average quality, and the generated 
meshes are comparable to those generated by the other two software under the same 
configuration.

Keywords: Surface mesh generation, Artificial neural network, Splitting line, Triangular 
element, Feature extraction

1 Introduction
For modern numerical simulations like computational fluid dynamics and computational 
structural mechanics, surface mesh serves as a key bridge connecting Computer-Aided 
Design (CAD) models and numerical algorithms. The surface meshing process aims to 
generate a discrete mesh that uses triangular/quadrilateral elements to approximate the 
given CAD model. Subsequently, the volumetric mesh generation and numerical algo-
rithms are performed based on it. The quality and efficiency of surface mesh generation 
are important factors that affect subsequent volumetric mesh generation and the results 
of numerical simulations. Therefore, it is of great practical value to develop fully auto-
matic and high-quality surface meshing technology to promote the development of sci-
entific engineering computing.

Although various mesh generation algorithms have developed in recent 30 years, 
automatically generating correct and satisfying meshes for complex models is still a 
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big challenge [1, 2]. Among all types of surface meshes, triangular meshing attracts 
the most attention because of its simplicity and flexibility. Its mainstream approaches 
can be divided into two categories: algorithms based on Delaunay Triangulation (DT) 
[3], and algorithms based on Advancing Front Technique (AFT) [4]. The Delaunay 
method has excellent mathematical properties. It maximizes the minimum angle of 
the triangulation for a given point set. For this reason, Delaunay triangulation is often 
called the MaxMin triangulation. It also ensures that no other points are included in 
the circumcircle of any triangular element [5]. However, the Delaunay-based method 
encounters difficulties in recovering surface boundaries [6]. In contrast, the AFT 
method starts from the boundary of the surface and gradually generates elements 
inward. This method can better maintain the integrity of the boundaries and the mesh 
quality near boundaries is guaranteed. However, the  AFT-based method generates 
only one element at each step, which is inefficient, and colliding fronts are easy to 
appear [7]. From another perspective, surface meshing can also be divided into direct 
methods [8] and mapping methods [9]. Direct methods generate mesh directly on the 
3D surface in the physical space, while mapping methods first perform 2D meshing 
approaches in the parametric space, and then project the mesh back to the physi-
cal space. In order to synthesize the advantages of these two methods, a lot hybrid 
approaches have been proposed in recent studies [10, 11]. Nevertheless, generating 
engineering-practical meshes still requires a lot of manual labor. The level of automa-
tion and intelligence in this field needs to be improved.

In recent years, the vigorous development of Artificial Intelligence (AI) technologies 
such as deep learning has brought new impetus to the mesh generation research. For 
example, to predict the local mesh density throughout the domain before meshing, Z. 
Zhang et al. [12] presented an artificial neural network named MeshingNet to guide a 
standard mesh generator, and further extended it to 3D tetrahedral mesh generation 
[13]. L. Zhang et al. [14] used a neural network model as the point selection strategy 
for the AFT method to replace complex calculations. The model can obtain the target 
point by inputting the coordinates of the reference front and template points. Subse-
quently, they further developed an anisotropic hybrid meshing technique for viscous 
flow simulations by training two AI models, which were used to predict the advancing 
direction and control the element size, respectively [15]. J. Liu et al. [16, 17] proposed 
an automatic framework based on convolutional neural networks to evaluate the 
overall mesh quality for 2D/3D structured meshes, which helps the generator to iden-
tify good meshes. X. Liu et al. [18] developed a mesh optimization method embedded 
a machine learning regression model into the variational mesh adaptation, which can 
automatically move the mesh points to the domains where the flow field varies drasti-
cally. To make the tetrahedral meshing easier, S. Owen et al. [19] used machine learn-
ing approaches to defeature CAD models by predicting mesh quality for geometric 
features before meshing. In the field of 3D reconstruction, there are also many studies 
using deep learning to generate meshes [20, 21].
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In this paper, we focus on generating isotropic triangular surface meshes from B-rep 
CAD models, and develop a mesh generator named ISpliter based on artificial neural 
networks and the idea of splitting line [22, 23]. Specifically, the main contributions of 
this paper are summarized as follows:

• Extending the 2D splitting line method to surface mesh generation, and a machine 
learning framework is proposed to select the best splitting line. Furthermore, the 
algorithm can be easily generalized to quadrilateral surface meshing.

• A novel and promising surface mesh generator that could handle industrial CAD 
models is developed. With proper detection of the discrete surface loops, it can 
remove unnecessary small geometrical features automatically.

• In terms of skewness and minimum angle to evaluate the mesh quality, the presented 
mesh generator is compared with two well-known software through several typical 
cases, and satisfactory results have been achieved.

2  Overview
The input of the proposed algorithm is a standard CAD model, which is represented 
by a collection of trimmed parametric surface patches, G = {Pi}

m
i=1 . Each patch Pi 

is a B-spline surface represented by an analytically defined mapping, denoted as 
S(u, v) = (x(u, v), y(u, v), z(u, v)) , from a bounded two-dimensional domain called para-
metric space, into the three-dimensional physical space. m is the number of patches. 
On each patch, there are one or several loops, each of which is defined by a closed and 
ordered set of curves. Moreover, if a patch has more than one loop, it means there are 
holes on the surface patch. Our approach can only deal with clean geometries at pre-
sent, which means the common boundary of adjacent patches is the same curve stored 
in the geometry data structure. For dirty CAD models with gaps, overlaps, or topologi-
cal loss, another topic about CAD fixing before mesh generation needs to be studied. 
In our approach, we first generate meshes for all boundary curves, and then the sur-
face meshing is processed patch by patch. Therefore, new mesh points and elements are 
directly added to the global mesh data structure, and finally the complete object surface 
can be formed.

The output of the algorithm is the generated surface mesh, M = {ti}
n
i=1 . Where ti is 

each triangular element, and n is the number of mesh elements. The proposed algorithm 
requires to specify only one parameter, Lmax , as the maximum edge length of the target 
mesh. In addition, specifying the desired number of mesh points on the curves is sup-
ported. As presented in Fig. 1, the workflow of our algorithm is divided into the follow-
ing five steps:

(a) Geometry reading. At first, the B-rep type geometry G is read in. Some preproc-
essing such as face normal/area calculation and validity check is done with third-party 
CAD engines.
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(b) Loop sampling. The loops of each patch are retrieved and the curves of each loop 
are sorted by traversing common vertexes. In addition, we separate loops that form 
outer boundaries and holes. Then loop sampling is performed by dividing each curve 
into straight edges according to Lmax.

(c) Point mapping. Based on the expression of each B-spline surface, the sampled 
points of the loops are mapped to the corresponding parametric plane. Therefore, each 
patch is converted to a polygon on the plane.

(d) Polygon splitting. Guided by a well-trained artificial neural network, two non-
adjacent points of the polygon are connected at each step for splitting, and then the 
polygon is split into two subdomains. Further, mesh points are added to discretize this 
splitting line. The above process will be repeated until all polygons are decomposed 
into triangles.

(e) Mapping back. After the mesh for each patch in the parametric plane is generated, 
we map it back to the 3D surface and further optimize the mesh by applying Laplacian 
smoothing and surface projection.

With appropriate modification, the proposed algorithm can also be applied to stereo-
lithography-type geometric models. Implementation details of each step are described 
in the following sections.

3  Methodology
3.1  Loop sorting and sampling

In our implementation of the proposed algorithm, we use Open Cascade [24] to get the 
geometry information. After getting the loops, curves and vertexes, we merge overlap-
ping vertexes and remove degenerate curves and empty loops. Then, the curves of each 
surface patch are sorted, as presented in Algorithm 1. The algorithm starts from the first 
curve of the patch, and then looks for the next curve with a common vertex. If the end 
vertex of the current curve is the same as the first vertex of the loop, it means that the 
current curve has formed a sub-loop, and then the nearest new curve is found as the 
start of a new sub-loop.

Fig. 1 The pipeline of our algorithm based on the idea of splitting line
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Algorithm 1 Sorting the loop by traversing directed curves

After sorting the loops for each patch, we need to place points on each curve of the 
CAD model. First, curves that have specified the desired number of mesh points are uni-
formly discretized according to the number and the curve length. The remaining curves 
distribute the points according to their length and the maximum edge length Lmax . On 
each mesh point, we define an element size value to guide interior element generation. 
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For mesh points on geometric curves, its value is calculated from the average length of 
the edges on both sides. Advanced density control strategies such as density sources 
or sizing functions [25] can also be applied in our method. To represent the loops dis-
cretely, Algorithm  2 is performed by splicing the corresponding discrete curves. Now 
the patch boundary is represented by several continuous, closed sub-loops of simply 
connected points instead of curves.

Algorithm 2 Loop discretization



Page 7 of 25Liu et al. Advances in Aerodynamics            (2023) 5:18  

For CAD models containing tiny features or irrelevant details that will have little effect 
on simulation results, we can remove these features at this step, making mesh generation 
and numerical simulation more efficient. For discrete polygons of the surfaces, tiny holes 
with an area smaller than the threshold can be directly deleted, and small patch loops 
could be removed by merging near points.

3.2  Surface patch mapping

While after the loops of each patch are discretized, we convert the 3D coordinates of 
these discrete points into 2D coordinates in the parametric space. Moreover, in order 
to keep the same proportional shape after mapping and improve numerical accuracy 
during mesh generation, we scale the parametric coordinates to the same size as in the 
physical space. Specifically, we multiply the u, v coordinates by the scaling coefficients 
scaleu, scalev , respectively, as shown in Eq. (1).

where scaleu and scalev are equal to the lengths of the patch in two directions in 
the physical space divided by their lengths in the parametric space, respectively. Because 
the lengths of the patch in the physical space are not directly available, they can be calcu-
lated as shown in Eq. (2).

where n is the number of sampling points, which can be set to the number of mesh 
points on that loop, or a constant. �·� means the Euclidean distance of two points. lu, lv 
are the lengths of the patch in the parametric space, respectively. It should be noted that 
the element size value on each point is computed after patch mapping.

For very distorted and complex surfaces, the mesh generated by the mapping method 
may result in poor quality after being remapped back to the original space. Further work 
could be studied to find optimal splitting lines in the parametric space, but split the sur-
face patch in the physical space for meshing.

3.3  Intelligent optimal splitting line selection

In the parametric plane of each patch, the proposed algorithm splits the domain into 
two parts by connecting two mesh points each time, then puts points on the splitting 
line, and further splits these subdomains until they are all triangles. For patches with 
holes, it needs to connect each sub-loop first to form a single connected domain, as 
shown in Fig. 2. For the selection of splitting line at each step, our strategy is to find all 
feasible splitting lines first, and then use a machine learning method to select the opti-
mal one.

(1)
S(u, v) =(x(u, v), y(u, v), z(u, v)) → (u, v),

U =scaleu · u,

V =scalev · v,

(2)

Lu =

n

i=1

�S(ui, vmid)− S(ui−1, vmid)�,ui = u0 +
i

n
lu, vmid = v0 +

1

2
lv ,

Lv =

n

i=1

�S(umid , vi)− S(umid , vi−1)�, vi = v0 +
i

n
lv ,umid = u0 +

1

2
lu,
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To connect sub-loops as one continuous loop, the intuitive method is to connect 
points on different sub-loops, and determine whether they intersect with other parts. 
If there is no intersection, then it is a feasible splitting line. When all sub-loops are con-
catenated into a ring, it forms a simple polygonal area. In this case, we have more effi-
cient ways to find feasible splitting lines as presented in [23, 26] based on the concept of 
visibleness.

Point q is visible from point p whenever the line connecting p and q does not pass 
outside the boundary. For convex loops, all non-adjacent points are visible to each 
other. For a given point p on the concave loop, the visible points are determined by 
two scans around the loop in two directions. Let the two segments connected to point 
p be reference line 1 and 2, respectively. The angles between reference line 1 and a line 
formed by connecting every other point on the loop to point p are computed. This 
angle θ keeps changing as the scan progresses. The first scan only records points with 
increasing angles, and the second scan in the reverse order only records points with 
decreasing angles. The points recorded in both scans are the visible points of point p. 
That is, the point whose angle changes monotonically in both directions is the visible 
point. Although this method may miss some extreme points than necessary, it is very 
efficient because of its linear complexity. A more detailed discussion can be found in 
[23].

After finding all feasible splitting lines for the current subdomain, the next task is to 
choose the best one among them, and this is the core algorithm developed in ISpliter. 
Previous studies used a weighting function to represent the quality of the splitting line, 
and considered the influence of angle, length, area, and point distribution according to 
different weights. However, the weight coefficients are obtained empirically, and it is dif-
ficult to find a configuration that works well in all situations. Therefore, we thought of 
training a machine learning model to score the splitting lines.

Since the quantity and characteristics of the raw data of the loops are protean, it is dif-
ficult to represent it as an end-to-end model. We extract a fixed number of features from 
the splitting line on the loop as the input of the model, and an artificial neural network 
(or called multi-layer perception [27]) with two hidden layers is proposed as shown in 

Fig. 2 The schematic diagram of n− 1 splitting lines connecting n sub-loops. Each of these lines can be seen 
as two lines in opposite directions, and the direction of the holes should be opposite to the direction of the 
outer sub-loop
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Fig.  3. The input layer has 9 neurons, the  two hidden layers have 20 and 10 neurons, 
respectively, depending on the representation capability and computational efficiency, 
and all adjacent layers are fully connected. The output layer gives the score for that split-
ting line, and thus the splitting line with the highest score is the final choice.

The nine input features of the splitting line are presented as follows. The first four fea-
tures relate to the angles αi (i = 1, .., 4) between the splitting line and the loop, as shown 
in Fig. 4. In order to make the generated elements close to equilateral triangles, the inte-
rior angle after split should be a multiple of 60◦ as close as possible. Hence, these four 
features are calculated as Eq. (3) shows.

(3)fi = min

∣

∣αi −
π
3
· j
∣

∣

π
, i = 1, .., 4, j = 1, .., 5.

Fig. 3 The structure of the proposed artificial neural network in ISpliter

Fig. 4 The schematic diagram of features of the splitting line
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The fifth feature describes the relative length of the splitting line, f5 = l/l0 , where l is 
the length of the splitting line, and l0 is the diagonal length of the bounding box of the 
loop. The sixth feature represents the distance from the splitting line to the boundary, 
which can be expressed as f6 = d/d0 , where d denotes the length of the shortest line seg-
ment after the splitting line is discretized. This can be measured as the shortest distance 
between one of the two endpoints of the splitting line and its neighbors on the loop. d0 is 
the shortest distance from the points on the loop to the splitting line, as shown in Fig. 4. 
The seventh feature represents the error between the actual number of elements m and 
the ideal number of elements m0 on the splitting line, f7 = |m0 −m|/m0 . The specific 
calculation methods of these two variables are presented in Section 3.4. The eighth fea-
ture gives the ratio of the number of elements on the splitting line to the number of ele-
ments on one side of the loop, f8 = m/ns . ns is the minimum number of points on one 
of the two loop sides. The last feature computes the symmetry of the two loop sides after 
splitting, f9 = |2 · ns − n|/n , where n denotes the number of elements on the loop. In 
general, for all features, a smaller value indicates a better feature.

Our neural network is implemented in the Pytorch framework [28], and the model is 
exported after being trained. Then we read in the model by Libtorch (Pytorch C++ ver-
sion) that has been integrated in ISpliter and do inference scoring for candidate splitting 
lines. It should be noted that our model only needs to be trained once, and will be reused 
for every selection. For more details about the model configuration and training data, 
see Section 4.1.

3.4  Point placement on splitting line

After connecting the selected splitting line, the next step is to place points on the line to 
discretize it. Unlike the linear spacing used in literature [23, 26], we apply equal spacing 
and geometric spacing methods according to the difference in element size values at two 
endpoints of the splitting line. When the gradient of the element size value along a split-
ting line is high, the linear spacing method tends to make large elements to monopolize 
the spacing, and this will make the transition region uneven.

As shown in Fig. 5, the element size value at endpoints of a splitting line is determined 
by the average length of the line segments on both sides of the point on the boundary. Set 

Fig. 5 The schematic diagram of point placement on the splitting line
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it as la , lb respectively. When la , lb are about the same, say 1/(1+ h) < lb/la < (1+ h) , 
we adopt the equal spacing method, otherwise the geometric spacing method is used. 
In this work we set h = 0.01 . For equal spacing method, the ideal number of elements 
(newly created points) on the splitting line is calculated as shown in Eq. (4). The actual 
number of elements is the integer closest to the ideal value, i.e. m = ⌊m0 + 1/2⌋.

Therefore, the relative coefficients of the created equidistant points are shown in Eq. (5), 
and the coordinates of these points can be calculated from Eq. (6), where a and b denote the 
coordinates of the two endpoints, respectively.

For the geometric spacing method, the ideal number of elements m0 on the splitting 
line can be calculated as shown in Eq. (7), and the relative coefficients of the created 
points are shown in Eq. (8).

After placing points on the splitting line, it splits the loop into two complete sub-loops 
for simple loops. For loops with a hole, it connects the loop into one simple loop. Fur-
ther, the algorithm keeps splitting these sub-loops until they are all triangles. We handle 
this process in a queue data structure.

3.5  Post processing

Applying the approach presented above, each surface patch generates a triangular mesh in 
the parameter plane, and then it needs to be inversely mapped back to the physical space. 
Specifically, the coordinates of each mesh point need to be divided by the scaling coeffi-
cients and then converted to 3D coordinates, as shown in Eq. (9).

(4)m0 =
2 · l

la + lb
.

(5)li =
i

m+ 1
, i = 1, ..,m.

(6)pi = (1− li) · a+ li · b, i = 1, ..,m, 0 < li < 1.

(7)m0 =
ln (lb/la)

ln

(

lb−la
l+la

+ 1

) − 1.

(8)li =
(lb/la)

i+1
m+2 − (lb/la)

1
m+2

(lb/la)− (lb/la)
1

m+2

, i = 1, ..,m.

(9)
u =U/scaleu,

v =V /scalev ,

(u, v) → (x(u, v), y(u, v), z(u, v)).
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Furthermore, smoothing technique is applied to fine-tune the generated mesh and equal-
ize the element size. The smoothing method used here is the Laplacian method [29]. The 
core idea of Laplacian method is to move any given internal point to the centroid of its 
neighbors, as presented in Eq. (10).

After smoothing each internal point, it needs to be reprojected onto the surface. 
Smoothing can be performed multiple times until the number of iterations reaches the 
upper limit, or the maximum distance between the points before and after smoothing is 
less than the threshold. Finally, the Cuthill-McKee renumbering algorithm [30] is used 
to reduce the bandwidth of the generated mesh.

In addition, the algorithm proposed in this paper can be easily accelerated by paralleli-
zation, and the related discussion of parallelization can refer to literature [26]. In further 
work, we will apply multi-level parallelism between patches, subdomains, and splitting 
lines.

4  Results
In this section, we first present the generation of training data for the proposed neural 
network model, and then the detailed configuration and training method of the model 
is given. Subsequently, the results of ISpliter and two well-known mesh generators are 
compared through several typical cases. One of the two generators is the open source 
software Gmsh [31] maintained by Professor C. Geuzaine and J. Remacle, and the other 
is the unstructured version of NNW-GridStar [32] launched by China Aerodynamics 
Research and Development Center (CARDC). Their version numbers are 4.10.5 and 
V3.0.0 respectively.

4.1  Model training

To generate the sample data for training, the key is how to score the splitting line. First, 
we define the quality of a triangular element by skewness, which is equal to the actual 
area divided by the optimal area, as shown in Eq. (11), and higher value means better 
quality.

where the optimal area So is the area of an equilateral triangle having the same circum-
circle. Then, the quality of a subdomain mesh is represented by the minimum skewness 
of the elements. The quality of a sub-loop is represented by the best meshing results of 
that subdomain among all possible meshes using the splitting line method. Therefore, 
the score of a splitting line can be represented by the lower quality of the sub-loops on 
either side of it. This recursive process is shown in Algorithm 3.

(10)xi =
1

Ni

Ni
∑

j=1

xj , yi =
1

Ni

Ni
∑

j=1

yj , zi =
1

Ni

Ni
∑

j=1

zj , j ∈ neighbor(i).

(11)skewness =
Sa

So
, 0 ≤ skewness ≤ 1,
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Algorithm 3 Compute features and scores of splitting lines for training

According to Algorithm 3, a simple loop will generate many different types of split-
ting line samples. Hence we use a triangular loop with 9 points and a square loop with 
8 points to generate the training data, and a circular loop with 8 points to generate the 
test data. There are 230,037 samples in total. Figure 6 shows the three sample loops, and 
the first best splitting line selected by Algorithm 3 for each loop is the red dotted line. 
It should be noted that the number of possible splitting lines in Algorithm 3 increases 
exponentially. Therefore, it is impossible to directly use it to find the optimal line in 
the real mesh generation process.

In the hidden layers, we use the conventional rectified linear unit (ReLU) as the activa-
tion function to enhance the nonlinearity of the neural network model, and apply drop-
out to prevent the neural network from overfitting [33]. The mean-squared error (MSE) 

Fig. 6 Three loops for training data and test data generation. The red line is the first best splitting line 
selected for that loop
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loss is used to train the regression model. We train the model with the adaptive moment 
estimation (Adam) optimizer for 40 epochs. The batch size is set as 10, and the learning 
rate is set as 0.001. The average and maximum loss after each epoch in the training pro-
cess is shown in Fig. 7. It can be seen that the training converges quickly. Furthermore, 
the average and maximum loss of the test dataset for the trained model is 0.026 and 
0.163, respectively.

4.2  Comparisons

To demonstrate the performance of ISpliter, based on 8 typical geometries, we compare 
the surface meshes generated by ISpliter, Gmsh and GridStar from multiple perspec-
tives. For each case, we specify the same maximum edge length Lmax in the three gen-
erators. GridStar has to specify another parameter, curvature adaptive angle, and we use 
its default value 18◦ for all cases. The Delaunay-Frontal algorithm that is recommended 
to generate high quality elements is selected in Gmsh. Table 1 presents the number of 
points and elements of the generated meshes. We can see that, except for the X43 and 
M6 cases, the meshes generated by the three software are comparable in size. Since the 
geometric curvature of the X43 case varies greatly, GridStar automatically performs 

Fig. 7 The average and maximum loss in the training process of the proposed artificial neural network

Table 1 The number of points and elements of the meshes generated by the baselines and ISpliter. 
L is the characteristic length of the geometry. Lmax is the maximum edge length of the mesh

Cases Triangle L=10 Lmax=1 Square L=10 Lmax=1 Circle L=2R=10 Lmax=1 Hole L=1 Lmax=0.02

Gmsh 66/100 145/248 122/210 3054/5750

GridStar 72/112 174/278 105/177 2785/5213

ISpliter 66/100 135/228 108/183 2674/4997

Cases Capsule L=25 Lmax=1 X43 L=3.7 Lmax=0.05 Missile L=25397 Lmax=200 M6 L=1376 Lmax=33

Gmsh 2052/4100 5659/10712 18289/35806 47489/92396

GridStar 4891/9778 100941/201792 14949/29894 7289/14574

ISpliter 2006/4008 4895/9694 20776/41548 44258/88512
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adaptive refinement on it, making its mesh size larger. For the M6 case, we set to gener-
ate 300 points on the curves in the spanwise direction, but GridStar does not support 
specifying the number of points on the specific curve, so the number of generated ele-
ments is less.

In this paper, we use the skewness ([0,1], as shown in Eq. (11)) and minimum interior 
angle ([0◦,60◦ ]) to quantify the quality of a triangle element. While the closer the skew-
ness value is to 1 or the closer the minimum angle is to 60 degree, the closer the element 
is to an equilateral triangle, which means that the better its isotropy is. Therefore, the 
quality and anisotropy of a triangular mesh can be represented by the average, minimum 
and distribution of these two values for its all elements. Table 2 summarizes the overall 
qualities of the meshes generated by the baselines and ISpliter for all cases. It can be seen 
that Gmsh generally generates the best meshes for simple plane geometries, but it may 
easily generate degenerate element for complex surfaces. In contrast, the quality of the 
worst element generated by GridStar is the highest for complex models. This may relate 
to its curvature adaptation ability. For ISpliter, it generates meshes with the highest aver-
age quality, and the quality of its worst elements is not too far from the best results. 
Specific resulting meshes and quality distributions are presented in the following figures.

Figure 8 shows the generated meshes of a triangle geometry, and gives the skewness 
distributions and histograms of the minimum angle. Three software generate high 
quality results, but it is particularly noteworthy that ISpliter generates the ideal mesh 
with all equilateral triangles. This preliminarily demonstrates the effectiveness of the 
splitting line method scored by neural networks. In addition, because the number of 
points distributed on the loop is different, the triangle and square geometries used to 
generate splitting line samples in the training stage are not exactly the same as those 
in the experiments.

Similarly, Fig. 9 presents the meshes generated for the square geometry. It can be 
seen that the elements near the boundaries generated by Gmsh and ISpliter are better 

Table 2 The quality of the meshes generated by the baselines and ISpliter. They are the average 
skewness, the minimum skewness, the average minimum angle, and the minimum minimum angle 
of all elements, respectively. The best values are bolded

Cases Triangle Square Circle Hole Capsule X43 Missile M6

Gmsh 0.98 0.97 0.96 0.97 0.91 0.90 0.97 0.97

0.59 0.83 0.77 0.68 0.17 0.01 0.00 0.00

57.75 55.23 53.76 55.41 51.13 50.22 55.60 55.84

37.74 43.72 43.42 36.21 21.54 0.54 0.00 0.00

GridStar 0.97 0.91 0.95 0.97 0.89 0.87 0.98 0.87

0.64 0.56 0.81 0.76 0.09 0.01 0.07 0.08
55.82 49.22 51.61 55.63 45.54 44.83 57.17 45.18

34.00 27.82 40.93 40.45 13.71 0.09 4.54 3.00
ISpliter 1.00 0.97 0.96 0.98 0.96 0.93 0.88 0.99

1.00 0.77 0.62 0.77 0.55 0.01 0.01 0.03

60.00 55.11 52.20 53.78 54.02 52.20 44.55 57.39
60.00 41.45 31.49 37.13 26.35 0.97 1.42 2.82
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Fig. 8 The meshes of the triangle generated by the baselines and ISpliter

Fig. 9 The meshes of the square generated by the baselines and ISpliter
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than GridStar, although GridStar places more points on the boundaries. All the qual-
ity indicators of Gmsh are the highest, and the results of ISpliter are also very close to 
it. Their smallest angles are all greater than 40◦.

To investigate the behavior of each interior step of the proposed approach, the mesh 
of the square geometry generated by ISpliter in different stages is presented in Fig. 10. 
It first splits the geometry into two domains with equal area, and four interior angles 
of the splitting are all close to 60◦ or 120◦ . The second level splitting even forms two 
nearly equilateral triangles, and the selection of splitting lines in further levels is the 
same for domains with the same shape after rotation. This shows the effectiveness of fea-
ture extraction of the proposed approach. The generated initial mesh before smoothing 
is shown in Fig. 10(e). It can be seen that the difference before and after optimization is 
not significant. The statistics of the mesh quality are summarized in Table 3.

Fig. 10 The mesh of the square generated by ISpliter in different stages

Table 3 The statistics of the mesh quality distribution of the square generated by ISpliter before and 
after smoothing. The first part is the number of elements with corresponding quality. The last two 
columns are the average and minimum values

Skewness 0-0.2 0.2-0.4 0.4-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1 Ave Min

Before 0 0 4 2 14 18 190 0.95 0.51

After 0 0 0 0 4 16 208 0.97 0.77

Min angle 0-9 9-18 18-27 27-36 36-45 45-54 54-60 Ave Min

Before 0 0 0 6 20 44 158 54.66 33.82

After 0 0 0 0 12 60 156 55.11 41.45



Page 18 of 25Liu et al. Advances in Aerodynamics            (2023) 5:18 

The meshes and their quality distributions of the circle geometry generated by the 
three software are presented in Fig. 11. Again, the best mesh is still generated by Gmsh, 
especially its middle region is almost all uniform equilateral triangles. Although the tran-
sition between the middle and bottom regions of the mesh generated by ISpliter is not 
very smooth, its average skewness and minimum angle are pretty high. The first three 
simple cases examine the mesh generation capabilities of the three software for basic 
planar shapes, which is the basis for the surface mesh generation of real CAD models. 
The results show that ISpliter is comparable to the baselines in planar mesh generation.

Figure  12 shows the mesh results of a curved surface with complex topology struc-
tures. From the perspective of skewness and minimum angle, the mesh generated by 
Gmsh is the worst. It can also be seen from Table  2 that the quality of all meshes of 
the subsequent geometries generated by Gmsh is inferior to GridStar and ISpliter. Com-
bined with the results of previous plane cases, it shows that Gmsh has slightly poor 
processing ability for 3D surfaces. For this surface with 5 holes, the mesh generated by 
ISpliter has the best skewness values, and GridStar has the best minimum angles. More-
over, it can be inferred from the elements around the inner holes that GridStar adopts 
the AFT method.

The latter four cases are the CAD models with multiple trimmed surfaces. The capsule 
model has 60 curves and 32 surfaces, and the generated meshes are shown in Fig. 13. It 

Fig. 11 The meshes of the circle generated by the baselines and ISpliter
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can be found that, as the mesh density increases, ISpliter generates better meshes for the 
circular plane compared with Fig. 11. This is because it has larger space to choose more 
suitable splitting lines. From the distributions of skewness and minimum angle we can 
easily see that the mesh generated by ISpliter is of the best quality. Moreover, because 
the size and shape of patches in different regions of the geometry may vary greatly, if the 
size of the patch is too small in certain dimensions compared with Lmax , the nonuniform 
distribution of elements will inevitably occur. For example, for the long and thin band at 
the edge of the capsule in Fig. 13, the three software generate elements smaller than Lmax 
in that area. GridStar even generates denser elements based on the curvature factor. In 
such cases, one can specify smaller mesh size parameters if a uniform mesh is wanted.

Figure 14 shows the meshes of the X43 aircraft generated by the baselines and ISpliter. 
The X43 aircraft model has 211 curves and 90 surfaces, and there are very thin edges at 
the wings. Since the relative large value of Lmax is set, the minimum angle of the gener-
ated elements near the wings is small. The minimum skewness of these three meshes all 
equals 0.01 in Table 2, but under the same conditions, ISpliter still generates a mesh with 
better quality.

Figure 15 gives the results of a missile model. This missile model has 125 curves and 
32 surfaces. From the distributions of the skewness and minimum angle, it can be seen 

Fig. 12 The meshes of the curved surface with holes generated by the baselines and ISpliter
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that Gmsh and GridStar generate elements with higher quality. However, it can be found 
from Table  2 that Gmsh generates several degenerate triangles, which have interior 
angles with zero degree. The mesh generated by ISpliter has a minimum angle of 1.4◦ and 
its average quality is not bad, and the 6 worst elements are shown in Fig. 15. In this case, 
the mesh generated by GridStar has the best quality.

The M6 wing model has 12 curves and 6 surfaces, and its size span from thickness 
to length is close to 3 orders of magnitude. Therefore, we set 4 curves in the spanwise 
direction to place 300 points on each of them to generate fine meshes (in ISpliter and 

Fig. 13 The meshes of the capsule generated by the baselines and ISpliter
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Gmsh). This allows for a comparative analysis with the results of the X43 aircraft case. 
The generated meshes of the three software are shown in Fig. 16. We can see that Grid-
Star does not generate denser elements on the trailing edge of the wing by its curvature 
adaptive refinement. ISpliter and Gmsh generate similar meshes with smooth density 
transitions.

For meshes generated by ISpliter and Gmsh, the banding phenomenon  is formed at 
the middle part of the wing meshes. In our method, the number of points on the split-
ting line is determined by the size value of its two endpoints, as shown in Eqs. (4) and 

Fig. 14 The meshes of the X43 aircraft generated by the baselines and ISpliter
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(7), and it tends to choose shorter splitting lines due to the fifth feature of the neural 
network. Therefore, the mesh near the splitting lines connecting the leading and trailing 
edges of the wing is denser. However, it can be seen from Table 2 that Gmsh once again 
generates several degenerate elements. This indicates that Gmsh is less robust on com-
plex surfaces. Overall, ISpliter generates the mesh that meets expectations and is of the 
best quality.

5  Conclusions
In this paper, a novel surface mesh generator ISpliter is developed based on the splitting 
line method using neural networks. Nine features of a splitting line are extracted to rep-
resent it in the neural network, and the best splitting line selected by the neural network 
is then applied to split the surface into triangles. In addition, a recursive approach is 

Fig. 15 The meshes of the missile generated by the baselines and ISpliter
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proposed that can easily generate abundant data to train the model. The detailed experi-
mental results show that ISpliter can generate high-quality isotropic triangular surface 
meshes for CAD models with boundary representation. In future work, we will make 
minor modifications to extend ISpliter to generate quadrilateral meshes, and apply 
multi-level parallelism to improve its performance. In the meanwhile, more test cases 
are expected to further verify the codes.

Fig. 16 The meshes of the M6 wing generated by the baselines and ISpliter
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