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Abstract 

With wave-particle decomposition, a unified gas-kinetic wave-particle (UGKWP) 
method has been developed for multiscale flow simulations. With the variation 
of the cell Knudsen number, the UGKWP method captures the transport process 
in all flow regimes without the kinetic solver’s constraint on the numerical mesh size 
and time step being determined by the kinetic particle mean free path and parti-
cle collision time. In the current UGKWP method, the cell Knudsen number, which 
is defined as the ratio of particle collision time to numerical time step, is used to distrib-
ute the components in the wave-particle decomposition. The adaptation of particles 
in the UGKWP method is mainly for the capturing of the non-equilibrium transport. 
In this aspect, the cell Knudsen number alone is not enough to identify the non-equi-
librium state. For example, in the equilibrium flow regime with a Maxwellian distribu-
tion function, even at a large cell Knudsen number, the flow evolution can be still 
modelled by the Navier-Stokes solver. More specifically, in the near space environment 
both the hypersonic flow around a space vehicle and the plume flow from a satel-
lite nozzle will encounter a far field rarefied equilibrium flow in a large computational 
domain. In the background dilute equilibrium region, the large particle collision time 
and a uniform small numerical time step can result in a large local cell Knudsen num-
ber and make the UGKWP method track a huge number of particles for the far field 
background flow in the original approach. But, in this region the analytical wave repre-
sentation can be legitimately used in the UGKWP method to capture the nearly equilib-
rium flow evolution. Therefore, to further improve the efficiency of the UGKWP method 
for multiscale flow simulations, an adaptive UGKWP (AUGKWP) method is developed 
with the introduction of an additional local flow variable gradient-dependent Knud-
sen number. As a result, the wave-particle decomposition in the UGKWP method 
is determined by both the cell and gradient Knudsen numbers, and the use of par-
ticles in the UGKWP method is solely to capture the non-equilibrium flow transport. 
The current AUGKWP method becomes much more efficient than the previous one 
with the cell Knudsen number only in the determination of wave-particle composition. 
Many numerical tests, including Sod shock tube, normal shock structure, hypersonic 
flow around cylinder, flow around reentry capsule, and an unsteady nozzle plume flow, 
have been conducted to validate the accuracy and efficiency of the AUGKWP method. 
Compared with the original UGKWP method, the AUGKWP method achieves the same 
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accuracy, but has advantages in memory reduction and computational efficiency 
in the simulation for flows with the co-existing of multiple regimes.

Keywords: Adaptive wave-particle decomposition, Multiscale modeling, Acceleration 
method, Non-equilibrium transport

1 Introduction
Around a high-speed flying vehicle with complex irregular large-scale configurations in 
near-space flight surrounding, the highly compressed gas nearby the leading edge and 
the strong expansion wave around the leeward zone cover multiflow zone mixed flows 
with huge pressure and density differences due to the influence of viscosity and adverse 
pressure gradients at the same flying altitude [1]. In the control system of a moving sat-
ellite, the flow expansion inside a nozzle can undergo a rapid and unstable transition 
from continuum to free-molecule flow as the local Knudsen number varies by an order 
of magnitude of ten. This transition occurs as the  high-pressure gas inside the noz-
zle expands into the background vacuum. Multiscale flows involve a large variation of 
Knudsen number and significant changes of the degrees of freedom in the description of 
flow physics. In aerospace applications, an accurate and efficient multiscale method with 
the capability of simulating both continuum and rarefied flows is of great importance [2].

The Boltzmann equation is the fundamental governing equation for rarefied gas 
dynamics. Theoretically, it can capture multiscale flow physics in all Knudsen regimes, 
with the enforcement to the modeling scales of the Boltzmann equation, such as the 
particle mean free path and mean collision time. For a non-equilibrium flow, there are 
mainly two kinds of numerical methods to solve the Boltzmann equation, i.e., the sto-
chastic particle method and the deterministic discrete velocity method. The stochastic 
methods employ discrete particles to simulate the statistical behavior of molecular gas 
dynamics [1, 3–11]. This kind of Lagrangian-type scheme achieves high computational 
efficiency and robustness in rarefied flow simulation, especially for hypersonic flow. 
However, it suffers from statistical noise in the low-speed flow simulation due to its 
intrinsic stochastic nature. Meanwhile, in the near continuum flow regime, the particle 
method becomes very expensive due to the requirement of small cell size and time step 
in the computational space and the tracking of a large number of particles with inten-
sive collisions. The deterministic approaches use discrete particle velocity space to solve 
the kinetic equation and naturally obtain accurate solutions without statistical noise 
[12–25]. At the same time, the deterministic method can achieve high efficiency using 
numerical acceleration techniques, such as implicit algorithms [14, 13, 26–29], mem-
ory reduction techniques [24], adaptive refinement methods [30], and fast evaluation 
of the Boltzmann collision term [31, 32]. Asymptotic preserving (AP) schemes [33, 34] 
and unified preserving (UP) schemes [35] can be developed to release the stiffness of the 
collision term at the small Knudsen number case. However, for most AP schemes only 
the Euler solution in the hydrodynamic limit is recovered, where the NS limit can be 
obtained in the AP schemes. Additionally, for hypersonic and rarefied flows, the deter-
ministic methods have to use a gigantic number of grid points in the particle velocity 
space to cover a large variation of particle velocity and resolve the non-equilibrium dis-
tribution. The three-dimensional hypersonic flow calculation can be hardly conducted 
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due to the huge memory consumption and computational cost. Moreover, for both sto-
chastic and deterministic methods, with the operator-splitting treatment of particle free 
transport and instant collision, a numerical dissipation proportional to the time step is 
usually unavoidable. Therefore, the mesh size and the time step in both the traditional 
particle method, such as DSMC, and the deterministic DVM method, are required to be 
less than the particle mean free path and collision time, to avoid the physical dissipation 
being overwhelmingly taken over by the numerical ones, especially in the continuum 
flow regime, such as the laminar boundary layer computation at a high Reynolds number 
[36]. In order to remove the constraints on the mesh size and time step in the continuum 
flow regime, the unified gas-kinetic scheme (UGKS) and discrete UGKS (DUGKS) with 
the coupled particle transport and collision in the flux evaluation have been constructed 
successfully [18, 29, 37]. At the same time, the multiscale particle methods have been 
constructed as well [38, 39].

Combining the advantages of the deterministic and the stochastic methods, a uni-
fied gas-kinetic wave-particle (UGKWP) method [40, 41] has been proposed under the 
UGKS framework [2, 42], as well as simplified versions [43, 44]. The method has included 
molecular rotation and vibration [45, 46], and has been  extended to other multiscale 
transports, such as radiation, plasma, and multiphase flow [47–49]. Taking advantage of 
the evolution solution of the kinetic model equation [50] in the scheme construction, the 
UGKWP method can capture the flow physics in all flow regimes and release the restric-
tions on the mesh size and time step which are previously imposed on the kinetic solv-
ers. In the rarefied flow region with a large cell Knudsen number, the UGKWP method 
becomes a particle method for the capturing of peculiar gas distribution function. In 
the continuum region with a small cell Knudsen number, the UGKWP method gets 
back to a hydrodynamic flow solver, where the gas-kinetic scheme (GKS) for the Navier-
Stokes solution [51] is fully recovered. Different from domain decomposition methods 
with buffer zones, the UGKWP method employs wave-particle decomposition in each 
cell with a unified treatment in the whole computational domain. The essential crite-
rion used in the UGKWP method to identify different flow regimes is according to the 
cell Knudsen number Knc = τ/�t , where τ is the local particle collision time and �t 
is the numerical time step. Naturally the cell Knudsen number controls the weights in 
the wave-particle decomposition. However, besides identifying the real non-equilibrium 
flow region, the large cell Knudsen number also picks up a dilute equilibrium state as the 
rarefied regime and uses particles to simulate the background equilibrium flow evolu-
tion. For example, the far field of hypersonic flow around a space vehicle is usually in 
an equilibrium state with a Maxwellian distribution, and the cell Knudsen number in 
the background equilibrium state is large. The large cell Knudsen number will increase 
the weight of particles while in reality the analytical wave can be faithfully used in this 
region. In this paper, besides the cell Knudsen number, a new parameter for identifying 
the local non-equilibrium state will be introduced and added to the previous criteria for 
wave-particle decomposition. As a result, an adaptive unified gas-kinetic wave-particle 
method (AUGKWP) will be constructed with a clear identification of the non-equilib-
rium region. The new method will avoid using particles to the background dilute equilib-
rium region and further improve the computational efficiency of the UGKWP method.
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The paper is organized as follows. Since the UGKWP method is an enhanced version of 
the solely particle-based unified gas-kinetic particle (UGKP) method by employing both 
wave and particle compositions, the UGKP method will be introduced first in Section 2. 
The UGKWP method will be discussed in Section 3. Then the adaptive UGKWP method 
by mainly concentrating particle distribution to the non-equilibrium flow region will be 
presented in Section 4. Numerical validation of the current method will be carried out in 
Section 5 and a conclusion will be drawn in Section 6.

2  Unified gas‑kinetic particle method
2.1  General framework

The unified gas-kinetic particle (UGKP) method is a particle implementation of the UGKS 
under the finite volume framework, where the discrete particles are employed to describe 
the non-equilibrium gas distribution function, and the evolution of particles recovers the 
multiscale nature in different flow regimes. The kinetic equation with BGK relaxation 
model is

where the equilibrium state g is the Maxwellian distribution function,

where d is the degrees of freedom, and � is related to the temperature T by � = m0/2kBT  . 
Here, m0 and kB are the molecular mass and Boltzmann constant, respectively. 
c = u−U  denotes the peculiar velocity. Along the characteristic line, the integral solu-
tion of the kinetic model equation gives

where f0(r) is the initial distribution function at the beginning of each step tn , and g(r, t) 
is the equilibrium state distributed in space and time around r and t. The integral solu-
tion describes an evolution process from the non-equilibrium state to the equilibrium 
state through particle collisions.

In the UGKS, with the expansion of the initial distribution function and the equilibrium 
state

the second-order accurate flux for macroscopic flow variables across cell interface ij can 
be constructed from the integral solution,
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where nij is the normal vector of the cell interface, and

F
fr
ij  and F eq

ij  are the macroscopic fluxes from the free transport and collision processes, 
respectively. The integrated time coefficients are

The UGKS updates both the gas distribution function and macroscopic flow variables 
under a finite volume framework. In the UGKP method, the particle will be used to fol-
low the evolution of the  gas distribution function directly and keep the finite volume 
version for the updates of macroscopic flow variables. On the microscopic scale, the par-
ticle evolution follows the evolution solution in Eq. (2), where the particle free transport 
and collision will be taken into account. On the macroscopic scale, the fluxes across the 
cell interface for the updates of macroscopic flow variables inside each control volume 
are evaluated by Eq. (4).

Denote a simulation particle as Pk(mk , rk ,uk) , which represents a package of real gas 
molecules at location rk with particle mass mk and microscopic velocity uk . According to 
the evolution solution, the cumulative distribution function of particle’s collision is

then the free transport time of a particle within one time step �t will be

where η is a random number uniformly distributed in (0, 1). In a numerical time step 
from tn to tn+1 , according to the free transport time tf  , the simulation particles can be 
categorized into collisionless particles ( tf = �t ) and collisional particles ( tf < �t).

In the free transport process, i.e., t < tf  , no collisions will happen, and the particles 
move freely and carry the initial information. The trajectory of particle Pk could be fully 
tracked by
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During the free transport process, the effective net flux across interfaces of cell i can be 
evaluated by

where φk = (mk ,mkuk ,
1
2mku

2
k)

T . The free transport flux F fr
ij  in Eq. (4) has been recov-

ered by the particles’ movement.
In the free transport process, the particle during the time interval (0, tf ) is fully tracked. 

The collisionless particles with tf = �t are kept at the end of the time step. The colli-
sional particles with tf < �t would encounter collisions at tf  and they are only tracked 
up to this moment. Then, all collisional particles are removed, but their accumulated 
mass, momentum, and energy inside each cell can be still updated through the evolution 
of macroscopic variables. These collisional particles can be re-sampled from the updated 
macroscopic variables at the beginning of the next time step from the equilibrium state 
if needed.

The equilibrium flux F eq
ij  in Eq. (4) contains three terms, i.e., g, ∂rg and ∂t g , which are 

only related to the equilibrium states and can be fully determined by the macroscopic 
flow variables. Once the Maxwellian distribution and its derivatives around the cell 
interface are determined, the equilibrium flux F eq

ij  can be obtained by

The macroscopic variables for the determination of the equilibrium state g0 at cell inter-
face ij are coming from the colliding particles from both sides of the cell interface,

where ūij = u · nij and H[x] is the Heaviside function. The gradient of the equilibrium 
state is obtained from the gradient of macroscopic flow variables ∂W ij/∂r . In this study, 
the spatial reconstruction of macroscopic flow variables is carried out by the least-
square method with Venkatakrishnan limiter [52]. As to the temporal gradient, the com-
patibility condition on Eq. (1)

is employed to give

Correspondingly, the temporal gradient of the  equilibrium state ∂t g can be evaluated 
from the above ∂W ij/∂t . With g0 , ∂rg and ∂t g , the equilibrium flux F eq

ij  can be fully 
determined.
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2.2  Updates of macroscopic variables and discrete particles

Under the finite volume framework, according to the conservation law, the updates of 
macroscopic variables can be written as

where W fr
i  is the net free streaming flow of cell i calculated by particle tracking in the 

free transport process in Eq. (7), and the equilibrium flux F eq
ij  is evaluated from macro-

scopic flow variables and their gradients in Eq. (8).
Substituting Eq. (3) into the integral solution Eq. (2) of the kinetic model equation, 

the time evolution of the distribution function along the characteristic line is

where

It indicates that the collisional particles will follow the near-equilibrium state g(r ′, t ′) 
after collision within the time step tf < �t . With the updated macroscopic flow vari-
ables, these untracked collisional particles within the time t ∈ (tf ,�t) can be re-sampled 
from the hydro-particle macroscopic quantities,

where W p,n+1
i  is from the collisionless particles remaining in cell i. With the macroscopic 

quantities and the form of the  equilibrium state g, the corresponding particles can be 
generated. Details of sampling from a given distribution function are provided in [41].

The free transport and collision processes for both microscopic discrete particles 
and macroscopic flow variables have been described above. Here, we give a summary 
of the procedures of the UGKP method. Following the illustration in [41], the algo-
rithm of the  UGKP method for diatomic gases with molecular translation, rotation 
and vibration can be summarized as follows.

Step 1 For the initialization, sample particles from the given initial conditions as shown 
in Fig. 1(a).

Step 2 Generate the free transport time tf  for each particle by Eq. (5), and classify the 
particles into collisionless particles (white circles in Fig.  1(b)) and collisional ones 
(solid circles in Fig. 1(b)). Stream the particles for the free transport time by Eq. (6), 
and evaluate the net free streaming flow W fr

i  by Eq. (7).
Step 3 Reconstruct macroscopic flow variables and compute the equilibrium flux F eq

ij  by 
Eq. (8).

Step 4 Update the macroscopic flow variables W i by Eq. (9). Obtain the updated hydro-
particle macroscopic quantities of collisional particles W h

i  by extracting the macro-
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quantities of collisionless particles W p
i  from the total flow variables W i in Eq. (10) as 

shown in Fig. 1(c).
Step 5 Delete the collisional particles at tf  and re-sample these particles from the 

updated hydro-particle macroscopic variables W h
i  as shown in Fig.  1(d), which 

becomes the initial state in Fig. 1(a) at the beginning of the next time step.
Step 6 Go to Step 2. Continue time step evolution until the finishing time.

3  Unified gas‑kinetic wave‑particle method
In the UGKP method, based on the updated hydro-particle macroscopic variables W h

i  
of collisional particles, these particles will be re-sampled from the equilibrium state at 
the beginning of the next time step. However, some of these re-sampled particles will 
get collision in the next time step and get eliminated again. Therefore, in the unified gas-
kinetic wave-particle (UGKWP) method, only free transport particles in the next time 
step will be re-sampled from W h

i  . In the continuum regime at a  very small Knudsen 
number, it is possible that no free particles will get re-sampled.

The collisionless particles with tf = �t will be sampled from W h
i  . According to the 

integral solution, the collisionless particles will take a fraction of W h
i  by the amount,

As shown in Fig. 2, there is no need to sample these collisional particles from the hydro-
dynamic portion with macroscopic variables (W h

i −W
hp
i ) . The free transport flux from 

these un-sampled collisional particles can be evaluated analytically,

where

Then, the update of macroscopic flow variables in the UGKWP method becomes

(11)W
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h
i .

(12)F
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∫

u · nij
[
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− e−�t/τ ,

C ′
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τ 2

�t
(1− e−�t/τ )+

1

2
�te−�t/τ .

Fig. 1 Diagram to illustrate the composition of the particles during time evolution in the UGKP method. (a) 
Initial field, (b) classification of the collisionless particles (white circles) and collisional particles (solid circles) 
according to the free transport time tf  , (c) update solution at the macroscopic level, and (d) update solution 
at the microscopic level
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The algorithm of the UGKWP method for diatomic gases can be summarized as 
follows. 

Step 1 For the initialization, sample collisionless particles from W hp
i  with tf = �t as 

shown in Fig. 2(a). For the first step, W h
i = W

n=0
i .

Step 2 Generate the free transport time tf  by Eq.  (5) for the remaining particles from 
the  previous step evolution with total amount W p

i  , and classify the particles into 
collisionless particles (white circles in Fig. 2(b)) and collisional ones (solid circles in 
Fig. 2(b)). Stream the particles for the free transport time by Eq. (6), and evaluate the 
net free streaming flow W fr

i  by Eq. (7).
Step 3 Reconstruct macroscopic flow variables and compute the free transport flux of 

collisional particles F fr,h
ij  by Eq. (12) and the equilibrium flux F eq

ij  by Eq. (8).
Step 4 Update the macroscopic flow variables W i by Eq. (13). Obtain the updated mac-

roscopic quantities for collisional particles W h
i  by extracting the macro-quantities of 

collisionless particles W p
i  from the total flow variables W i in Eq.  (10) as shown in 

Fig. 2(c).
Step 5 Delete the collisional particles at tf  ( tf < �t ). Re-sample the collisionless par-

ticles from W hp
i  with tf = �t at the beginning of the  next time step, as shown in 

Fig. 2(d).
Step 6 Go to Step 2. Continue time evolution until the output time.

The UGKP method uses particles to represent the gas distribution function. However, 
the UGKWP method adopts a hybrid formulation of wave and particles to recover the 
gas distribution function. Within the time step, the evolution of wave part for the col-
lisional particles ( tf < �t ) can be described analytically by the time accurate solution of 
macroscopic flow variables without sampling these particles explicitly. The evolution of 
the remaining particles will track the non-equilibrium effect through particle free trans-
port. In the rarefied flow regime, the UGKWP method is dominated by particle evolu-
tion, which results in a particle method. While in the continuum regime, the UGKWP 
method is mainly about the evolution of macroscopic variables, and the scheme becomes 

(13)W
n+1
i = W

n
i −

�t

�i

∑

j∈N (i)

F
eq
ij Aij −

�t

�i

∑

j∈N (i)

F
fr,h
ij Aij +

�t

�i
W

fr,p
i + Si.

Fig. 2 Diagram to illustrate the composition of the particles during time evolution in the UGKWP method. (a) 
Initial field, (b) classification of the collisionless and collisional particles for Wp

i  , (c) update on the macroscopic 
level, and (d) update on the microscopic level
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a hydrodynamic NS solver, such as the so-called gas-kinetic scheme (GKS) [51]. There-
fore, the UGKWP method achieves much better computational efficiency and lower 
memory consumption than the pure particle method UGKP.

However, the weights of wave and particles in the current UGKWP method are con-
trolled by the cell Knudsen number τ/�t . The total mass fraction of particles is propor-
tional to e−�t/τ

W  . There are still weaknesses in the above formulation. For example, 
even in the continuum flow regime, if a small time step �t is used, the particles will 
emerge automatically in the flow evolution. At the same time, for a dilute background 
equilibrium distribution in the  near space environment with a large particle collision 
time τ , the UGKWP method will use the particles to capture the background equilib-
rium flow evolution. Therefore, besides the cell Knudsen number, in order to use parti-
cles to really capture the evolution of the non-equilibrium state, another parameter has 
to be designed as well in the determination of the distributions between wave and parti-
cle in the UGKWP method.

4  Adaptive unified gas‑kinetic wave‑particle method
For the UGKWP method, the evaluation of flow regimes depends on the cell Knudsen 
number. However, this criterion cannot capture the real non-equilibrium regime, espe-
cially for the rarefied undisturbed equilibrium flow and the flow simulation with a very 
small numerical time step for high resolution. Even in the equilibrium regime, the large 
particle collision time and the small time step can give a large cell Knudsen number for 
particle generation. Theoretically, the analytical wave can be used in those equilibrium 
regimes. Besides the cell Knudsen number, the adaptive unified gas-kinetic wave-par-
ticle (AUGKWP) method will be developed by introducing another parameter to iden-
tify the real non-equilibrium region for the generation of particles. This parameter is a 
gradient-length related local Knudsen number KnGll . In other words, the analytical wave 
will take effect as well when KnGll is small. Therefore, the portion from the macroscopic 
flow variables to sample particles becomes

where

and the gradient-length local Knudsen number is defined by

where lmfp is the local mean free path. The reference Knudsen number Knref  is included 
as a critical value to evaluate the equilibrium and non-equilibrium regimes and thus 
directly control the wave-particle decomposition in each control volume. Then, the ana-
lytical free transport flux from un-sampled particles is amended as

W
hp
i = e

−�t
τ η(KnGll)W

h
i ,

η(KnGll) =
1

2

[

tanh

(

KnGll/Knref − 1

Knref

)

+ 1

]

,

KnGll =
lmfp

ρ/|∇ρ|
,
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where

In the AUGKWP method, a hyperbolic tangent function shown in Fig. 3 is used in the 
determination of the wave-particle decomposition due to its boundness, smoothness, 
and convexity. Its boundness ensures a natural transition without further restriction, 
and the smoothness avoids the oscillation in the transition regime. Its convexity satis-
fies the expectation for sampling particles with a slow rate of change in the continuum 
regime and a large rate otherwise. Moreover, the reference Knudsen number Knref  can 
be straightforwardly added in this function as a value to distinguish the flow regime, and 
can be conveniently adjusted according to the flow condition.

Figure 4 illustrates the wave-particle decomposition in the AUGKWP method in the 
limit of free molecular and continuum flow regimes. Different from domain decompo-
sition methods, the AUGKWP method employs an adaptive wave-particle formulation 
in each control volume with a unified treatment when the reference Knudsen number 
is fixed. In the AUGKWP method, the adjustment of the  reference Knudsen number 
influences the weights of wave and particles in each cell, instead of identifying different 

F
fr,h
ij =

∫

u · nij
[

C
KnGll
4 g0 + C

KnGll
5 u ·

∂g

∂r

]

ψd�,

C
KnGll
4 =

τ

�t

(

1− e−�t/τ
)

− e−�t/τ η(KnGll),

C
KnGll
5 =τe−�t/τ −

τ 2

�t
(1− e−�t/τ )+

1

2
�te−�t/τ η(KnGll).

Fig. 3 The function η(KnGll) at a reference Knudsen number Knref = 0.01
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flow regimes according to this parameter in the conventional domain-decomposition 
approaches. In other words, the AUGKWP method has no buffer zones to distinguish 
and connect fluid and kinetic solvers. Additionally, since the gradient-length local Knud-
sen number is not influenced by the numerical resolution in a computational domain, it 
only identifies the local non-equilibrium state. The analytical wave will be mainly used 
in the equilibrium and near-equilibrium regimes whatever the cell resolution (�x,�t) 
is adapted in AUGKWP, and the computational efficiency will be improved significantly.

5  Numerical validation
In this section, the AUGKWP method is tested in many cases. Since most of the cases 
are external flows, the determination of the initial condition of the free stream at differ-
ent Knudsen numbers will be provided here first. For a specific gas, the density in the 
free stream corresponding to a given Knudsen number is

where m is the molecular mass and Lref  is the reference length to define the Knudsen 
number. The dynamic viscosity is calculated from the translational temperature by the 
power law,

where µref  is the reference dynamic viscosity at the temperature Tref .
In the tests, a  diatomic gas of nitrogen gas is employed with molecular mass 

m = 4.65× 10−26 kg, α = 1.0 , ω = 0.74 , and the reference dynamic viscosity 
µref = 1.65× 10−5 Nsm−2 at the temperature Tref = 273 K. In the computations, the 
freestream or upstream values are used to non-dimensionalize the flow variables, i.e.,

ρ =
4α(5− 2ω)(7− 2ω)

5(α + 1)(α + 2)

√

m

2πkBT

µ

Lref Kn
,

µ = µref

(

T

Tref

)ω

,

ρ0 =ρ∞, U0 =
√

2kBT∞/m,

T0 =T∞, or p0 = p∞.

Fig. 4 Illustration for the wave-particle decomposition of the AUGKWP method in the limit of free molecular 
and continuum flow regimes
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5.1  Sod shock tube test

The Sod shock tube problem is computed at different Knudsen numbers to verify the 
acceleration effect and capability for simulating the continuum and rarefied flows by the 
AUGKWP method. The non-dimensional initial condition is

The spatial discretization is carried out by a one-dimensional structured mesh with 200 
uniform cells. The inlet and outlet of the tube are treated as far fields. The Courant–Frie-
drichs–Lewy (CFL) number is taken as 0.5. The critical value for wave-particle decom-
position is chosen as Knref = 0.01 . The output time of the simulation is t = 0.12.

(ρ,U ,V ,W , p) =
{

(1, 0, 0, 0, 1), 0 < x < 0.5,
(0.125, 0, 0, 0.1), 0.5 < x < 1.

Fig. 5 Sod tube at Kn = 10
−5 . (a) Density, (b) velocity, and (c) temperature

Fig. 6 Sod tube at Kn = 10
−4 . (a) Density, (b) velocity, and (c) temperature

Fig. 7 Sod tube at Kn = 10
−3 . (a) Density, (b) velocity, and (c) temperature
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Fig. 8 Sod tube at Kn = 10
−2 . (a) Density, (b) velocity, and (c) temperature

Fig. 9 Sod tube at Kn = 10
−1 . (a) Density, (b) velocity, and (c) temperature

Fig. 10 Sod tube at Kn = 1 . (a) Density, (b) velocity, and (c) temperature

Fig. 11 Sod tube at Kn = 10 . (a) Density, (b) velocity, and (c) temperature
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The density, velocity and temperature obtained by the original UGKWP method, 
the AUGKWP method, and UGKS at different Knudsen numbers from 10−5 to 10 are 
plotted in Figs.  5, 6, 7, 8, 9, 10 and 11. The preset reference number of particles in 
both the original UGKWP and AUGKWP methods is 400 per cell. Here, the purpose 
of setting this number of particles in computation is to show that  the noise intro-
duced in the AUGKWP method is acceptable compared with the original UGKWP 
method for unsteady flows when particles are not sufficiently enough. The results 
show the AUGKWP method can maintain the same solutions as the original UGKWP 
method and match with the UGKS solutions in all Knudsen regimes.

In these tests, a small time step determined by high spatial resolution leads to a 
large cell Knudsen number Knc = τ/�t . For the original UGKWP method, particles 
are sampled according to e−�t/τ for the free transport particle with tf = �t even in 
the uniform equilibrium regions. For the AUGKWP method, the analytical wave for-
mulation will be used in the equilibrium region. The numerical particle mass fraction 
given by the original UGKWP method and the AUGKWP method, the exponential 
function of the cell Knudsen number e−�t/τ , and the gradient-length local Knudsen 
number KnGll for the Sod tube at Kn = 10−4 are plotted in Fig. 12. It shows the par-
ticles appear in the original UGKWP method even though the flow regime is con-
tinuum, while for the AUGKWP method, with the consideration of the local Knudsen 
number, particles are sampled in the non-equilibrium region only, such as the shock 
front region with KnGll > 0.01 . Therefore, high computational efficiency is achieved 
in AUGKWP. Table 1 is the comparison of the simulation times between the original 

Fig. 12 Numerical particle mass fraction of the original UGKWP method and the AUGKWP method, the 
exponential function of the cell Knudsen number e−�t/τ , and the gradient-length local Knudsen number 
KnGll for the Sod tube at Kn = 10

−4
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UGKWP and AUGKWP methods at different Knudsen numbers. It shows the AUG-
KWP method fully recovers the hydrodynamical solver without using particles in the 
equilibrium flow regime regardless of the cell resolution used.

5.2  Shock structure

To validate the capability of the  AUGKWP method for describing a  strong non-equi-
librium state, shock structure at upstream Mach number Ma = 4 and 10 is investi-
gated. The computational domain [−25, 25] has a length of 50 times of the particle 
mean free path and is divided by 100 cells uniformly. The left and right boundaries are 
treated as far field conditions. The CFL number takes 0.5. The reference Knudsen num-
ber is Knref = 0.001 . In this study, the upstream temperature is T1 = 50 K. The rest of 
the parameters could be obtained from the non-dimensional initial condition.

In the  kinetic theory, the particle collision time depends on the particle velocity. In 
order to cope with this physical reality, the relaxation time of the high-speed particles is 
amended in the UGKWP and AUGKWP methods [53],

with two parameters a = 0.1 and b = 5.

τ ∗ =

{

τ , if |u−U | ≤ b
√
RT ,

1

1+a∗|u−U |/
√
RT

τ , if |u−U | > b
√
RT ,

Table 1 Comparison of simulation time between the original UGKWP and AUGKWP methods

Knudsen number Original UGKWP (s) AUGKWP (s)

10 77.04 70.75

1 78.76 75.05

10
−1 82.06 76.37

10
−2 98.36 81.12

10
−3 124.28 42.89

10
−4 164.33 3.45

10
−5 181.19 0.41

Fig. 13 Shock structure at Ma = 4 . (a) Density and (b) temperatures compared with the original UGKWP 
method and the UGKS. The modification of the particle collision time is not used in UGKS
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For the UGKWP and AUGKWP methods, 400 simulation particles are used in each 
cell. To reduce the statistical noise, the time-averaging process is taken from the 2500th 
step over 12500 steps. The normalized density and temperature from the original 
UGKWP method, the AUGKWP method, and the UGKS are plotted in Figs.  13–14. 
The results from the current method have good agreement with that from the original 
UGKWP method and the deterministic method.

5.3  Flow around a circular cylinder

High-speed flow passing over a semi-circular cylinder at a Mach number of  15 and 
Kn = 0.001 is simulated. The diameter of the cylinder is D = 0.08 m. The Knudsen num-
ber is defined with respect to the diameter. The computational domain is discretized by 
280× 200× 1 quadrilateral cells. The initial reference number of particles Nr is set as 

Fig. 14 Shock structure at Ma = 10 . (a) Density and (b) temperatures compared with the original UGKWP 
method and the UGKS. The modification of the particle collision time is not used in UGKS

Fig. 15 Hypersonic flow at Ma = 15 and Kn = 0.001 around a semi-circular cylinder. (a) Density, (b) x 
direction velocity, and (c) temperature contours
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2000. The initial temperature of the free stream gives T∞ = 217.5 K, and the isothermal 
wall temperature is fixed at Tw = 1000 K. The CFL number is 0.5. The reference Knudsen 
number is Knref = 0.01 . Figure 15 plots the contours of the flow field computed by the 
AUGKWP method, where an initial flow field provided by 10000 steps of the GKS cal-
culation [51] is adopted, and 60000 steps of the AUGKWP and UGKWP methods have 
been carried out to achieve a steady state. Figure 16 shows the comparison between the 
AUGKWP method and the original UGKWP method for the density, velocity in the x 
direction, and temperature extracted along the 45◦ line in the upstream. The results from 
the AUGKWP method are reasonable. The numerical particle mass fraction in Fig. 17 
implies the efficiency of the new wave-particle decomposition method. The simulation 
times for the AUGKWP and UGKWP methods on Tianhe-2 with 3 nodes (72 cores, Intel 
Xeon E5-2692 v2, 2.2 GHz) are 15623 s and 30487 s, respectively.

5.4  Flow around an Apollo reentry capsule

Hypersonic flow at Ma = 5 and Kn = 10−3 passing over an Apollo reentry  capsule in 
the transition flow regime is simulated for nitrogen gas. This case shows the efficiency 
and capability of the AUGKWP method for simulating the large-scale three-dimen-
sional hypersonic flow. The reference length for the definition of the Knudsen number 
is Lref = 3.912 m. As shown in Fig. 18, the mesh consists of 372500 cells. The reference 
Knudsen number is set as Knref = 0.01 and the initial reference number of particles Nr 
is 400 per cell. The flow at free stream has an initial temperature T∞ = 142.2 K, and the 

Fig. 16 Hypersonic flow at Ma = 15 and Kn = 0.001 around a semi-circular cylinder. (a) Density, (b) x 
direction velocity, and (c) temperature distributions along the 45◦ extraction line at Ma = 15 and Kn = 0.001

Fig. 17 Hypersonic flow at Ma = 15 and Kn = 0.001 around a semi-circular cylinder. Numerical particle mass 
fraction distributions given by (a) the original UGKWP method and (b) the AUGKWP method
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reentry surface is treated as an isothermal wall with a constant temperature Tw = 500 K. 
The angle of attack is 30◦ . The initial flow field is prepared by the GKS calculation with 
10000 steps. Then, 25000 steps have been carried out to achieve a steady state solution.

Fig. 18 Mesh of the Apollo reentry capsule. (a) Global view and (b) local enlargement

Fig. 19 Hypersonic flow at Ma = 5 and Kn = 0.001 around an Apollo reentry capsule. (a) Temperature 
and pressure distributions, and (b) local Knudsen Number KnGll distribution and Mach number along the 
streamline

Fig. 20 (a) Density, (b) x direction velocity, and (c) temperature distributions along the windward central axis 
at Ma = 5 and Kn = 0.001
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Figure  19 shows the distributions of temperature, pressure, local Knudsen number 
and Mach number computed by the  AUGKWP method. The quantitative compari-
son between the AUGKWP method and the original UGKWP method for the density, 
velocity in the x direction, and temperature extracted from the  central axis along the 
windward is plotted in Fig.  20. Good agreement has been obtained. The efficiency of 
the AUGKWP method has been much improved due to its well controlled mass fraction 
of particles, as shown in Fig. 21. Particles in the non-equilibrium flow are presented. The 
computational times for the AUGKWP and UGKWP methods are 24545 s and 42154 
s on Tianhe-2 with 5 nodes (120 cores, Intel Xeon E5-2692 v2, 2.2 GHz). The AUG-
KWP  method becomes an indispensable tool for large-scale three-dimensional hyper-
sonic rarefied flow simulations.

5.5  Nozzle plume flow into a background vacuum

In this case, the AUGKWP method is applied to the CO2 expansions into a background 
vacuum. The unsteady and multiscale process of this plume flow is hard to compute with 
acceptive accuracy by conventional DSMC-CFD hybrid methods with time-dependent 
buffer zones, especially in the initial flow expansion stage. The UGKS, as a multiscale 
method, is hard to simulate such a flow with the requirement of covering a wide range 
of discretized particle velocity space to capture the high Mach number jet in the flow 
acceleration process through the nozzle. The AUGKWP method treats the multiscale 
and multispeed expansion flow systematically through the dynamically adaptive wave-
particle decomposition in each numerical cell, and makes the simulation acceptable in 
the memory requirement.

The geometry of the nozzle and the two-dimensional mesh with 47186 cells are used 
in the simulation, as shown in Fig. 22. The inlet boundary condition is set with a tem-
perature 710 K and pressure 36.5 torr. The gas CO2 is employed with the molecular mass 
m = 7.31× 10−26 kg, the ratio of specific heats γ = 1.4 , and ω = 0.67 . The nozzle wall 
is treated as an  isothermal one with Tw = 300 K. The background environment is set 
with a temperature TB = 300 K and low pressure PB = 0.01 Pa. The CFL number is 0.5. 

Fig. 21 Hypersonic flow at Ma = 5 and Kn = 0.001 around an Apollo reentry capsule. Numerical particle 
mass fraction distributions given by (a) the original UGKWP method and (b) the AUGKWP method
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Fig. 22 Mesh of the nozzle. (a) Grid used in computation and (b) the geometry of the nozzle

Fig. 23 Nozzle plume flow to a background vacuum at the initial stage. Distributions of (a) Temperature, 
(b) local Knudsen number and Mach number along the streamline, (c) numerical particle mass fraction of 
the AUGKWP method, and (d) numerical particle mass fraction of the UGKWP method
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The reference number of particles is Nr = 400 . For the AUGKWP method, the reference 
Knudsen number is Knref = 0.01.

The simulation covers the whole gas expansion process into a background vacuum 
through three stages, such as the initial, developing, and steady stages. Figures  23, 24 
and 25 show the distributions of temperature, gradient-length dependent local Knudsen 
number, and Mach number along the streamline, and numerical particle mass fraction 
of the AUGKWP and UGKWP methods in each stage.

The flow field in the initial stage is shown in Fig. 23. Particles with a large mean free 
path transport first to the background vacuum. The expansion gas forms a non-equilib-
rium central region. The AUGKWP method employs particles in this highly expanded 
region only, while the analytical wave is used in other regions. However, the UGKWP 
method  adapts particles everywhere, even in the uniformly undisturbed background 
equilibrium region.

In the developing stage (see Fig. 24), a continuum flow regime appears near the noz-
zle exit, a transition regime forms around the high temperature expansion region, and a 
free molecular flow remains in the front of the plume. The gradient-length local Knud-
sen number shows a variation with 12 orders of magnitude in the whole computational 

Fig. 24 Nozzle plume flow to a background vacuum at the developing stage. Distributions of (a) 
Temperature, (b) local Knudsen number and Mach number along the streamline, (c) numerical particle mass 
fraction of the AUGKWP method, and (d) numerical particle mass fraction of the UGKWP method
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domain. The simulation of this unsteady multiscale transport requires a method with the 
capability of capturing continuum and rarefied flows simultaneously at any moment by 
following the plume flow. The unified treatment in the AUGKWP method with a wave-
particle decomposition in each control volume allows an instant and adaptive descrip-
tion in each cell in this expansion process.

Figure 25 presents the plume flow approaching a steady state, where the gas is fully 
expanded with a steady flow pattern. The AUGKWP method provides a clear separation 
of different flow regimes, i.e., a continuum flow in the expansion region, a free molecular 
flow in the background flow, and a transition flow between them (see Fig. 25(c)). In the 
original UGKWP method, the numerical time step determined by the smallest cell size 
leads the particle representation in almost the whole computational domain. The quan-
titative comparison of the  density, velocity in  the x direction, and temperature along 
the centerline at the steady stage is plotted in Fig. 26. It shows agreement between the 
results given by the AUGKWP and UGKWP methods.

Overall, the AUGKWP method gives a non-equilibrium state guided wave-particle 
decomposition. The computational times in the current studies on Tianhe-2 with 20 

Fig. 25 Nozzle plume flow to a background vacuum at the steady stage. Distributions of (a) Temperature, 
(b) local Knudsen number and Mach number along the streamline, (c) numerical particle mass fraction of 
the AUGKWP method, and (d) numerical particle mass fraction of the UGKWP method
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nodes (480 cores) are 12.6 hours and 36.1 hours for the AUGKWP and UGKWP meth-
ods, respectively.

6  Conclusion
The UGKWP  method is a multiscale method for flow simulations in all regimes. The 
UGKWP method adopts a wave-particle decomposition to recover the multiscale trans-
port uniformly in each control volume. In this paper, an adaptive unified gas-kinetic 
wave-particle (AUGKWP) method is developed to further optimize the wave-particle 
decomposition in the original UGKWP. In order to concentrate particles in the non-
equilibrium region only, instead of using the cell Knudsen number Knc = τ/�t only in 
the original UGKWP method, the AUGKWP method introduces a flow gradient-related 
local Knudsen number as well for the decomposition of wave and particle. As a result, 
the AUGKWP  method avoids using particles in the highly dilute background equilib-
rium region and in the continuum flow simulation with the use of an extremely small 
numerical time step. The AUGKWP method provides a physically reliable wave-parti-
cle decomposition and guarantees the appearance of particles in the non-equilibrium 
region only, regardless of the mesh resolution. Many test cases are used to validate 
the efficiency and accuracy of the AUGKWP method. In comparison with the original 
UGKWP method, due to the significant reduction of particles in the AUGKWP method, 
the scheme can speed up the computation, reduce the memory requirement, and main-
tain the same solution accuracy as the original multiscale wave-particle method. The 
AUGKWP method  will become a useful and indispensable tool in the simulation of 
high-speed rarefied and continuum flows in aerodynamic applications.
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