
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// 
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Tong et al. Advances in Aerodynamics            (2023) 5:20  
https://doi.org/10.1186/s42774-023-00151-3

Advances in Aerodynamics

Optimization of aero-engine 
combustion chambers with the assistance 
of Hierarchical-Kriging surrogate model based 
on POD downscaling method
Shuhong Tong1,2, Yue Ma1,2, Mingming Guo1,2, Ye Tian1,2*, Wenyan Song3, Heng Wang1, Jialing Le1,2 and 
Hua Zhang1 

Abstract 

In view of the long calculation cycle, high processing test and cost of the traditional 
aero-engine combustion chamber design process, which restricts the engine optimiza-
tion design cycle, this paper innovatively proposes a surrogate model for the perfor-
mance of aero-engine combustion chambers based on the POD-Hierarchical-Kriging 
method. Through experiments, the predicted results of the POD-Hierarchical-Kriging 
model are compared and analyzed with the calculated results of the one-dimensional 
program, and the root mean square error of the predicted values of combustion 
efficiency and total pressure loss is 0.0064% and 0.1995%, respectively. The accuracy of 
the POD-Hierarchical-Kriging model is compared with the cubic polynomial model, the 
basic Kriging model and the Hierarchical-Kriging model. It verifies the feasibility and 
accuracy of the POD-Hierarchical-Kriging model for the prediction of performance of 
aero-engine combustion chambers. The global sensitivity analysis method is applied 
to obtain the influence effect of design variables on the performance. Then, a multi-
objective optimization method based on the NSGA-II algorithm is studied, and finally 
the optimal set of Pareto solutions is obtained and analyzed, which can be used to 
guide the optimal design of aero-engine combustion chambers and accelerate the 
progress of aero-engine development.

Keywords: Aero-engine combustion chamber, Surrogate model, POD-Hierarchical-
Kriging, Multi-objective optimization

1 Introduction
With the development and innovation of aero-engine technology by using a few novel 
strategies [1], reducing the engine design cycle and calculation time has become an 
important part of current research. As one of the three core components of an aero-
engine, the engine combustion chamber has higher requirements for design develop-
ment cycle and design results. The current combustion chamber design basically relies 
on CFD numerical simulations or wind tunnel tests for calculation and evaluation. 
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The high complexity of models and methods leads to long computational cycles and 
still large computational costs. In recent years, reducing the computational cost and 
improving the optimization efficiency by using surrogate models to approximate the 
target quantity have been widely studied by scholars. It mainly adopts a data-driven 
modeling approach for fit, regression, and feature learning based on a sample data-
base composed of selected design variables and corresponding numerical calculations 
or real test results. Surrogate models that can highly approximate the real mathemati-
cal model are constructed, and the corresponding output parameters can be quickly 
and accurately obtained for the input parameters of the surrogate model, which can 
replace the complex and time-consuming calculation and analysis in the design pro-
cess. The commonly used surrogate models in current research include polynomial 
response surfaces, moving least squares, radial basis functions, artificial neural net-
works, support vector machines, Kriging (Gaussian regression process), etc.

At present, with the development of neural networks, many scholars have applied 
neural networks to build surrogate models suitable for engine optimization design. 
M. Taghavi et  al. [2] used three popular structures – nonlinear autoregressive net-
work  with exogenous inputs (NARXNET), multilayer perceptron (MLP) and radial 
basis function (RBF) to build a multi-input single-output surrogate model to pre-
dict the start of the combustion (SOC) of homogeneous charge compression igni-
tion (HCCI) engine operation. Caterina Poggi et al. [3] developed an artificial neural 
network (ANN) surrogate model suitable for simulating aerodynamic performance 
and acoustic emission, avoiding the need for computationally costly CFD/CAA pre-
dictions. Although the ANN-based  surrogate model can promote the optimization 
of engine design, the establishment of an  artificial neural network surrogate model 
requires a large number of samples and a lot of time for model training. Therefore, 
in order to establish the surrogate model more quickly with fewer data samples, 
the Kriging surrogate model and the polynomial response surfaces surrogate model 
have more advantages in establishing the engine surrogate model. Hideaki Ogawa 
[4] combined computational fluid dynamics and evolutionary algorithms to optimize 
the multi-objective fuel injection at Mach 5.7 cross-flow, which is after initial com-
pression of Mach 7.6 inlet, with the assistance of various surrogate modeling includ-
ing polynomial and Kriging. Fernando Tejero et  al. [5, 6] designed and studied the 
non-axisymmetric aero-engine nacelle based on the Kriging surrogate model method. 
A series of surrogate-based adaptation methods are studied in order to reduce the 
computational cost.

However, the basic Kriging surrogate model has high requirements on the confi-
dence of sample data, so some researchers have proposed some new surrogate mod-
els based on the basic Kriging model and applied them to the optimization design of 
engines. ZH Han et al. [7] proposed the Hierarchical-Kriging model, using a sampled 
Kriging model with a low fidelity function as the model trend. A more accurate sur-
rogate model of the high fidelity function is obtained by mapping the variation of the 
low fidelity data to the high fidelity data. It is also used to model the aerodynamic 
data of RAE2822 airfoil and industrial transport aircraft structures with efficiency, 
accuracy and robustness. Du et  al. [8] applied the  Hierarchical-Kriging to optimize 
the structural dynamics of rocket engines, constructed the relationship between the 
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design variables of engine structural parameters and modal frequency characteristics, 
and used it to facilitate engine optimization design, achieving good accuracy.

In recent years, some researchers have established some surrogate models for the aero-
engine combustor to assist the optimization design of the combustor, but there exist still 
few relevant studies. Maotao Yang et al. [9] used the Kriging surrogate model to predict 
the combustion efficiency and total pressure loss of the combustion chamber and com-
pared it with the ANN model to verify that the use of the Kriging surrogate model can 
shorten the engine combustion chamber design cycle. Yue Ma et al. [10] used a cubic 
polynomial surrogate model to predict the performance of combustion chambers. Based 
on this, a multi-objective optimization of the combustion chamber performance is car-
ried out using the particle swarm optimization (PSO) algorithm. The surrogate model is 
proved to be useful for guiding the combustion chamber design. All their studies have 
verified that the use of surrogate models can promote the optimization design of aero-
engine combustors, but the surrogate models they used are all basic surrogate models, 
which also have high requirements on the confidence of sample data.

Based on the analysis of the above research status, the application of surrogate models 
to assist engine optimization design has achieved good development, but most of the 
above studies ignore the possible information redundancy under the optimization of 
multiple design variables in the process of establishing the surrogate model. This infor-
mation redundancy adds unnecessary computing costs. Aero-engine combustor has 
the characteristics of large variation in working conditions, significant nonlinearity and 
harsh working environment, so the application of surrogate model-assisted engine opti-
mization design of aero-engine combustors has very good development potential. How-
ever, in the above studies, little work has been carried out on the aeroengine combustion 
chamber. Maotao Yang and Yue Ma respectively used the Kriging surrogate model and 
the cubic polynomial surrogate model to study the optimal design of aeroengine com-
bustion chambers. However, both of these two surrogate models have high requirements 
on the confidence of training samples. Therefore, in order to make up for the shortcom-
ings of the above surrogate models, a new surrogate model needs to be designed, which 
will not be affected by information redundancy in the design variable space during the 
design process, and can use the training samples with low confidence to establish a high-
precision surrogate model.

Under the above requirements, this paper takes an aero-engine combustion chamber 
as the research object, and creatively applies the POD-Hierarchical-Kriging method 
to establish a surrogate model of combustion performance. Firstly, different incoming 
flow conditions and main design parameters of the combustion chamber are selected 
as design variables. The sample collection in the input parameter space is completed by 
using the Latin hypercube sampling method. A numerical simulation program designed 
by Northwestern Polytechnical University is applied to pre-process the data and cal-
culate the output values of combustion performance including combustion efficiency 
and total pressure loss. Then the samples are downscaled and reconstructed based on 
the POD algorithm, and the downscaled and reconstructed data are used as training 
datasets. Based on the Hierarchical-Kriging method, a surrogate model is developed 
to characterize the mapping relationship between the input and output performance 
parameters of the original complex model to simplify the complex and time-consuming 
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computational process. Finally, the constructed data set is used to complete the train-
ing of the model, and the test data is used for verification. A global sensitivity analysis 
method based on variance is applied to rank the magnitude of design variables affecting 
the combustion performance. Based on the POD-Hierarchical-Kriging model, a Pareto 
optimal solution set is obtained by the NSGA-II multi-objective optimization algorithm, 
laying the foundation for the optimal design of aero-engine combustion chambers.

In Section 2 of this paper, the concentric graded combustion chamber model is intro-
duced. Section 3 carries out the theoretical derivation of the POD algorithm, the basic 
Kriging and Hierarchical-Kriging surrogate models, and the theory of the NSGA-II 
algorithm. In Section  4, experiments are carried out, including surrogate model test 
prediction and error comparison analysis of various surrogate models, global sensitiv-
ity analysis, as well as multi-objective optimization based on the  NSGA-II algorithm. 
The  Pareto solution set obtained from optimization is analyzed. Section  5 provides a 
summary.

2  Combustion chamber model and data acquisition
2.1  Reliability verification of high performance 1D design method

In order to quickly complete the calculation of combustor parameters, the one-dimen-
sional calculation method of aero-engine combustor is studied jointly with Kazan 
Aviation University, and a set of one-dimensional calculation program of aero-engine 
combustor model is developed. Taking a dual swirl combustor as the object, the cal-
culated state is a  full pressure state, in which  the total inlet temperature is 861.49  K, 
the  inlet pressure is 33.4  atm, the  air flow is 54.38  kg/s, and the total oil–gas ratio in 
the combustor is 0.026. The reliability of the three-dimensional numerical calculation 
is verified by comparing the experimental results with the three-dimensional numerical 
calculation results of the dual swirl combustor. After that, two different one-dimensional 
calculation models (Case 1 and Case 2) are adopted. In the one-dimensional design pro-
gram, different calculation models, correlation expressions or constants can be selected 
according to the calculation needs. The calculation methods are shown in Table 1. The 
consistency of the one-dimensional calculation method is verified by comparing the 
one-dimensional calculation results with the three-dimensional numerical results veri-
fied by reliability.

In the comparison between the three-dimensional calculation of the combustion cham-
ber and the test, the PIV test measured the velocity field through the center section of the 
full hole of the main combustion hole. The PIV observation area is shown in Fig. 1. The 
velocity field before and after the main combustion hole is measured by PIV, and the 
measured results are processed  dimensionlessly. Figures  2, 3 and 4 show the compari-
son cloud images between the calculated results of three-dimensional velocity field and 
the measured results of PIV test. By comparing with the PIV measurement results, it can 
be seen that the velocity field distribution trend of the 3D numerical simulation cloud 
image is basically consistent with the experimental measurement results, and the error is 
within a reasonable range, which indicates that the 3D numerical simulation can reflect 
the changes and characteristics of the actual flow field to a certain extent.
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Then, the one-dimensional calculation methods Case 1, Case 2 and CFD three-dimen-
sional calculation are used to obtain the comparison for the air flow rate accumulated 
along the axial direction, as shown in Table 2. There are a row of main combustion holes 
and mixing holes respectively on each wall of the flame cylinder. The main combustion 
hole cross section is cut off along the axial direction at the main combustion hole, and 
the mixing hole cross section is cut off along the axial direction at the mixing hole. It can 
be seen that the results of Case 1 calculation are closer to those of CFD three-dimen-
sional calculation, and the inlet air volume in the main combustion zone is only slightly 
less than that of Case 2 calculation.

Table 3 is a comparison of the performance parameters obtained by the one-dimen-
sional calculation methods Case  1, Case  2 and CFD three-dimensional calculation. 
It can be seen from Table 3 that the calculation results meet the requirements of the 
combustion chamber performance parameters.

Based on the comparison and analysis of the flow parameters and performance 
parameters of the combustion chamber mentioned above, it can be seen that the one-
dimensional calculation method adopted is in good agreement with the three-dimen-
sional calculation. It is proved that the one-dimensional calculation method can 
calculate the performance parameters of the combustion chamber well, and the cal-
culation results are accurate and feasible. A more detailed description of the method 
can be found in reference [11].

2.2  High performance combustion chamber design for aero engine

The object of this paper is a type of concentric graded combustion chamber. The 
design conditions met by this combustion chamber are shown in Table  4, and its 
structure schematic is shown in Fig.  5. According to the design requirements, the 
overall structural parameters and flow distribution of the combustion chamber are 

Table 1 Model selection of two one-dimensional calculation methods

Selection Calculation method

Case 1 Case 2

Diffuser section 1–2 section calcula-
tion method

Flow tube method Flow tube method

Diffuser section 2–4 section calcula-
tion method

Empirical method + Mixed method Mixed method + Mixed method

Jet mixing model Quality loss Equivalent blending

Penetrating flux mixing constant 1 1

Wall jet mixing constant 0.1 0.2

Correlations used to calculate emis-
sivity

Reeves on Distilled Fuel Correlation 
(non-luminous flame)

NREC 1964 correlation (glowing 
flame)

Radiation dimension One-dimensional One-dimensional

Whether to consider radiation heat 
transfer between walls

No No

Whether to use wall cooling Yes Yes

Whether to consider the longitudinal 
heat conduction between walls

No No

Whether to conduct heat through the 
annular cavity air

Yes No
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Fig. 1 PIV observation area

Fig. 2 Comparison of numerical simulation and experimental results of velocity distribution in central 
section of main combustion hole in the dual swirl combustor

Fig. 3 Comparison of numerical simulation and experimental results of axial velocity distribution in central 
section of main combustion hole in the dual swirl combustor
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calculated, and on this basis, the design and calculation of each component of the 
combustion chamber are carried out. Finally, the preliminary design scheme of the 
combustion chamber is obtained. Through numerical simulation and test verification, 
it has been verified that this structure can meet certain performance index require-
ments. For more detailed design parameters, refer to literature [12].

Based on the concentric graded combustion chamber model, the surrogate model 
construction is carried out according to the calculation results of the one-dimensional 
program of the self-designed aero-engine combustion chamber model. Combustion 
efficiency η(%) and total pressure loss �p(%) are selected as the target parameters. 
Design parameters are selected as total inlet temperature Tt(K), total inlet pressure Pt
(kPa), inlet flow St(kg/s), oil–gas ratio Rog , number of main combustion holes (single 

Fig. 4 Comparison of numerical simulation and experimental results of radial velocity distribution in central 
section of main combustion hole in the dual swirl combustor

Table 2 Comparison of cross-sectional flow distribution ratios between the main combustion hole 
and the mixing hole in the dual swirl combustor

Calculation method Main combustion hole cross section Mixing hole cross section

1D calculation (Case 1) 0.488 0.809

1D calculation (Case 2) 0.490 0.804

CFD 3D calculation 0.476 0.848

Table 3 Comparison of combustion chamber performance parameters

Performance parameters Case 1 Case 2 CFD 3D calculation results

Combustion efficiency 0.9994 0.9994 0.9974

Total pressure recovery 0.9601 0.9565 0.9604

OTDF 0.2053 0.2054 0.261
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head and single wall) Nm(PCS), size of main combustion holes Dm(mm), number of 
cooling holes in each row Nc(PCS) and size of cooling holes Dc(mm). The design vari-
ables are detailed in Table 5.

The combustor surrogate model design algorithm process mainly includes the fol-
lowing parts. First, Latin hypercube sampling is carried out in the 8-variable space 
to obtain sample data of input parameters. Then, the self-designed one-dimensional 
program of aero-engine combustion chamber model is used for calculation, and the 
corresponding combustion efficiency and total pressure loss of sample parameters are 
obtained. After data preprocessing, the sample data set is constructed and completed. 

Table 4 High temperature rise combustor design requirements

Parameters Design status Slow state

Total inlet temperature (K) 850 492.9

Oil–gas ratio 0.0430 0.0106

Combustion efficiency  > 99%  > 98%

Total pressure loss  < 6%  < 7%

Overall temperature distribution factor  < 0.20 -

Radial temperature distribution factor  < 0.12 -

Fig. 5 Overall grid structure of combustion chamber

Table 5 Design variables

Variable symbols Variable name Range of changes

Tt/K Total inlet temperature 427.55 – 1070.33

Pt/kPa Total inlet pressure 500 – 3200

St/kg*s
−1 Total inlet flow 19.01 – 82.398

Rog Oil–gas ratio 0.0106 – 0.0430

Nm/PCS Number of main combustion holes 2 – 4

Dm/mm Size of main combustion holes 12.1 – 16.8

Nc/PCS Number of cooling holes per row 10 – 20

Dc/mm Cooling hole size 0.5 – 1.5
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Then, mapping relationships between eight input parameters and two output param-
eters ( η/�p ) are established based on the POD-Hierarchical-Kriging model to replace 
the complex model among variables, that is, the surrogate model for aeroengine com-
bustion chamber is constructed. Finally, based on the NSGA-II optimization algo-
rithm and the surrogate model, the design parameters are optimized and the optimal 
configuration is obtained.

3  Method
3.1  Design of POD‑Hierarchical‑Kriging combustion performance surrogate model

The POD-Hierarchical-Kriging algorithm model is mainly based on the Kriging model. 
The Kriging model regards the unknown function as the concrete realization of a static 
stochastic process, including regression part and correlation part, among which the cor-
relation part can be regarded as the realization of random Gaussian process, and has a 
good fitting effect for problems with a high degree of nonlinearity. The Kriging model 
is based on the dynamic construction of sample information at known points and has 
both global and local statistical characteristics. The POD algorithm [13–15] is used to 
downscale and reconstruct the original samples, reduce the sample computational loss, 
extract the core information, and filter out the marginal information. The data processed 
by the POD algorithm is used as the sample input for the Hierarchical-Kriging model. 
The above whole constitutes the POD-Hierarchical-Kriging algorithm model.

3.1.1  POD method

The core of the POD method is to find a set of “optimal” orthogonal bases 
{U1,U2,U3, · · · ,Un} of the n-dimensional field space {xn ∈ �} . Assuming that xn can 
be approximated by a number of orthogonal bases, then xn can be approximated by this 
set of “optimal” orthogonal bases {U1,U2,U3, · · · ,Un}:

Where U i is the eigenvector or basis vector of xn ; αi is the correlation coefficient of 
U i . If the dimension of the orthogonal space composed of “optimal” orthogonal bases 
is smaller than that of the original space, the above approximation process can be 
described as a downscaling of the sample space, followed by an approximate reconstruc-
tion of the sample, then:

Therefore, the centralization of the sample data is performed. Then the new  
centralized sample data set is obtained:

followed by SVD (singular value decomposition):

(1)xn =
n

i=1
αiU i.

(2)xn =
∑r

i=1
αiU i, (r < n).

(3)X̃ =
{

x̃1, x̃2, x̃3,⋯ , x̃n

}

= {x1 − x1, x2 − x2, x3 − x3,⋯ , xn − xn},

(4)X̃ = U�V T .
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For the value of r , r should be less than n to reduce the scale of the feature vector 
space, but it should approximate the original data space as accurately as possible. The 
selection of r can be determined in the following ways:

I  is the energy information capacity or energy. The closer I  is to 1, the more com-
plete the original information contained in the feature vector space is and the closer 
it is to the original function space. It is usually considered that I  is greater than 95%. 
Where � is the eigenvalue of the covariance matrix X̃  arranged from the largest to the 
smallest, satisfying �1 > �2 > · · · > �n . Then the final POD model is:

3.1.2  Basic Kriging model

The Kriging model is an unbiased estimation model. It has the characteristics of local 
estimation and is a good fit for problems with a high degree of nonlinearity. The fol-
lowing is a reference to the derivation process of Kriging method theory [16, 17]. In 
the analysis of regression model, the model assumes that the real relationship between 
the response value of the system and the independent variable can be expressed in the 
following form:

Where x is the input parameter; f (x) =
[
f1(x), f2(x), · · · , fp(x)

]T  ; β is the regression 
constant, expressed as β =

[
β1,β2, . . . ,βp

]T  ; p is the number of polynomial terms, 
and the magnitude depends on the form of the polynomial; y(x) is the predicted value 
of combustion efficiency η(%) or total pressure loss �p(%), y(x) = [η,�p] ; z(x) is a 
random process, which has the following statistical properties:

Where,

and R is “correlation matrix”; ρij is the correlation function value, representing the corre-
lation between the ith sample point and the jth sample point; m is the size of the sample. 
The correlation function is artificially assumed, and the Gaussian function is commonly 
used. In this experiment, the Gaussian function is used as the correlation function, and 
the specific form is as follows:

(5)I =
∑r

i=1
(�i)

2/
∑n

i=1
(�i)

2.

(6)XRE = X +
∑r

i=1
αiU i.

(7)y(x) = f (x)Tβ + z(x).

(8)





E[z(x)] = 0,

Var[z(x)] = σ 2,

E[z(xi), z(x)] = σ 2
R.

(9)R =




ρ11 ρ12 · · · ρ1m
ρ21 ρ22 · · · ρ2m
...

...
. . .

...
ρm1 ρm2 · · · ρmm


,
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Where the unknown parameter θ = [θ1, θ2, . . . , θn] , the dimension n is the same size 
as the dimension of the sample point. xih is the hth variable of the ith sample and can be 
expressed as any of the input parameters.

A prediction model formula (11) is given to approximate formula (7):

Where Y = [y1, y2, . . . , ym]
T ,  and Y  is the known sample response vector; 

c = [c1(x), c2(x), . . . , cm(x)]
T ,  and ci is related to a single sample point x . When the 

given sample points x are different, the resulting ci is different.
The prediction error of the model is:

Where z = [z(x1), z(x2), · · · , z(xm)]
T , and F =

[
f T (x1), f

T (x2), . . . , f
T (xm)

]T
 . Con-

sidering that ŷ(x) is the optimal linear unbiased estimate of y(x) , Eq. (13) is obtained 
from the unbiased estimate, and Eq. (14) is obtained from the minimum mean square 
error.

Where r is the correlation vector composed of the correlation function between the 
point x to be predicted and the original sample set. By constructing the Lagrangian 
function, the response model expression can be obtained:

Where, β∗ =
(
FTR−1F

)−1
FTR−1Y ,  and γ ∗ = R−1

(
Y − FTβ∗

)
 . It can be seen that 

F  and Y  can be obtained from the given sample, and R contains only the parameter θ . 
β∗ , γ ∗, and r(x) can be obtained by finding the unknown parameter θ.

Since each sample point is not independent, the joint probability density is:

Taking the logarithm:

where lnL only contains the parameter θ , and the parameter training is transformed into 
the solution of a nonlinear optimization problem, which in turn yields R. Then β∗ , γ ∗

, and r(x) are similarly available, so the final model is determined.

(10)ρij = exp

(
−
∑n

h=1
θh

∣∣∣xih − x
j
h

∣∣∣
2
)
, i, j = 1, 2, . . . ,m.

(11)ŷ(x) = cT (x)Y .

(12)ŷ(x)− y(x) = cT z − z +
(
FT c − f (x)

)T
β .

(13)FT c = f (x).

(14)MSE = σ 2
(
1+ cTRc − 2cT r

)
.

(15)ŷ(x) = f (x)Tβ∗ + r(x)Tγ ∗.

(16)

L
(
β , σ 2, θ

)
=

1

(2π)m/2
(
σ 2

)m/2
|R|1/2

exp

[
−

1

2σ 2

(
Y − FTβ

)T
R−1

(
Y − FTβ

)]
.

(17)lnL ≈ −
1

2

(
mlnσ̂ 2

+ ln(|R(θ)|)
)
,
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3.1.3  Hierarchical‑Kriging model

The difference between the Hierarchical-Kriging and the basic Kriging is that the Hier-
archical-Kriging adopts a multi-layer basic Kriging structure [7, 16]. The Hierarchical-
Kriging allows the output of the first layer to be the global approximate reference of the 
second layer, the second layer to be the global approximate reference of the third layer, 
and so on. The Hierarchical-Kriging has a very great advantage in practical applications 
in making full use of the sample information [16, 17]. The basic Kriging is too sensitive 
to the noise of training samples and requires high reliability of training samples, while it 
is easy to overfit training samples with low reliability. However, the Hierarchical-Kriging 
adopts a hierarchical strategy, training the first layer with samples of low confidence and 
the second layer with samples of high confidence, so as to fully explore the potential of 
training samples. Take the Hierarchical-Kriging with two layers as an example:

To construct the two-layer Kriging, the first layer Kriging should be constructed with 
low confidence training sample points.

The polynomial in the model of the first layer is a constant, because the reliability of 
the training sample is low, and it is easy to fit the noise with the polynomial of higher 
order, resulting in the decline of the prediction accuracy of the final model.

Where β1f =
(
1TR−1

1f 1
)−1

1TR−1
1f y1f , R1f ∈ R

n1f×n1f , 1 ∈ R
n1f , r1f ∈ R

n1f . This is the 

result of training through the first layer of samples.
The second layer structure is constructed on the basis of the first layer, and the high 

reliability sample points are used to train the second layer.

Using the same derivation as the first level, it can be derived that:

Where F = [̂y1f (x1), . . . , ŷ1f (xm)]
T ; R2f and r2f are both correlation matrices and cor-

relation vectors composed with high confidence sample points (in the same specific 
form as the basic Kriging); y2f is a vector composed of responses from sample points; 
β =

(
FTR2f

−1F
)−1

FTR2f
−1y2f.

3.2  NSGA‑II multi‑objective optimization design

Genetic algorithm is widely used in aero-engine  design [18, 19]. NSGA-II is a multi-
objective optimization algorithm based on the optimal Pareto solution. It has the char-
acteristic  of  low complexity, and uses the  elite population strategy and the  degree of 
crowding comparison operator. The key steps of NSGA-II include fast non-dominated 
sorting, calculation of congestion, elite reservation policy and tournament selection.

The target parameters involved in the engine combustion chamber design are combus-
tion efficiency η and total pressure loss �p , where the combustion efficiency η should be 

(18)y1f (x) = β1f + z1f (x).

(19)ŷ1f (x) = β1f + rT1f (x)R
−1
1f

(
y1f − β1f 1

)
.

(20)y2f (x) = β ŷ1f (x)+ z(x).

(21)ŷ2f (x) = β ŷ1f (x)+ rT2f (x)R
−1
2f

(
y2f − βF

)
.
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as large as possible to ensure η ≥ 99% , and the total pressure loss �p should be as small 
as possible to ensure �p ≤ 4% . To meet the constraints, the overall temperature distri-
bution factor (OTDF) should be less than 0.2.

According to the multi-objective minimum optimization model, the optimization 
model can be described as:

Different from the optimal selection of the single objective optimization problem, the 
multi-objective optimization problem [18–20] involved in this paper contains two con-
flicting optimization objectives. It is difficult for the objective parameters combustion 
efficiency η and total pressure loss �p to reach the optimal simultaneously. Therefore, 
in the optimization process, the two conflicting objectives can only be weighed to reach 
the Pareto optimal. Finally, an optimal solution set (i.e. Pareto solution set) containing 
multiple elements is obtained.

4  Experiments and analysis of the results
4.1  Analysis of combustion performance surrogate model based 

on POD‑Hierarchical‑Kriging

In this section, based on the model and method deduced above, the experimental 
process is mainly carried out to collect samples of combustion performance param-
eters of aero-engine combustor model, and the POD-Hierarchical-Kriging surrogate 
model is established for prediction. Firstly, based on 91 sets of sample data after Latin 
hypercube sampling and pre-processing, the one-dimensional procedure of the aero-
engine combustion chamber model designed by Northwestern Polytechnical Uni-
versity is used to obtain the calculation results of the target optimization parameters 
corresponding to the sample data, and then the construction of the sample data set is 
completed.

After that, parameter estimation of the POD-Hierarchical-Kriging surrogate model 
is performed to obtain surrogate models of combustion efficiency η and total pressure 
loss �p.

Using the above established model, 20 groups of untrained test data are used to test 
the prediction accuracy of the established surrogate model, and root mean square 
error (RMSE) is used as the measurement of error magnitude. The prediction errors of 
the model for combustion efficiency and total pressure loss are 0.0064% and 0.2523%, 

(22)obj.

{
max − η(Tt ,Pt , St ,Rog ,Nm,Dm,Nc,Dc),
min �p(Tt ,Pt , St ,Rog ,Nm,Dm,Nc,Dc),

(23)constraint : OTDF ∈ [0, 0.20],

(24)s.t.

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Tt ∈ [427.55,1070.33],

Pt ∈ [500,3200],

St ∈ [19.01,82.398],

Rog ∈ [0.0106,0.0430],

Nm ∈ [2,4],

Dm ∈ [12.1,16.8],

Nc ∈ [10,20],

Dc ∈ [0.5,1.5].
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respectively. The relative prediction errors for the combustion efficiency and total pres-
sure loss are shown in Fig. 6. We performed cross-validation of the POD-Hierarchical-
Kriging model to calculate the fitness between the model and the flow solver. The results 
of the cross-validation of the predicted data points are depicted in Fig. 7. The horizontal 
axis represents the original values of the test data and the vertical axis represents the val-
ues predicted by the POD-Hierarchical-Kriging model. If the sample points are closer to 
the symmetrical diagonal, the model is considered accurate [21].

The accuracy of the POD-Hierarchical-Kriging model is preliminarily verified based on 
the prediction error relative graph and cross validation graph. In order to fully validate 
the advantages of the POD-Hierarchical-Kriging model as a prediction of combustion 
chamber performance, a comparison with other methods is necessary. The POD-Hierar-
chical-Kriging model is compared with the commonly used cubic polynomial response 
surface model, the basic Kriging model, and the Hierarchical-Kriging model. The basic 
Kriging model is trained using two schemes. The first scheme is trained with 91 sample 
points (Notated as A-Kriging model) and the second scheme is trained with only 12 high 
confidence samples (Notated as OH-Kriging model). The RMSE is used as the criterion 
to judge the prediction error of each model. The smaller the root mean square error of 
the model, the better the model prediction is.

As shown in Fig. 8, for the combustion efficiency, the RMSEs of the predictions of the 
four models using the new data set are 0.0115% for the cubic polynomial model, 0.018% 
for the A-Kriging model, 0.0128% for the OH-Kriging model, 0.0083% for the Hierarchi-
cal-Kriging model, and 0.0064% for the POD-Hierarchical-Kriging model. It is shown 
that all four surrogate models can well characterize the original model. For the combus-
tion efficiency parameters, the POD-Hierarchical-Kriging model predicts the smallest 
RMSE, and the Hierarchical-Kriging model is the next best, both better than the cubic 
polynomial model and the basic Kriging model. Therefore, the POD-Hierarchical-Krig-
ing surrogate model is accurate in predicting the combustion efficiency.

As shown in Fig. 9, for the total pressure loss, the RMSE of the predictions of the four 
models using 20 test data sets is 0.2002% for the cubic polynomial model, 0.1942% for 
the A-Kriging model, 0.4576% for the OH-Kriging model, 0.1833% for the Hierarchical-
Kriging model, and 0.1995% for the POD-Hierarchical-Kriging model. It shows that the 
four surrogate models can well characterize the original model. However, for the total 

Fig. 6 Combustion efficiency prediction error
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pressure loss, the RMSE of the values predicted by the Hierarchical-Kriging model is the 
smallest. The POD-Hierarchical-Kriging model has similar predictions as the A-Kriging 
model. Their RMSEs are larger than those predicted by the Hierarchical-Kriging model 
and smaller than those of the cubic polynomial model. The RMSE of the  OH-Kriging 
model is the largest, and its prediction is the worst.

By comparing with common surrogate models, the POD-Hierarchical-Kriging model 
shows its advantage as a model for predicting combustion chamber performance. Com-
pared with the OH-Kriging model, the POD-Hierarchical-Kriging model performs 
better in both the prediction of combustion efficiency and the prediction of total pres-
sure loss. This indicates that the POD-Hierarchical-Kriging model compensates for the 
problem that the basic Kriging model requires high confidence in the training sample 
points. It makes full use of the low confidence training samples in the sample dataset, 
thus improving the prediction accuracy. For comparison experiments on combustion 
efficiency prediction, the POD-Hierarchical-Kriging model has the best prediction effect 
and the RMSE of the POD-Hierarchical-Kriging model is 22.8% lower than the RMSE 
of the next best Hierarchical-Kriging model. It shows that the POD algorithm can bet-
ter characterize the original data space, extract more critical sample information, and 
filter out marginal information after dimensionality reduction and reconstruction of 
the sample data set. For the prediction of total pressure loss, the prediction accuracy of 
the POD-Hierarchical-Kriging model is slightly lower than that of the optimal Hierar-
chical-Kriging model and higher than that of the cubic polynomial model. It is shown 
that combining the POD algorithm with the Hierarchical-Kriging model avoids overfit-
ting and reduces computing loss to a certain extent. In the face of a large number of 
parameter predictions, the rapidity of the POD-Hierarchical-Kriging model can be dem-
onstrated, and the prediction accuracy has not been greatly reduced.

4.2  Optimization results and analysis

Sensitivity analysis is used to study the influence of eight design variables on the two 
objective functions and to explore which decision variables have a greater or lesser influ-
ence on the test results. Figure 10 shows the sensitivity index analysis of design variables 
on combustion efficiency and total pressure loss respectively, as well as the influence 

Fig. 7 Cross-validation data required for the POD-Hierarchical-Kriging model
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Fig. 8 Comparison of predictions of surrogate models on combustion efficiency
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Fig. 9 Comparison of predictions of surrogate models on total pressure loss
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ratio of each design variable. As shown in the figure, regardless of the sensitivity index 
of combustion efficiency or the sensitivity index of total pressure loss, the design vari-
ables with great influence are: total inlet temperature, total inlet pressure,  total inlet 
flow and oil–gas ratio. The total influence of the other four design variables is less than 
0.006% and can be ignored. Among them, the total inlet pressure has a great influence 
on the combustion efficiency and total pressure loss, so it can be seen that the design 
of total inlet pressure is in the dominant position in the combustion chamber design. 
In addition, the oil–gas ratio has the greatest influence on the combustion efficiency of 
the combustion chamber, and the total inlet flow has the greatest influence on the total 
pressure loss of the combustion chamber. Therefore, when optimizing the combustion 
chamber design, it is advisable to focus on the four aspects of total inlet temperature, 
total inlet pressure, total inlet flow and oil–gas ratio.

Based on the POD-Hierarchical-Kriging surrogate model, the optimization of aero-
engine combustion chamber configuration parameters is carried out for the target opti-
mization parameters of combustion efficiency η and total pressure loss �p . The NSGA-II 
algorithm is used to solve the non-dominant solutions of two objective functions con-
structed by the  POD-Hierarchical-Kriging surrogate model. The population size and 
iteration size are 200 and 50, respectively. The crossover rate and mutation rate are fixed 
at 1 and 0.03. Crossover parameters and mutation parameters are fixed at 100 and 100.

Pareto front is shown in Fig. 11. The horizontal and vertical axes are total pressure loss 
and combustion efficiency respectively. As shown in the figure, the overall trend of the 
Pareto solution set is that as the combustion efficiency increases, the total pressure loss 
also increases.

The constraint OTDF is predicted by using the basic Kriging surrogate model during 
the iterative process. Figure 12 illustrates the constraints to satisfy OTDF in the process 
of optimizing the two objective functions. The dotted line indicates the boundary of the 
design space, and the shaded area indicates the area outside the design constraints.

It can be seen from Fig. 12 that the Pareto fronts all meet the restriction of OTDF. 
It is also observed that most of the solutions in the optimal solution set have OTDFs 
greater than 0.1, indicating that most of the solutions in the Pareto solution set 
obtained by solving the multi-objective optimization  of combustion efficiency and 
total pressure loss will have larger OTDFs. Based on the sensitivity analysis of com-
bustion efficiency and total pressure loss, the influence of these design variables on 
combustion efficiency and total pressure loss is further explored by using the  four 
design variables with great influence. According to the Pareto solution set of the 
POD-Hierarchical-Kriging model, the influence of the four variables on the two 
objective functions is shown in Figs. 13 and 14.

The relationship between total pressure loss and combustion efficiency with design 
variables is analyzed according to the four influential design variables using the Pareto 
solution set of the POD-Hierarchical-Kriging model. Figure  13a plots the relationship 
between the combustion efficiency and the total inlet temperature. Figure 13b plots the 
relationship between the combustion efficiency and the total inlet pressure. Figure 13c 
plots the relationship between the  combustion efficiency and the  total inlet flow. Fig-
ure 13d plots the relationship between the combustion efficiency and the oil–gas ratio. 
As shown in Fig. 13a, in the Pareto solution set, the combustion efficiency of the optimal 
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Fig. 10 Global sensitivity analysis of combustion efficiency and total pressure loss
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solution is small as the total inlet  temperature is  between 550  K and 650  K, and the 
combustion efficiency  of the optimal solution is large as the total inlet temperature is 
between 650 K and 750 K. The iteration of the genetic algorithm produces a large num-
ber of individuals whose total inlet temperature is between 650 K and 750 K, indicating 
the superior property of the total inlet temperature between 650  K and 750  K in the 
design of the combustion chamber. As shown in Fig. 13b, the combustion efficiency of 
the optimal solution is relatively high as the total inlet pressure is between 2000 kPa and 
3000 kPa, and the individuals tend to aggregate first and then disperse with the increase 
of the inlet total pressure. It reflects that increasing the total inlet pressure within a cer-
tain range will be beneficial for improving the combustion efficiency, while when the 
total inlet pressure is too large, the property of improving the combustion efficiency will 
be lost. As shown in Fig.  13c, two optimal solutions with the lowest combustion effi-
ciency occur as the total inlet flow is between 40 kg/s and 45 kg/s. As for combustion 
efficiency, the design variable of total inlet flow in the whole population has no obvious 
aggregation, which confirms that the influence of total inlet flow on combustion effi-
ciency is smaller than that of total inlet pressure and oil–gas ratio in sensitivity analysis. 
As shown in Fig. 13d, a large number of optimal solutions in the Pareto solution set are 
clustered as the oil–gas ratio is between 0.03 and 0.035, reflecting the excellent property 
of the oil–gas ratio between 0.03 to 0.035 on the combustion efficiency. After iteration, 
the oil–gas ratio between 0.025 and 0.035 shows a significant aggregation, which is con-
sistent with the largest influence of oil–gas ratio on combustion efficiency in sensitivity 
analysis.

Figure  14a plots the relationship between the total pressure loss and the total 
inlet  temperature. Figure  14b plots the relationship between the total pressure loss 
and the total inlet pressure. Figure 14c plots the relationship between the total pres-
sure loss and the total inlet flow. Figure 14d plots the relationship between the total 
pressure loss and the oil–gas ratio. As shown in Fig. 14a, more optimal solutions with 

Fig. 11 Pareto front in the target space
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low total pressure loss occur in the Pareto solution set as the total inlet temperature 
is between 550 K and 650 K, while more optimal solutions with high total pressure 
loss are obtained as the total inlet temperature is between 650 K and 750 K. This cor-
responds exactly to the influence of the total inlet temperature on the combustion 
efficiency in Fig. 13a, where the combustion efficiency is smaller for the optimal solu-
tions as the total inlet temperature is between 550 K and 650 K and larger for the opti-
mal solutions as the total inlet temperature is between 650 K and 750 K. It indicates 
that the total inlet temperature needs to be designed with a trade-off between high 
combustion efficiency and low total pressure loss in the optimization process with 
combustion efficiency and total pressure loss as the optimization objective. As shown 
in Fig.  14b, more optimal solutions with low total pressure loss occur as the total 
inlet pressure is  between 1500  kPa and 2500  kPa. In Fig.  13b, the optimal solution 
has a larger combustion efficiency as the total inlet pressure is between 2000 kPa and 
3000 kPa. It is inferred that the design variables in the combustion chamber design 
process will have better performance in the combustion chamber as the total inlet 
pressure is between 2000 kPa and 2500 kPa. As shown in Fig. 14c, many of the optimal 
solutions in the Pareto solution set aggregate as the total inlet flow is between 60 kg/s 
and 75 kg/s. As shown in Fig. 14d, aggregation occurs as the oil–gas ratio is between 
0.03 to 0.035; however, many optimal solutions have total pressure loss greater than 
1% as the oil–gas ratio is between 0.03 and 0.035. In the non-aggregated oil–gas ratio 
between 0.02 and 0.025, there are more optimal solutions with low total pressure loss. 
In Fig. 14d, the optimal solutions clustered have higher combustion efficiency as the 
oil–gas ration is  between 0.03 and 0.035. It shows that the aggregation of individu-
als for the design variable of oil–gas ratio produced during the iterative process is 
mainly used to seek higher combustion efficiency. Therefore, the change in oil–gas 
ratio during the design of the combustion chamber will have a greater influence on 
the change in combustion efficiency. It corresponds to the fact that the oil–gas ratio 
has the greatest influence on the combustion efficiency during the sensitivity analysis, 
while the oil–gas ratio has less influence on the total pressure loss than the total inlet 
pressure and the total inlet flow.

Fig. 12 OTDF constraint for optimal designs
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5  Conclusion
In view of the long calculation cycle, high processing test and cost of the traditional 
aero-engine combustion chamber design process, which restricts the engine optimi-
zation design cycle, this paper innovatively proposes a surrogate model for the perfor-
mance of aero-engine combustion chambers based on the POD-Hierarchical-Kriging 
method. This work can be summarized as follows.

(1) Firstly, we apply a concentric graded combustion chamber of an aero-engine inde-
pendently developed by Northwestern Polytechnical University, innovatively merge 
the POD algorithm with the Hierarchical-Kriging model, and propose a POD-
Hierarchical-Kriging based combustion performance surrogate model method. The 
sample data are reconstructed by the POD method to reduce order, and then the 
design variables are performed by using the downscaled data. A study on the design 
and construction of a surrogate model for the performance of the combustion 
chamber is carried out. Through experiments, the predicted results of the POD-
Hierarchical-Kriging model are compared and analyzed with the calculated results 
of the one-dimensional program, and the root mean square error of the predicted 
values of combustion efficiency and total pressure loss is 0.0064% and 0.1995%, 
respectively.

Fig. 13 Influence and variation of Tt, Pt, St and Rog on combustion efficiency
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(2) Subsequently, the POD-Hierarchical-Kriging model is compared with the cubic 
polynomial response surface model, the basic Kriging model and the Hierarchical-
Kriging model. It is found that the POD-Hierarchical-Kriging model combines the 
advantages of the POD method and the Hierarchical-Kriging model. The POD-
Hierarchical-Kriging model can better characterize the original data space, extract 
more critical sample information, and make full use of low confidence training 
sample points combined with a small number of high-precision training sample 
points to achieve high-precision prediction of unknown points. Compared with 
traditional simulations and numerical calculations, the POD-Hierarchical-Kriging 
model has a faster prediction speed.

(3) On this basis, the multi-objective NSGA-II optimization method is applied to fur-
ther carry out a parametric optimization study on eight design variables. Under the 
constraints, high combustion efficiency and low total pressure loss are the optimi-
zation objectives. Through sensitivity analysis, it is known that the design variables 
of total inlet temperature, total inlet pressure, total inlet flow and oil–gas ratio have 
a greater influence on the combustion efficiency and total pressure loss. Among 
them, the oil–gas ratio has the greatest influence on the combustion efficiency, 
and the total inlet flow has the greatest influence on the total pressure loss. A 
Pareto solution set is obtained by the NSGA-II optimization method. By analyzing 

Fig. 14 Influence and variation of Tt, Pt, St and Rog on total pressure loss
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the Pareto solution set, the NSGA-II multi-objective optimization results based on 
the POD-Hierarchical-Kriging surrogate model can correspond to sensitivity analy-
sis. The critical design factors and the specific influence states of the design param-
eters on the target parameters that have a large impact on the design objectives are 
obtained to guide the optimal design of the combustion chamber.
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