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Abstract 

Weighted compact nonlinear schemes (WCNS) are a family of nonlinear shock captur-
ing schemes that are suitable for solving problems with discontinuous solutions. The 
schemes are based on grids staggered by flux points and solution points, resulting 
in algorithms with the nonlinear interpolation step independent of the difference 
step. Thus, only linear difference operators are needed, such that geometric conserva-
tion law can be preserved easily, resulting in the preservation of freestream condition. 
In recent years, these schemes have attracted a lot of attention in the community 
of computational fluid dynamics. This paper intends to give a brief review of the basic 
algorithms of these schemes and present some related recent developments.

Keywords: WCNS, Conservation law, Shock capturing, Boundary closure, Geometric 
conservation law

1 Introduction
With the fast growth of computational capability, high-order methods play a more 
and more important role in the field of computational fluid dynamics. High-order 
schemes, usually referred to schemes with convergence rates higher than second-
order, admit better resolution properties than their lower order counterparts. More 
importantly, high-order schemes may produce more accurate results than low-order 
schemes in terms of using the same computational cost. In the past three decades, 
great progress has been achieved for high-order schemes. Some representative 
schemes are widely used, such as weighted essentially non-oscillatory (WENO) 
schemes [1–3], weighted compact nonlinear schemes (WCNS) [4], discontinuous 
Galerkin schemes [5–7], spectral difference schemes [8–10], flux reconstruction 
schemes [11, 12], and so on.

WCNS schemes are a family of high-order schemes that are suitable for solving 
problems with discontinuous solutions. These schemes are originally developed for 
addressing shock-capturing problems of compact linear schemes [13]. Although dis-
sipation can be introduced to improve the shock capturing capability of compact 
linear schemes [14], oscillations are difficult to be removed for strong shocks. There-
fore, nonlinear schemes are often needed. In [15, 16], based on grids staggered by flux 
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points and solution points, compact nonlinear schemes were developed by employ-
ing the idea of ENO schemes for the interpolation step. Later on, the idea of WENO 
schemes was introduced further to construct WCNS schemes [4, 17]. Since then, 
WCNS schemes were further developed and widely used in applications [18]. Some 
benchmark examples were presented in [19] to demonstrate the efficiency of WCNS 
schemes. They were used in Reynolds-averaged Navier-Stokes (RANS) simulations 
[20–26], large eddy simulations (LES) [27–32], hybrid RANS/LES simulations [33, 34], 
and even direct numerical simulations (DNS) [35]. Some important phenomena were 
also investigated by applying these schemes. The areas include boundary layer transi-
tion [36–40], acoustic wave [41–44], vortices [45], interaction between shock wave and 
vortex [46, 47], detonation [48–50], body-wake interactions [51], Mach reflection [52], 
elastic-plastic deformation [53], multi-component compressible flows [54], magneto-
hydrodynamics [55], and so on.

Compared with WENO schemes, WCNS schemes have some advantages, mainly 
lying in the flexibility of the choice of numerical fluxes and the convenience of 
preserving geometric conservation law. In this paper, we provide a brief review of 
WCNS schemes, aiming at introducing some basic ideas of the algorithms and pre-
senting some recent developments. The rest of this paper is arranged as follows. In 
Section  2, the basic algorithm of WCNS schemes is given. In Section  3, conserva-
tive boundary closures are discussed. In Section 4, geometric conservation law that 
arises from coordinate transform is presented. To preserve this law numerically, a 
symmetric conservative metric method (SCMM) is also introduced. Finally, conclud-
ing remarks are given in Section 5.

2  Algorithm of WCNS schemes
To describe WCNS schemes, let us consider the one-dimensional conservation law

where u = u(x, t) denotes the conservative quantity and f(u) is the flux. As illustrated in 
Fig. 1, the spatial interval [a, b] is divided into N subintervals by flux points

where h = (b− a)/N  stands for the length of the interval. The solution points, denoted 
by xj , are placed at the center of the subintervals [xj−1/2, xj+1/2] , i.e.,

(1)ut + f (u)x = 0,

(2)xj+1/2 = a+ jh, 0 ≤ j ≤ N ,

(3)xj = (xj−1/2 + xj+1/2)/2, 1 ≤ j ≤ N .

Fig. 1 Illustration of the grid staggered by flux points and solution points
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2.1  Basic procedure

At time t, suppose the values of u at solution points xj are known, denoted by uj . Then 
the spatial discretization algorithm of WCNS schemes can be summarized as the follow-
ing three steps: 

 (i) Apply interpolation schemes to obtain the left and right values at flux points xj+1/2 , 
denoted by uLj+1/2 and uRj+1/2 , respectively.

 (ii) Compute the numerical flux fj+1/2 = f̂ uLj+1/2,u
R
j+1/2  , where f̂  denotes some 

approximate Riemann solvers.
 (iii) Employ difference schemes to calculate the flux derivatives at solution points xj , 

denoted by f ′j .

After spatial discretization, we obtain a system of ordinary differential equations

which can be solved by some time-marching schemes, such as the explicit Runge-Kutta 
scheme [56], the two-stage fourth-order scheme [57], and some other implicit schemes 
[58, 59]. It shall be mentioned that one can also perform interpolation for the flux 
directly as done in [60]. However, in that case the nonlinearity is performed for the flux, 
leading to the difficulty in preserving geometric conservation law, which is very impor-
tant for applications to complex configurations.

2.2  Interpolation schemes

For the interpolation step, many interpolation schemes can be applied. For smooth solu-
tions, linear interpolation schemes can be applied, such as explicit upwind interpolation 
schemes [61], compact upwind linear interpolation schemes [13], dissipative compact 
linear interpolation schemes [62, 63], and so on.

Here, we introduce a fifth-order interpolation scheme [4] for the left values, while the 
right values can be obtained according to the symmetry property of the grids. As illus-
trated in Fig. 2, to get the left values uLj+1/2 at flux points xj+1/2 , the following explicit 
upwind fifth-order interpolation scheme can be derived, i.e.,

where the coefficients can be obtained by using the method of Lagrangian interpola-
tion. However, this scheme is not suitable for the case with discontinuous solutions. To 
address this problem, one may first decompose the fifth-order scheme (5) as

(4)
duj

dt
+ f ′j = 0,

(5)uLj+1/2 =
3

128
uj−2 −

5

32
uj−1 +

45

64
uj +

15

32
uj+1 −

5

128
uj+2,

Fig. 2 Illustration of the stencil used for the fifth-order interpolation scheme (5)
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where u(k)j+1/2 are third-order interpolation schemes with different stencils, expressed as

and γk are linear optimal weights with values

Then, following the recipe of WENO schemes [3] we introduce nonlinear weights 
defined by

where

Here, the small parameter ε is set to be 10−6 to avoid the denominator becoming zero, 
and βk are smoothness indicators of the interpolation schemes applied to compute 
u
(k)
j+1/2 , defined by

Finally, we obtain the fifth-order shock capturing interpolation scheme

However, it was pointed out in [64] that the scheme (16) based on the nonlinear weights 
defined by Eqs. (11) and (12) may degenerate to third-order at critical points. To address 

(6)uLj+1/2 =

2∑

k=0

γku
(k)
j+1/2,

(7)u
(0)
j+1/2 =

3

8
uj−2 −

5

4
uj−1 +

15

8
uj ,

(8)u
(1)
j+1/2 = −

1

8
uj−1 +

3

4
uj +

3

8
uj+1,

(9)u
(2)
j+1/2 =

3

8
uj +

3

4
uj+1 −

1

8
uj+2,

(10)γ0 =
1

16
, γ1 =

5

8
, γ2 =

5

16
.

(11)ωk =
αk

α0 + α1 + α2
,

(12)αk =
γk

(βk + ε)2
.

(13)β0 = (uj−2 − 2uj−1 + uj)
2 +

1

4
(uj−2 − 4uj−1 + 3uj)

2,

(14)β1 = (uj−1 − 2uj + uj+1)
2 +

1

4
(uj−1 − uj+1)

2,

(15)β2 = (uj − 2uj+1 + uj+2)
2 +

1

4
(3uj − 4uj+1 + uj+2)

2.

(16)uLj+1/2 =

2∑

k=0

ωku
(k)
j+1/2.
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this issue, one can implement the idea of improving the performance of WENO schemes 
for the nonlinear interpolation step of WCNS schemes. In particular, we present here a 
recent work [65] such that the optimal fifth-order convergence rate can be achieved for any 
smooth solutions, i.e., regardless of the order of critical points. The scheme can still be writ-
ten in the form of Eq. (16), where ωk are still given by Eq. (11), but with αk defined by

Here, βk are still given by Eqs. (13)-(15), and � is a parameter defined by

where

It can be seen from Fig. 3 that αk are more sensitive to the values of βk for smaller value 
of � . For smooth solutions, the definition of � (18) satisfies the condition

Since the smoothness indicators defined by Eqs.  (13)-(15) obey the relations 
βk = O(h2) , we have

This condition ensures that the corresponding scheme (16) is fifth-order, regardless of 
the order of critical points.

(17)αk = γk exp(−β�

k /�).

(18)� = max
(
e−3θ , 10−6

)
, θ =

τ

(βmin + ε)0.8
,

(19)τ = |β2 − β0|, βmin = min
k=0,1,2

βk , ε = 10−40.

(20)lim
h→0

� = 1.

(21)αk = γk +O(h2).

Fig. 3 The exponential function involved in Eq. (17)
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There are some other methods for improving the performance of the nonlinear inter-
polation schemes. For example, low-dissipation WCNS schemes were constructed 
in [66–71]. In [72–74], compact nonlinear interpolation schemes were developed to 
improve the resolution of WCNS schemes. The ideas of targeted ENO schemes and 
multi-resolution WENO schemes were introduced for the interpolation step of WCNS 
schemes in [75] and [76, 77], respectively. A parameter-free ε-adaptive algorithm was 
also proposed in [78, 79] to improve the performance of WCNS schemes.

2.3  Difference schemes

By using interpolation schemes, we can get the left and right values at flux points xj+1/2 . 
Then various approximate Riemann solvers [80–82] can be applied to compute the 
numerical fluxes fj+1/2 at flux points xj+1/2 . It shall be mentioned that both flux vector 
splitting and flux difference splitting methods are applicable here for WCNS schemes, 
while only flux vector splitting methods can be applied for reconstruction-based WENO 
schemes. In [83–86], the effect of flux evaluation methods for WCNS schemes was 
investigated in details. Here we pay attention to difference schemes.

It was shown in [87, 88] that the resolution of WCNS schemes is dominated by the com-
pactness of the interpolation step, while it is less related to the difference step. Therefore, 
the difference scheme is usually chosen to be an explicit one for the purpose of efficiency. 
For instance, the sixth-order explicit central difference scheme presented in [87, 89] reads as

For the reason of robustness, some other hybrid difference schemes involving both the 
fluxes at flux points and solution points can also be used. For example, the sixth-order 
scheme presented in [90] can be written as

where α ≥ 0 is a parameter that can be tuned to control its dissipation property. The 
sixth-order difference scheme implemented in [91] is expressed as

It was shown that WCNS schemes can benefit from linear difference operators in 
terms of preserving geometric conservation law [92, 93]. It shall also be mentioned that 
alternative WENO schemes were proposed in [94], where the WENO reconstruction is 
employed for the variable rather than the flux. Thus, linear difference operators can be 
applied directly. It shall be mentioned that the alternative WENO schemes are closely 
related to WCNS schemes, as pointed out in [95, 96]. Since it is not easy to find the orig-
inal conference paper [95] for the derivation in details, we present the demonstration of 
the relation in Appendix A.

(22)f ′j =
75

64

fj+1/2 − fj−1/2

h
−

25

128

fj+3/2 − fj−3/2

3h
+

3

128

fj+5/2 − fj−5/2

5h
.

(23)
f ′j = α

fj+1/2 − fj−1/2

h
+

192− 175α

256

fj+1 − fj−1

h
+

35α − 48

320

fj+2 − fj−2

h

+
64 − 45α

3840

fj+3 − fj−3

h
,

(24)f ′j =
3

2

fj+1/2 − fj−1/2

h
−

3

10

fj+1 − fj−1

h
+

1

30

fj+3/2 − fj−3/2

h
.
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3  Conservative boundary closures
Compared to interior schemes of WCNS schemes, boundary closures are seldom consid-
ered theoretically. Although some concerns have been mentioned in previous works, the 
stability issue has not been clearly investigated. By using the result of Gustafsson [97], the 
order of boundary closures should be at most one order lower than that of the interior for 
first-order hyperbolic conservation laws. Otherwise, the global convergence rate cannot be 
equal to the order of the interior. For Cartesian grids, the inverse Lax-Wendroff method 
[98–100] may be applied to derive the boundary closures. However, this method is difficult 
for applications to practical problems. In most cases, we may need curvilinear grids and 
apply biased schemes near boundary.

For WCNS schemes, conservative boundary closures were derived based on global 
conservation in [61]. Some applications can also be found in [101, 102]. The derivation is 
based on the difference scheme consisting of only flux points, like the sixth-order difference 
scheme (5). For a more general case, we introduce here the method used in [61] and con-
sider the 2rth-order difference scheme

where the coefficients αk can be determined according to the order condition. For 
instance, one can apply the method of Lagrangian interpolation to get the values of αk as 
tabulated in Table 1 for 2 ≤ r ≤ 6.

To mimic the global conservation property of the one-dimensional conservation law 
(1), i.e.,

we first rewrite the interior difference scheme (25) into a conservative form

where

(25)f ′j =

r∑

k=1

αk
fj+k−1/2 − fj−k+1/2

(2k − 1)h
, r ≤ j ≤ N − r + 1,

(26)
d

dt

∫ b

a
udx = f (u(a, t))− f (u(b, t)),

(27)f ′j =
f̃j+1/2 − f̃j−1/2

h
,

(28)f̃j+1/2 =

r∑

k=1

αk

2k − 1

j+k−1∑

l=j−k+1

fl+1/2.

Table 1 The values of αk in Eq. (25) for 2 ≤ r ≤ 6

r α1 α2 α3 α4 α5 α6

2 9

8
− 1

8

3 75

64
− 25

128

3

128

4 1225

1024
− 245

1024

49

1024
− 5

1024

5 19845

16384
− 2205

8192

567

8192
− 405

32768

35

32768

6 160083

131072
− 38115

131072

22869

262144
− 5445

262144

847

262144
− 63

262144
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Then we define the interior operator as

Finally, we introduce the left and right boundary operators, written respectively as

and

such that the following global conservation property holds

Now what we need to do is just to decompose the boundary operators as the sum of 
the difference schemes at solution points near boundary. Due to the symmetry prop-
erty of the grid, we only have to consider the case for the left. It was shown in [61] that

which means that there must be as least a near boundary difference scheme with only 
first order of accuracy if we require L[f ] =

∑r−1
j=1 f

′
j  . To address this issue, we modified 

Eq. (33) to be

where the 2r − 2 unknowns, ωj and x∗j  , are determined by the conditions of the accu-
racy. Here, the new introduced solution points x∗j  are nonuniformly distributed, which 
are called conservative solution points. The detailed values of ωj and x∗j  can be found in 
[61]; see Eqs. (32)-(36) therein. That is to say, we replace the solution points near bound-
ary with the conservative points and consider so-called semi-uniform grids, where the 
flux points are still uniformly distributed, as illustrated in Fig. 4.

To determine the conservative difference schemes near boundary, we first require that

(29)I[f ] =

N−r+1∑

j=r

f ′j =
f̃N−r+3/2 − f̃r−1/2

h
.

(30)L[f ] =
f̃r−1/2 − f1/2

h

(31)R[f ] =
fN+1/2 − f̃N−r+3/2

h
,

(32)(L[f ] + I[f ] +R[f ])h = fN+1/2 − f1/2.

(33)L[f ] =

r−1∑

j=1

f ′(xj)+O(h),

(34)L[f ] =

r−1∑

j=1

ωj f
′(x∗j )+O(h2r−2),

Fig. 4 Illustration of the semi-uniform grid for the fifth-order WCNS scheme, where the two solution points 
near each boundary are replaced with the conservative solution points
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Then we set the schemes f ′j  to be (2r − 2)th-order, determined by the following stencils

where the coefficients aj,k can be determined conveniently by using the method of 
Lagrangian interpolation. For the right-hand side, the boundary closures for the differ-
ence scheme can be obtained symmetrically.

For the interpolation step, we just need to apply interpolation schemes with biased stencils. 
Then we can construct boundary closures that are time stable up to eleventh order of global 
accuracy. For problems with discontinuous solutions near boundary, nonlinear shock-cap-
turing boundary interpolation schemes were proposed recently in [103]. It was shown that 
the shock-capturing issue near boundary can be resolved well by using the idea of multi-res-
olution interpolation and the technique of tuning parameter in the smoothness indicators.

4  Geometric conservation law and SCMM method
For practical applications, it often necessitates to apply curvilinear grids. In that case, 
we shall consider conservation law in curvilinear coordinates. Since the pioneering work 
[104], some problems related to geometric conservation law have been studied by many 
researchers [92, 93, 105–109]. According to [110], the geometric conservation law can 
be classified as surface conservation law and volume conservation law. For static curvi-
linear grids, which is the case considered in this paper, the volume conservation law is 
satisfied automatically. Thus, we only need to consider the surface conservation law.

4.1  Surface conservation law

To describe the definition of the surface conservation law, let us consider the three-
dimensional conservation law, written as

where U denotes the conservative quantity, and F, G and H are fluxes in x, y and z direc-
tions, respectively. In curvilinear coordinates ( ξ , η, ζ ) [111], Eq. (37) can be expressed as

where F = (F ,G,H) is the tensor of the fluxes, and the Jacobian term J is defined as

and the surface vectors S(ξ) , S(η) and S(ζ ) are determined by

with r = (x, y, z)T . It is straightforward to check that the following relation holds, i.e.,

(35)L[f ] =

r−1∑

j=1

ωj f
′
j .

(36)f ′j =
1

h

2r−1∑

k=1

aj,k fk−1/2,

(37)Ut + Fx + Gy +Hz = 0,

(38)(JU)t +
(
F · S(ξ)

)
ξ
+

(
F · S(η)

)
η
+

(
F · S(ζ )

)
ζ
= 0,

(39)J = rξ · (rη × rζ ),

(40)S
(ξ) = rη × rζ , S

(η) = rζ × rξ , S
(ζ ) = rξ × rη
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which is the so-called surface conservation law.

4.2  SCMM method

In the context of discretization space, the surface conservation law (41) may not hold 
exactly, leading to geometric induced errors in the solution. It was shown that pre-
serving the surface conservation law discretely is very important for high-order finite 
different schemes [106].

For low-order algorithms [104, 112], some techniques can be made to satisfy the 
surface conservation law discretely. For high-order finite different schemes, accord-
ing to the knowledge of the authors, the most satisfied way so far is to apply the 
SCMM method with linear difference operators. This method is a further devel-
opment of the conservative metric method (CMM) proposed in [92]. The CMM 
method can maintain the freestream property of the original conservation law and 
also improve the behavior of WCNS schemes for applications to curvilinear coordi-
nates [18]. However, the CMM method does not admit appropriate geometric mean-
ing that is similar with finite volume methods. To address this issue, the SCMM 
method was proposed in [93].

The SCMM method is based on the symmetric conservative form of the Jacobian 
(39) and the surface vectors (40), where the Jacobian is written as

and the surface vectors are expressed as

For the SCMM method, linear difference operators are applied to discretize the 
metric derivatives. The discretization of the Jacobian term is denoted as

(41)
(
S
(ξ)

)
ξ
+

(
S
(η)

)
η
+

(
S
(ζ )

)
ζ
= 0,

(42)J =
1

3

[(
r · S(ξ)

)
ξ
+

(
r · S(η)

)
η
+

(
r · S(ζ )

)
ζ

]
,

(43)S
(ξ) =

1

2

[
(r × rζ )η + (rη × r)ζ

]
,

(44)S
(η) =

1

2
[(r × rξ )ζ + (rζ × r)ξ ],

(45)S
(ζ ) =

1

2
[(r × rη)ξ + (rξ × r)η].

(46)

Jj,k ,l =
1

3
δ1ξ

{
r ·

1

2

[
δ2η

(
r × δ3ζ r

)
+ δ2ζ

(
δ3ηr × r

)]}

j,k ,l

+
1

3
δ1η

{
r ·

1

2

[
δ2ζ

(
r × δ3ξ r

)
+ δ2ξ

(
δ3ζ r × r

)]}

j,k ,l

+
1

3
δ1ζ

{
r ·

1

2

[
δ2ξ

(
r × δ3ηr

)
+ δ2η

(
δ3ξ r × r

)]}

j,k ,l

,
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where δnξ  , δnη and δnζ  ( n = 1, 2, 3 ) denote the linear difference operators for ξ , η and ζ 
directions, respectively. Here the superscripts are counted from outside to inside of the 
brackets.

The spatial term of Eq. (38) has a similar form to the Jacobian (42), and its discre-
tized form can be expressed as

For freestream flow, U is constant, so is F  . In that case, if the linear difference 
operators satisfy the condition

then it is easy to observe from Eq. (47) that

Therefore, the semi-discretized form of Eq. (38) becomes

Since static grids are considered here, the Jacobian is independent of time. Thus, 
we know from Eq. (50) that Uj,k ,l is constant, indicating that the freestream condi-
tion is preserved exactly. Actually, the condition (48) also ensures that the surface 
conservation law (41) is maintained discretely. However, if we intend to have some 
geometric meanings of the Jacobian, it is better to further require that

which is the condition of the SCMM method. In this case, the discretized value Jj,k ,l (46) 
represents a weighted sum of some volumes consisting of grid points in the physical 
space [113, 114].

5  Conclusions
In this paper, we have summarized some main algorithms of WCNS schemes and pre-
sented some related recent developments. The schemes are based on grids staggered by 
flux points and solution points. Thus, the spatial discretization is divided into the inter-
polation step and the difference step. This setup has benefit in the flexibility of choosing 
numerical fluxes. In addition, the nonlinear procedure is applied only to the interpo-
lation step but not the difference step. Thus, the geometric conservation law can be 
preserved exactly in a discrete setting, providing that the introduced SCMM method is 
applied. We have also introduced the so-called conservative boundary closures for the 

(47)

SDTj,k ,l =
1

3
δ1ξ

{
F ·

1

2

[
δ2η

(
r × δ3ζ r

)
+ δ2ζ

(
δ3ηr × r

)]}

j,k ,l

+
1

3
δ1η

{
F ·

1

2

[
δ2ζ

(
r × δ3ξ r

)
+ δ2ξ

(
δ3ζ r × r

)]}

j,k ,l

+
1

3
δ1ζ

{
F ·

1

2

[
δ2ξ

(
r × δ3ηr

)
+ δ2η

(
δ3ξ r × r

)]}

j,k ,l

.

(48)δ1ξ = δ2ξ , δ1η = δ2η , δ1ζ = δ2ζ ,

(49)SDTj,k ,l = 0.

(50)
d

dt
(JU)j,k ,l = 0.

(51)δ1ξ = δ2ξ = δ3ξ , δ1η = δ2η = δ3η , δ1ζ = δ2ζ = δ3ζ ,
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difference step, such that the scheme is globally conservative and also time stable, with 
the global convergent rates as the same as the interior.

In future, some aspects of WCNS schemes are worth studying further, mainly lying 
in the improvement of their robustness, accuracy and resolution. To improve the 
robustness of the schemes for practical applications, one should address the issue of 
positivity preserving [115–117]. So far, how to preserve the positivity property and the 
geometric conservation law on curvilinear grids at the same time is still an open prob-
lem. Although a fifth-order WCNS scheme with unconditionally optimal convergence 
rate is available [65], the extension to other orders of accuracy shall be addressed. In 
addition, for a given grid the actual truncation error of a scheme is determined by its 
resolution. Thus, to improve the resolution property of WCNS schemes [118] deserves 
a further study as well.

Appendix A: Relation between WCNS and alternative WENO schemes
The alternative WENO schemes [94] for the one-dimensional conservation law (1) can 
be written as

where

If we drop the truncation error and evaluate the derivatives in the above equation by 
the following central difference schemes,

then we have

In this case, the spatial discretization term (f̂j+1/2 − f̂j−1/2)/h in Eq. (52) is equal to that 
of the WCNS scheme (4) with the difference scheme

which is exactly the hybrid sixth-order difference scheme (23) with α = 1.

(52)duj

dt
+

f̂j+1/2 − f̂j−1/2

h
= 0,

(53)f̂j+1/2 = fj+1/2 −
1

24
h2fxx|j+1/2 +

7

5760
h4fxxxx|j+1/2 +O(h6).

(54)fxx|j+1/2 =
1

h2

[
−
17

24
(fj + fj+1)+

13

16
(fj−1 + fj+2)−

5

48
(fj−2 + fj+3)

]
,

(55)fxxxx|j+1/2 =
1

h4

[
(fj + fj+1)−

3

2
(fj−1 + fj+2)+

1

2
(fj−2 + fj+3)

]
,

(56)f̂j+1/2 = fj+1/2 +
59

1920
(fj + fj+1)−

137

3840
(fj−1 + fj+2)+

19

3840
(fj−2 + fj+3).

(57)f ′j =
fj+1/2 − fj−1/2

h
+

17

256

fj+1 − fj−1

h
−

13

320

fj+2 − fj−2

h
+

19

3840

fj+3 − fj−3

h
,
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