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Abstract 

We present a theoretical model of plane turbulent flows based on the previously pro-
posed equations, which take into account both the longitudinal motion and the vor-
tex tube rotation. Using the simple model of eddy viscosity, we obtain the analytical 
expressions for the mean velocity profiles of stationary turbulent flows. In particular, 
we consider the near-wall flow over a flat plate in a wind tunnel as well as Couette 
and Poiseuille flows in rectangular channels. In all these cases, the calculated velocity 
profiles are in good agreement with experimental data and results of direct numerical 
simulations.

Keywords:  Vortex model of turbulence, Eddy viscosity, Plane wall-bounded flows, 
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1  Introduction
The plane near-wall (boundary layer) flows [1–3] and wall-bounded Couette [4–10] and 
Poiseuille [11–14] flows are actively investigated both theoretically and experimentally 
for a long time. These are relatively simple shear flows of air and fluid, which are real-
ized in rectangular channels and often used as model flows to test various theoretical 
models. The theoretical description of turbulent flows is based on the solution of the 
Reynolds-averaged Navier–Stokes (RANS) equation with the Reynolds stress tensor, 
which takes into account the influence of the fluctuating part of the velocity on the aver-
age flow characteristics [15, 16]. However, calculating the Reynolds tensor is a difficult 
problem. One of the basic ideas is that turbulent (eddy) viscosity depends on the coor-
dinates in the flow, which make it possible to reconcile the theoretical calculations with 
experimental data by using various models of boundary layer [17–20]. The main pro-
gress in the theoretical description of turbulence is associated with the development of 
two-equation models [21, 22] such as k − ε   model [23–25] and k − ω model [26, 27]. 
The advantages and disadvantages of various models are considered in [28, 29]. With 
the development of computer technologies, the methods for the direct numerical simu-
lations (DNS) have become widespread. The DNS methods allow one to simulate the 
evolution of steady and unsteady flows and calculate the average values of various flow 
characteristics [30–34].
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The turbulent flow is characterized by vortex movements with a wide range of spa-
tial scales. However, existing analytical models of turbulence [35–38] are based on 
various models of the Reynolds stress tensor, but do not explicitly take into account 
the vortex structure of the turbulent flow. In the present paper, we develop a model 
in which the vortex tubes are directly involved in the formation of turbulent wall-
bounded flows. We describe a turbulent flow based on the symmetric Maxwell-like 
system of equations explicitly accounting vortex motion. In the literature, there are a 
number of works, in which Maxwell-type equations for the velocity and the vorticity 
vectors are used to describe the vortex flow [39–41]. In particular, these equations are 
applied for the consideration of turbulent flows [40] and electron–ion plasma [42]. 
However, in these papers, the additional equation for vorticity is actually obtained 
by applying the “curl” operator to the Euler equation, so the resulting equation is not 
independent. We developed a different approach based on Helmholtz droplet model 
of a fluid [43] and obtained alternative Maxwell-type equations, which take into 
account the longitudinal motion and rotation of vortex tubes [44]. These equations 
were used in the hydrodynamic model of electron–ion plasma [45] and in the model 
of electron fluid in solids [46]. In the present paper, we apply this approach for the 
description of plane near-wall turbulent flows in wind tunnels as well as for Couette 
and Poiseuille flows in rectangular channels.

2 � Symmetric equations of droplet model of vortex flow
In this section we briefly recall the main provisions of the droplet model of vortex 
fluid and the qualitative derivation of the main equations. The flow of non-viscous 
fluid is described by the system of equations [47] including the Euler equation and the 
continuity equation:

This system can be rewritten in a symmetric form. We will consider the flow under 
the condition of constant entropy s(r, t) = const (s is the entropy per unit mass). Let 
us use the thermodynamic relation for enthalpy (ε): 

Then, introducing a new function u =
1

c
ε , we find that the following relations hold:

Here c  is the speed of sound  c2 = (∂p/∂ρ)s = const  . Accordingly, all values in 
Eqs. (1) can be expressed through the function u, 

(1)

∂v

∂t
+ (v · ∇)v +

1

ρ
∇p = 0,

∂ρ

∂t
+ (v · ∇)ρ + ρ(∇ · v) = 0.

(2)dε = Tds +
1

ρ
dp.

(3)du =
1

c
dε =

1

cρ
dp =

c

ρ
dρ.
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Substituting (4) into (1) we obtain the following symmetric system of equations:

To describe vortex flows, Helmholtz [43] proposed a drop model of fluid. Accord-
ing to this model, the change that an arbitrary infinitesimal particle of fluid (Fig. 1) 
undergoes during infinitesimal time consists of three different motions: 1) a transition 
of the particle through space; 2) an expansion or contraction of the particle parallel to 
three main axes of dilatation so that every rectangular parallelepiped in water, whose 
edges are parallel to the main directions of dilatation remains rectangular; 3) a rota-
tion around a temporary axis of rotation. During rotation, the particle is considered 
to instantly solidify and the angular velocity of its rotation ω is related to the linear 
velocity v inside the drop by the following relation:

Since angular velocity ω is the derivative of the vector of rotation angle θ, 

we will describe the vortex flow using the field θ(r, t) . Vortex lines are the lines whose 
direction coincides with the direction of the instantaneous axis of rotation of the fluid 

(4)

1

ρ
∇p = c∇u,

∂ρ

∂t
=

ρ

c

∂u

∂t
,

∇ρ =
ρ

c
∇u.

(5)

1

c

(

∂

∂t
+ (v · ∇)

)

v + ∇u = 0,

1

c

(

∂

∂t
+ (v · ∇)

)

u+ ∇ · v = 0.

(6)
2ω = ∇ × v.

(7)ω =
dθ

dt
,

Fig. 1  Sketch of a fluid particle moving with speed v and rotating with angular speed ω around 
an instantaneous axis
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particles. In turn, particles located along the vortex lines form vortex filaments, the com-
bination of which forms the vortex tubes [48].

Taking into account (6) and (7), the vortex tube rotation is described by the  following 
equation:

In order to give this equation a symmetric form similar to Eqs. (5), we introduce a new 
function w = c θ and then we obtain

The condition

describes the vortex tube without twisting. To take into consideration the twisting effect, 
this equation is modified as follows:

where the function ξ is proportional to the twist angle [44].
Taking into account Eqs. (5), (9) and (11), the symmetric system of equations for vortex 

flow can be represented in the following form:

To describe the viscous fluid, it is necessary to make the following replacement of opera-
tors in all equations:

where ν is the kinematic viscosity. Thus finally we have the following symmetric system 
of equations:

(8)
(

∂

∂t
+ (v · ∇)

)

θ −∇ × v = 0.

(9)
1

c

(

∂

∂t
+ (v · ∇)

)

w − ∇ × v = 0.

(10)
∇ · w = 0

(11)
1

c

(

∂

∂t
+ (v · ∇)

)

ξ +∇ · w = 0,

(12)

1

c

(

∂

∂t
+ (v · ∇)

)

v +∇ × w + ∇u = 0,

1

c

(

∂

∂t
+ (v · ∇)

)

u+ ∇ · v = 0,

1

c

(

∂

∂t
+ (v · ∇)

)

w −∇ × v +∇ξ = 0,

1

c

(

∂

∂t
+ (v · ∇)

)

ξ +∇ · w = 0.

(13)
1

c

(

∂

∂t
+ (v · ∇)

)

⇒
1

c

(

∂

∂t
+ (v · ∇)− ν�

)

,
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A rigorous sequential method for deriving Eqs.  (14) is based on the use of space-time 
Clifford algebra and is described in detail in [44].

3 � Vortex model of plane turbulent flow
Let us consider the plane flow parallel to the plane xy with the velocity directed along the X 
axis (Fig. 2).

In this case the velocity v has only x component and depends only on y coordi-
nate vx = vx

(

y, t
)

 . Similarly, in plane flow the vector w has only z component and depends 
only on y coordinate wz = wz

(

y, t
)

 . Since we assume the uniform flow distribution in the Z 
direction and no torques, the vortex tubes have no twisting  ξ = 0.  Also we suppose that 
enthalpy depends only on x coordinate u = u(x, t) and the gradient of enthalpy to be constant,

Then in the projection on the X and Z axes, the system (14) takes the following form:

(14)

1

c

(

∂

∂t
+ (v · ∇)− ν�

)

v + ∇ × w +∇u = 0,

1

c

(

∂

∂t
+ (v · ∇)− ν�

)

u+ ∇ · v = 0,

1

c

(

∂

∂t
+ (v · ∇)− ν�

)

w − ∇ × v + ∇ξ = 0,

1

c

(

∂

∂t
+ (v · ∇)− ν�

)

ξ + ∇ · w = 0.

(15)
∂u

∂x
=

1

cρ

∂p

∂x
= −g .

(16)

1

c

∂vx

∂t
−

ν

c

∂2vx

∂y2
+

∂wz

∂y
− g = 0,

1

c

∂wz

∂t
−

ν

c

∂2wz

∂y2
+

∂vx

∂y
= 0.

Fig. 2  Sketch of the coordinate system for the plane flow
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To describe a steady-state turbulent flow, we introduce the time-averaged values. For 
any value a(y, t) , averaging over time is carried out as follows:

Then the local velocity and vector of rotation can be represented as

where v′ and w′ are corresponding fluctuations. For components we have

In function wz(y, t) we separate the part associated with the regular rotation of the vor-
tex tubes with angle velocity ωz(y) and the part associated with irregular rotation ϕz(y, t), 

Following (17) and (20), for a stationary flow we have

Substituting (18) into Eqs. (14) and averaging over time we obtain (taking into account 
(20) and (21)) the following time-averaged plane flow equations:

Here v′x v′y and ϕ′
zv

′
y are the components of the corresponding Reynolds stress tensors. 

Following to the Boussinesq assumption [49, 50], we suppose that components of stress 
tensors can be written as

(17)ā(y) = lim
T→∞

1

2T

T
∫

−T

a(y, t)dt.

(18)v(r, t) = v(r)+ v
′(r, t),

w(r, t) = w(r)+ w
′(r, t),

(19)
vx
(

y, t
)

= vx
(

y
)

+ v′x
(

y, t
)

,

wz

(

y, t
)

= wz

(

y
)

+ w′
z

(

y, t
)

.

(20)wz

(

y, t
)

= 2cωz

(

y
)

t + ϕz
(

y, t
)

.

(21)

∂vx

∂t
= 0,

w
′

z

(

y, t
)

= ϕ
′

z

(

y, t
)

,

wz

(

y
)

= ϕz

(

y
)

,

∂wz

∂t
= 2cωz

(

y
)

.

(22)

−
ν

c

∂2vx

∂y2
+

1

c

∂

∂y
v′xv

′
y +

∂ϕz

∂y
− g = 0,

−
ν

c

∂2ϕz

∂y2
+

1

c

∂

∂y
ϕ′
zv

′
y +

∂vx

∂y
+ 2ωz

(

y
)

= 0.

(23)−v′xv
′
y = νT

∂vx

∂y
,



Page 7 of 17Mironov and Mironov ﻿Advances in Aerodynamics             (2024) 6:8 	

where νT is the turbulent kinematic viscosity. We will suppose that νT = const , then 
we obtain a  very simple model of turbulent flow, which is described by the following 
equations:

Here we introduce the turbulent length � =
ν + νT

c
.

In the next sections, we will explore how this simple model describes the different plane 
turbulent wall-bounded flows.

4 � Model of turbulent flow in near‑wall layer
Let us consider a simple model of steady-state turbulent flow over an infinite plate (Fig. 3). 
We believe that shear flow exists only in a thin near-wall layer of thickness δ. The velocity 
outside the boundary layer is v∞ and the pressure gradient is zero ( g = 0 ). Also we assume 
that on average all vortex tubes in the near-wall layer rotate with the same angular velocity 
ωz(y) = −ω0 . In this case Eqs. (25) take the following form:

We choose the boundary conditions corresponding to the complete adhesion to the plate 
surface:

(24)−ϕ′
zv

′
y = νT

∂ϕz

∂y
,

(25)

−�
∂2vx

∂y2
+

∂ϕz

∂y
− g = 0,

−�
∂2ϕz

∂y2
+

∂vx

∂y
+ 2ωz

(

y
)

= 0.

(26)

−�
∂2vx

∂y2
+

∂ϕz

∂y
= 0,

−�
∂2ϕz

∂y2
+

∂vx

∂y
− 2ω0 = 0.

Fig. 3  Sketch of a stationary turbulent flow over an infinite plate. The vortex tubes in the thin layer, on 
average, rotate with angular velocity ω0
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The solution of system (26) in the region 0 ≤ y ≤ δ has the following form:

Here we introduce the dimensionless parameter β = 2ω0δ/v∞ . The values ϕδ and v∞ 
are related by the following relation:

As an example, we consider the approximation of experimental data on plate blowing 
in a wind tunnel (Gete & Evans [1]) using formula (28). Figure 4 demonstrates the fit-
ting of the experimental velocity profiles in the boundary layer at distances of 0.1 m and 
0.7 m from the leading edge of the plate. In both cases, there is good agreement between 
the fitting curves and the experimental data. A comparison of the fitting parameters 
shows that with increasing distance from the edge, the turbulent viscosity decreases 
(parameter �/δ ), while the angular velocity of rotation of the vortex tubes (parameter β ) 
increases.

(27)

vx(0) = 0,

vx(δ) = v∞,

ϕz(0) = 0,

ϕz(δ) = ϕδ .

(28)vx = v∞

{

(1− β)
1− exp

(

−y/�
)

1− exp(−δ/�)
+ βy/δ

}

,

(29)ϕz = ϕ0
1− exp

(

−y/�
)

1− exp(−δ/�)
.

(30)ϕδ = −v∞(1− β).

Fig. 4  Velocity profiles over the plate at different distances (D) from the leading edge. Circles ( © ) are 
the experimental data [1]; solid red lines correspond to the distribution (28). Fitting parameters are a 
�/δ = 0.21, β = 0.1 ; b �/δ = 0.085 , β = 0.27
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5 � Turbulent Couette flow
Let us consider a turbulent flow formed between two infinite parallel plates moving rela-
tive to each other in opposite directions (Fig. 5).

Let us consider a fully developed turbulent flow, in which the vortex tubes on average 
rotate with a constant angular velocity ωz

(

y
)

= −ωc . Then Eqs. (25) take the following 
form:

As the boundary conditions, we choose

The solutions of Eqs. (31) are written as

Here we introduce the dimensionless parameter,

(31)

−�
∂2vx

∂y2
+

∂ϕz

∂y
= 0,

−�
∂2ϕz

∂y2
+

∂vx

∂y
− 2ωc = 0.

(32)

vx(h) = v,

vx(−h) = −v,

ϕz(h) = 0,

ϕz(−h) = 0.

(33)vx = v

{

α
y

h
+ (1− α)

sinh
(

y/�
)

sinh(h/�)

}

,

(34)ϕz = (1− α)v
cosh

(

y/�
)

− cosh(h/�)

sinh(h/�)
.

Fig. 5  Sketch of a plane Couette flow between two infinite plates, which move along the X axis with speed v 
in opposite directions
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As an example, we consider the approximation of experimental velocity profiles by 
the normalized distribution (33). Figure  6 shows the comparison of the mean veloc-
ity profiles for air (El Telbany & Reynolds [13]) and water (Reichardt [5]) flows at close 
Reynolds numbers (Re). As can be seen, distribution (33) is in good agreement with 
experimental data. The fitting parameters λ/h, and α in these two cases are also very 
close. In addition, Fig.  7 demonstrates the comparison of solution (33) with the DNS 
results for Couette flow with Re = 3000 (Tsukahara et  al. [51]) and Re = 12800 (Kawa-
mura et al. [52]). In both cases, the fitted profiles are in good agreement with the results 
of the DNS. Here we also observe a decrease of turbulent viscosity (parameter λ/h) and 
an increase of angular velocity ωc (parameter α) with increasing Re.

(35)α =
2ωch

v
.

Fig. 6  Distributions of the mean velocity in a turbulent Couette flow. Circles ( © ) are the experimental results 
[5, 13]; solid red lines correspond to (33). Fitting parameters are a λ/h = 0.04, α = 0.28; b λ/h = 0.035, α = 0.27

Fig. 7  DNS profiles of the mean velocity in a turbulent Couette flow. a Circles ( © ) are the results of DNS with 
Re = 3000 [51]; the solid red line corresponds to (33) at λ/h = 0.16, α = 0.21. b Circles ( © ) are the DNS results 
with Re = 12800 [52]; the solid red line corresponds to (33) at λ/h = 0.072, α = 0.189
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6 � Turbulent Poiseuille flow
In case of plane Poiseuille flow in a channel with fixed walls (Fig. 8), the air moves under 
the action of a pressure gradient.

Let us consider a fully developed turbulent Poiseuille flow taking into account the vor-
tex tube rotation. We assume that the angle velocity of vortex tube rotation is a  linear 
function of y coordinate ωz

(

y
)

= κy . In this case Eqs. (25) take the following form:

with the following boundary conditions:

The solutions of system (36) are

Here σ is a certain dimensionless parameter connected with pressure gradient and 
transverse gradient of angular velocity,

This parameter describes the relationship between the parabolic and hyperbolic veloc-
ity profiles. At σ = 0 , the profile is purely parabolic, and at σ = 1, it is hyperbolic.

(36)

−�
∂2vx

∂y2
+

∂ϕz

∂y
− g = 0,

−�
∂2ϕz

∂y2
+

∂vx

∂y
+ 2κy = 0,

(37)
vx(h) = vx(−h) = 0,

ϕz(h) = ϕz(−h) = 0.

(38)vx = σ gh
cosh(h/�)− cosh

(

y/�
)

sinh(h/�)
+ gh2

(1− σ)

2�

(

1−
y2

h2

)

,

(39)ϕz = −σ gh
sinh

(

y/�
)

sinh(h/�)
+ σ gy.

(40)σ = 1−
2�κ

g
.

Fig. 8  Sketch of a plane turbulent Poiseuille flow in a channel between two infinite plates
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As an example, we consider the approximation of experimental data for air flows 
in rectangular channels by the  normalized distribution (38). The normalization 
is vx/v0  (where v0 is the velocity at y = 0). Figure 9 shows the fitting of the experimen-
tal mean velocity profiles (Hussain & Reynolds [12]) for different Re. As can be seen 
from the comparison of the fitting parameters, an increase in Re is accompanied by a 
decrease in turbulent viscosity (parameter �/h ) and an increase in parameter σ . In addi-
tion, Fig. 10 demonstrates a more accurate match between the calculated velocity dis-
tribution and the experimental profile (Hussain & Reynolds [12]) in the region near a 
wall. Figure 11 shows the results of comparing mean velocity profiles calculated using 
formula (38) and DNS data for Re = 2013 (Tsukahara [53]) and Re = 24428 (Kawamura 

Fig. 9  The profiles of mean velocity for plane Poiseuille flow at different Re. Experimental data are shown by 
circles [12]. The profiles corresponding to formula (38) are shown by solid red lines. a λ/h = 0.0178, σ = 0.984; 
b λ/h = 0.014, σ = 0.9896

Fig. 10  The profiles of mean velocity near the wall. Experimental data [12] are shown by circles; the solid red 
line corresponds to formula (38). Fitting parameters are λ/h = 0.0107, σ = 0.99
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et al. [54]). In all considered cases, there is good agreement of calculated velocity profiles 
with experimental results and DNS data.

7 � Discussion
The proposed vortex model of turbulent flow differs from the generally accepted 
approach. In this model, for a plane turbulent flow we have two Eqs. (25) describing 
the longitudinal motion and rotation of the vortex tubes. On the other hand, in the 
RANS model we have only one equation, which for the plane Poiseuille flow has the 
following form:

In this case, the Boussinesq hypothesis (23) with a constant eddy viscosity does not 
describe the change in the velocity profile of a turbulent flow. The profile remains 
parabolic. Therefore, to obtain satisfactory agreement with experimental data within 
the framework of the RANS equation, it is generally accepted that the eddy viscosity 
depends on the coordinates νT = νT

(

y
)

 . It leads us to the following equation:

and the main issue is the choice of the model of the eddy viscosity profile νT
(

y
)

 . The 
analytical expression for the  eddy viscosity was suggested by Cess [55]. According to 
Cess’s model, the eddy viscosity profile can be represented in the following form [56]:

(41)−
ν

c

∂2vx

∂y2
+

1

c

∂

∂y
v′xv

′
y − g = 0.

(42)ν
∂2vx

∂y2
+

∂

∂y

(

νT
(

y
)∂vx

∂y

)

− cg = 0,

(43)

νT (η) =
ν

2

{

1+
K 2Re2τ

9

(

1− η2
)2(

1+ 2η2
)2

(

1− exp

[

(|η| − 1)
Reτ

A

])2
}1/2

+
ν

2
,

Fig. 11  The mean velocity profiles of a turbulent Poiseuille flow. DNS data [53, 54] are shown by circles; 
the solid red line corresponds to the simulated profile (38). The fitting parameters are a λ/h = 0.21, σ = 0.975; 
b λ/h = 0.019, σ = 0.981
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where η = y/h is the normalized coordinate across the channel, Reτ is the friction Reyn-
olds number, K is the von Karman constant of logarithmic velocity profile, and A is the 
constant in van Driest’s wall law [57]. The mean velocity profile can be found from (42) 
as

where the integral can be calculated by the appropriate numerical method.
In the proposed vortex model, the turbulent flow is described by two equations, 

and the Boussinesq hypothesis (23) with constant eddy viscosity νT = const immedi-
ately gives us the combined hyperbolic-parabolic mean velocity profile (38) in analyti-
cal form. The distribution of mean velocity is defined by two parameters f = λ/h and 
σ (40). Eddy viscosity can be estimated using parameter f as

In addition, the gradient of angular velocity κ can be estimated as

The dependencies  of  f(Re) and σ(Re) can be extracted from experimental data or 
from results of DNS. As an example, Fig. 12 shows the dependencies of parameters f 
and σ on the Reynolds number for the Poiseuille flow, obtained from fitting velocity 

(44)vx(η) = cg

η
∫

−1

η + 1

ν + νT (η)
dη,

(45)νT = ch f (Re)− ν.

(46)κ =
1− g σ(Re)

2h f (Re)
.

Fig. 12  Dependencies of parameters a f and b σ on Reynolds number. Circles are the data obtained from 
fitting of DNS velocity profiles [58] (see Table 1); solid lines correspond to the power-law approximations (47) 
and (48)

Table 1  The values of the fitting parameters f and σ 

Re 1844 2013 2293 3285 4653 5731 14147 24428 41441

f 0.26 0.21 0.17 0.105 0.068 0.055 0.028 0.019 0.014

σ 0.995 0.975 0.96 0.938 0.945 0.95 0.972 0.9805 0.986
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profiles according to DNS data [58]. The values of the fitting parameters  f and σ are 
presented in Table 1.

As one can see, the dependence of f(Re) is monotonic, while the dependence of σ(Re) 
initially decreases and then increases with increasing Re. Both of these dependencies can 
be approximated by power functions (see Fig. 12). The following approximation is valid 
for the parameter f,

For the parameter σ, we have

These dependencies make it possible to predict the theoretical velocity profile, as well 
as estimate the eddy viscosity parameter νT and the gradient of angular velocity κ with 
formulas (45) and (46) using the experimental Reynolds number (Reex) and half channel 
width (hex).

8 � Conclusions
Thus, we have considered various types of plane stationary turbulent flows within the 
framework of a simple model based on the symmetric equations of vortex flow. This 
model allows for analytical calculations of the mean velocity distribution and includes 
two main parameters: the turbulence scale (λ), which is determined by the eddy viscos-
ity, and the angular speed of vortex tube rotation (ω). We compared the fitted velocity 
distributions and experimental profiles for the near-wall flow in a wind tunnel and for 
Couette and Poiseuille flows in flat rectangular channels. In addition, we compared the 
model velocity profiles with the results of direct numerical simulations. It is shown that 
all calculated velocity profiles are in good agreement with the experimental data and the 
results of the DNS. We believe that the proposed model of plane turbulent flows can 
be useful for a qualitative consideration of engineering problems in aerodynamics and 
hydrodynamics.
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