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Abstract 

The general synthetic iterative scheme (GSIS) has proven its efficacy in modeling rare-
fied gas dynamics, where the steady-state solutions are obtained after dozens of itera-
tions of the Boltzmann equation, with minimal numerical dissipation even using large 
spatial cells. In this paper, the fast convergence and asymptotic-preserving properties 
of the GSIS are harnessed to remove the limitations of the direct simulation Monte 
Carlo (DSMC) method. The GSIS, which leverages high-order constitutive relations 
derived from DSMC, is applied intermittently, which not only rapidly steers the DSMC 
towards steady state, but also eliminates the requirement that the cell size must be 
smaller than the molecular mean free path. Several numerical tests have been con-
ducted to validate the accuracy and efficiency of this hybrid GSIS-DSMC approach.

Keywords: Direct simulation Monte Carlo, General synthetic iterative scheme, Fast 
convergence, Asymptotic-preserving

1 Introduction
The direct simulation Monte Carlo (DSMC) method is widely used to simulate rarefied 
gas dynamics [1]. It is efficient for hypersonic flows in the transition and free-molecular 
flow regimes, but becomes computationally expensive or even prohibitive in the con-
tinuum flow regime. That is, in order to reduce the numerical dissipation, the spatial grid 
size (time step) is chosen to be about one third of the molecular mean free path (mean 
collision time), resulting in a tremendous number of spatial cells and time steps in the 
continuum flow regime. Therefore, it is urgent to develop numerical schemes with the 
properties of asymptotic-preserving (reduced to the Navier-Stokes solver in the contin-
uum flow regime, even when the spatial cell size is much larger than the mean free path) 
and fast convergence (reach the steady state quickly) [2].

Many strategies have been proposed to improve the efficiency of DSMC in the 
near-continuum flow regime, such as the hybrid Navier-Stokes-DSMC method [3], 
the time-relaxed Monte Carlo method  [4], and the asymptotic-preserving Monte 
Carlo method  [5]. The first approach needs empirical parameters to determine the 
region where the Navier-Stokes solver can be applied, while the latter two methods 
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only preserve the Euler asymptotics when the Knudsen number is small. Recently, the 
time-relaxed Monte Carlo method that accurately preserves the Navier-Stokes equa-
tion has been established [6], and several numerical tests are performed to show that 
it has lower numerical dissipation and higher computational efficiency for multiscale 
flow simulations.

In addition to these stochastic methods, in the past decade we have seen great 
progress in the deterministic simulation of rarefied gas dynamics, but most of the 
works are based on simplified gas kinetic models, such as the Bhatnagar-Gross-Krook 
(BGK)  [7] and Shakhov  [8] models. For example, Xu and Huang proposed the uni-
fied gas-kinetic scheme [9], where the streaming and collision are handled simultane-
ously to reduce the numerical dissipation. Zhu et  al. developed the implicit unified 
gas-kinetic scheme, where the use of large time step greatly improves the numerical 
efficiency [10]. Su et al. proposed the general synthetic iterative scheme (GSIS), where 
the mesoscopic kinetic equation and macroscopic synthetic equations are solved 
implicitly, and the steady-state solution can be found within dozens of iterations, with 
negligible numerical dissipation even when large spatial cell sizes are used [2, 11, 12].

Recently, the community of rarefied gas dynamics has seen the rise of hybrid 
stochastic-deterministic methodologies. For instance, Degond et  al. proposed the 
moment guided Monte Carlo method, where the solution of macroscopic conserva-
tive equations is used to guide the evolution of DSMC [13]. Liu et al. introduced the 
unified gas-kinetic wave-particle methods  [14]. In each spatial cell, the equilibrium 
component is addressed by a macroscopic solver, while the non-equilibrium compo-
nent is tracked by the Monte Carlo approach. By simultaneously handling the stream-
ing and collision processes, this method retains the asymptotic-preserving property of 
the unified gas-kinetic scheme [9], yet offers enhanced efficiency for hypersonic flows, 
as it utilizes simulation particles to represent the molecular velocity space, akin to the 
DSMC. Additionally, building upon Fei’s research on the asymptotic Navier-Stokes 
preserving time-relaxed Monte Carlo approach  [6], we developed the hybrid GSIS-
DSMC method, where the macroscopic synthetic equations exactly derived from the 
Boltzmann equation are used to expedite the progression of DSMC simulation [15].

Nevertheless, although these efficient multiscale methods have gained great success 
in simulating single-species rarefied gas dynamics, they are difficult to be extended 
to simulate rarefied chemical reactions. The reasons are that, i) it requires tremen-
dous mathematical skills to develop asymptotic-preserving schemes in DSMC for 
flows with multiple relaxation times and complicated physical chemical processes, 
and ii) although asymptotic-preserving and fast convergence can be straightforwardly 
applied for deterministic methods (e.g., see the GSIS for gas mixture flows  [16]), it 
is difficult to construct kinetic models for complicated non-equilibrium chemical 
reactions.

Therefore, in this paper, on top of our recent work [15], we develop a simpler numeri-
cal framework that possesses the asymptotic-preserving and fast convergence proper-
ties, to efficiently and accurately simulate the rarefied gas dynamics. Such a framework is 
also crafted to facilitate a seamless extension to DSMC with chemical reactions. For the 
purposes of clarity and focus, our discussions will be centered on monatomic gas flows.
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2  The intermittent GSIS: proof of concept
The GSIS was initially proposed to solve the Boltzmann equation and its simplified 
kinetic equations deterministically  [11]. Its key ingredient is that the mesoscopic 
kinetic equation and its macroscopic synthetic equation are solved together. While 
the numerical solution of the kinetic equation provides moment closure to the syn-
thetic equation, the synthetic equation, when solved to the steady state, guides the 
evolution of velocity distribution functions in the kinetic equation. As a result, both 
numerical simulations and rigorous mathematical analysis have shown that the GSIS 
possesses the fast convergence and asymptotic-preserving properties  [2], where 
accurate steady-state solutions are found within dozens of iterations, even when 
the coarse spatial grid is used. In recent years, the GSIS has  quickly evolved into a 
powerful method to study the rarefied gas dynamics [12, 17] in practical engineering 
problems [18].

The GSIS has also notably enhanced the convergence of low-variance (LV) 
DSMC  [19] in the near-continuum flow regime  [20]. For instance, when the Knud-
sen number is 0.01, the hybrid GSIS-LVDSMC approach finds the steady-state solu-
tion for linearized Poiseuille flow with just 100 spatial cells and 104 evolution steps, 
contrasting with the 300 cells and 105 steps demanded by the LVDSMC alone. Con-
sequently, the GSIS-LVDSMC reduces the computation time to merely 10 minutes, 
compared to the 8 hours required by LVDSMC. As the Knudsen number decreases 
further, the computational advantage of the hybrid GSIS-LVDSMC becomes even 
more pronounced.

However, the application of GSIS to DSMC is not straightforward, as the linearized 
BGK equation, whose collision operator is determined by the macroscopic flow quan-
tities such as density, velocity, and temperature, is solved in LVDSMC. Thus, if these 
macroscopic quantities are obtained by solving the synthetic equation, they can be 
immediately fed back to LVDSMC to expedite its evolution towards steady state. In con-
trast, DSMC solves the Boltzmann equation, where the collision operator is determined 
by the mesoscopic velocity distribution function rather than the macroscopic flow quan-
tities. Therefore, it is imperative to devise a method for integrating macroscopic flow 
data back into the mesoscopic velocity distribution function (in DSMC it is the distribu-
tion of simulation particles). This task, however, is not straightforward. In our recent 
paper  [15], this reciprocal feedback is achieved in combination of the asymptotic-pre-
serving time-relaxed Monte Carlo method [6], where the velocity distribution function 
in the collision process is given analytically by the Wild sum [21]. In this method, the 
Grad-13-type velocity distribution [22], which is determined by the macroscopic quan-
tities from the synthetic equation, corrects the distribution of simulation particles in 
DSMC in each time step. As a result, fast convergence and asymptotic-preserving are 
achieved in GSIS-DSMC, resulting in a significant improvement of simulation efficiency 
in the near-continuum flow regime.

Nevertheless, this GSIS-DSMC coupling is complicated as compared to the original 
DSMC. First, the collision process in the time-relaxed Monte Carlo method is more 
time-consuming than the original DSMC. Second, due to the difficulties in the Wild 
sum with multiple relaxation times, this method, if not impossible, requires tremendous 
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mathematical skills to be extended to flows with gas mixtures and chemical reactions. 
Thus, new methods should be searched to simplify the correction process [6, 15].

It is noted that in the deterministic GSIS  [11, 12] and in the hybrid GSIS-
LVDSMC [20], macroscopic quantities obtained from the synthetic equation are used in 
each iteration/time step. This is not economical in DSMC since the computational time 
of DSMC in one step is much smaller than solving the synthetic equation for many steps 
or even to the steady state. In our recent paper  [15], the synthetic equation is solved 
in every N steps of the  time-relaxed Monte-Carlo method, but its solution is used to 
update the simulation particles in every step. Out of curiosity, one may ask that what will 
happen if we solve the synthetic equation and correct the velocity distribution, in every 
N steps of the kinetic solver? We call this method the intermittent GSIS. Certainly, the 
value of N cannot be too large, otherwise the benefits of GSIS will be wiped out by the 
kinetic solver which does not process the asymptotic-preserving property. Also, when 
the DSMC method is used, the value of N cannot be too small, in order to allow suffi-
cient sampling to reduce the noise when solving the synthetic equation.

To address this problem, we quickly test the intermittent GSIS in the linearized Poi-
seuille flow between two parallel plates; that is, we use the solutions of the synthetic 
equation to guide the evolution of traditional kinetic solver in every N steps. Without 
loss of generality, the following steady-state BGK equation is used [23]:

where feq(v) = exp(−|v|2)/π3/2 is the equilibrium velocity distribution function, with 
v = (v1, v2, v3) being the three-dimensional molecular velocity; h(x, v) is the perturbed 
velocity distribution function, and x is the spatial coordinate perpendicular to the two 
parallel plates; the macroscopic flow velocity parallel to the two plates is u = v3hdv ; 
the rarefaction parameter is δrp (proportional to the inverse Knudsen number). The syn-
thetic equation is

The general procedure of GSIS and the conventional iterative scheme (CIS) for the 
kinetic equation is elaborated in Ref.  [23]. The BGK equation is solved by the second-
order upwind finite difference scheme implicitly (the effective time step is exactly the 
mean collision time, 1/δrp , which is roughly the inverse of Knudsen number Kn), and the 
synthetic equation is also solved by the second-order upwind finite difference scheme.

Figure  1 shows the effects of intermittent GSIS when the rarefaction parameter is 
small, and the flow is in the continuum regime. When δrp = 100 , the CIS with coarse 
spatial grids finds the wrong velocity profile after solving the BGK equation for 15,000 
times (the convergence criterion is that the relative error in the flow velocity between 
two consecutive iterations is less than 10−6 ). However, with the synthetic equation 
applied in every step, the original GSIS obtains the correct solution after solving the 
BGK equation for only 21 times, clearly demonstrating the fast convergence and asymp-
totic-preserving properties. If the GSIS is applied every N = 100 steps a few times, the 
correct velocity profile can still be found. This is because the numerical error associated 

(1)v1
∂h

∂x
= δrp[2uv3feq − h] + v3feq ,

(2)
∂2u

∂x2
= −δrp −

∂2

∂x2

∫

h(x, v)(2v21 − 1)v3dv.
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with the CIS does not have adequate time to develop. When N = 1000 , the numerical 
error in CIS gradually develops, and the final velocity profile obtained from the inter-
mittent GSIS slightly deviates from the reference one. When N = 5000 , the numerical 
error in CIS has sufficient time to develop, and the intermittent GSIS is reduced to the 
pure CIS. When δrp = 500 , the pure CIS introduces even larger numerical errors, since 
the spatial cell size is much larger than the mean free path. Worse still, it needs 126,914 
iteration steps, contrasting with the 18 steps demanded by the pure GSIS. When apply-
ing the GSIS in every 100 (or 1,000, not shown for clarity) steps, the final intermittent 
GSIS solution agrees well with the reference one. However, as N is increased to 5,000 
and 20,000, the numerical error gradually develops in the intermittent GSIS. On the 
other hand, when δrp is small, e.g., the flow is in the transition or free-molecular regime, 
the pure CIS is fast and accurate, and the use of intermittent GSIS will produce the cor-
rect solution, no matter how large the value of N is (not shown in the figure for clarity).

From the Fourier stability analysis  [2], we know that the iteration in pure CIS has a 
spectral radius of 1− Kn2/2 when the Knudsen number Kn is small. This implies that 
after one iteration, the error is reduced by a mount of Kn2 . Therefore, roughly speak-
ing, the total iteration steps in pure CIS are proportional to δ2rp to find the steady-state 
solution (which, however, might subject to numerical errors if the spatial resolution is 
not high enough). This also means that, the iteration steps for the numerical error in the 
intermittent GSIS to emerge is roughly proportional to δ2rp . This is indeed supported by 
the numerical results in Fig. 1: when δrp = 100 , the numerical error in the intermittent 
GSIS emerges when N = 1000 , while that of δrp = 500 in the intermittent GSIS is about 
25 times larger, i.e., the error emerges when N ≈ 20, 000 . Therefore, the numerical dis-
sipation in the pure CIS will be eliminated by the intermittent GSIS, e.g., if we choose 
N � 100 , even when the spatial cell size is about 100 times larger than the mean free 
path.

Fig. 1 Numerical tests of the intermittent GSIS in the linearized Poiseuille flow, where the GSIS is applied to 
the CIS in every N steps. Reference solutions are obtained from GSIS with refined spatial grids [23], while other 
solutions are obtained when the spatial domain x ∈ [0, 1] is discretized non-uniformly with 21 points (dense 
grids are used near the boundary). Note that the CIS solution is above the reference solution, indicating some 
kind of anti-dissipation. However, if uniform spatial grids are used, the CIS solution is below the reference 
solution
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3  The direct intermittent GSIS‑DSMC coupling
It can be concluded from the above preliminary tests that, applying the GSIS in about every 
100 steps (when the effective time step is the mean collision time) will not only facilitate the 
asymptotic-preserving property of the kinetic solver, but also boost the convergence to the 
steady state, as compared to the original kinetic solver. The same should hold for the DSMC 
too.

Thus, on top of our recent work  [15], we design the direct intermittent GSIS-DSMC 
solver (DIG) in Fig. 2. The ‘direct’ means that the DIG is based on the standard DSMC, 
replacing the modification of the particle distribution via the complicated Wild sum in 
the time-relaxed Monte Carlo method [4]. Main steps of the DIG solver are given below: 

1. Solve the traditional Navier-Stokes equation to get the  initial flow field, and initial-
ize the DSMC simulation to the Maxwellian distribution, with the obtained density, 
velocity, and temperature.

2. Run the standard DSMC for 50 steps, and get the time-averaged macroscopic quan-
tities. To reduce the thermal fluctuation, the exponentially weighted moving time 
averaging method with 100 samples [24] is employed, see Appendix A.

3. Solve the macroscopic synthetic equation  (5) for m = 500− 2000 steps, or till the 
relative error in the conservative variables between two consecutive steps is smaller 
than 10−5 . The boundary condition and numerical method for the synthetic equation 
are detailed in Ref. [15].

4. Correct the particle distribution in DSMC to reflect the change of density, veloc-
ity, and temperature as specified by the solutions of the synthetic equation, see 
Appendix B.

5. Repeat steps 2-4 (i.e., Fig. 2) until convergence.

3.1  Hypersonic flows passing over a cylinder

Consider the argon gas flow of Mach number Ma = 5 passing over a cylinder. The Knudsen 
number is defined as

Fig. 2 Flowchart of the direct intermittent GSIS-DSMC solver in a unit cycle, which is repeated until 
convergence
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where the molecular mean free path is � , the characteristic flow length is the cylin-
der diameter L, and  the inflow pressure and temperature are respectively p0 and T0 . 
The variable hard-sphere model is used in DSMC, where the viscosity is calculated as 
µ(T ) = µ0(T0)× (T/T0)

ω with the exponent ω = 0.81 . The Maxwellian diffuse bound-
ary condition is applied at the cylinder surface with the temperature T0.

The computational domain is an annulus with an inner circle being the cylinder sur-
face and an outer circle being the far field. The radius of the outer circle is 5.5L for 
Kn = 0.1 and 4.5L for Kn = 0.01 , and that of the inner circle is 0.5L. The non-uniform 
structured mesh is used, and the total cell numbers in the circumferential and radial 
directions are M and N, respectively. As shown in Table 1 and Fig. 4, when Kn = 0.1 , 
M = 100 and N = 64 . When Kn = 0.01 , the physical grid is set as M = 200 , N = 200 . 
The height of the first layer grid is �h = 0.2� ; such a small first layer height is neces-
sary to capture the surface heat flux. In all cases, 100 particles are assigned in each 
cell initially. Furthermore, when Kn = 0.1 , a CFL number of 0.2 is employed in the 
pure DSMC and DIG, and is increased to 0.5 for DIG when Kn = 0.01 . The CFL num-
ber in the macroscopic solver is 5.

Given the GSIS’s characteristic of fast convergence, the transition state within the 
DIG is relatively brief. Figure 3 illustrates the evolution of the temperature in the hor-
izontal direction along the windward side of the cylinder surface when Kn = 0.1 and 
Kn = 0.01 . When Kn = 0.1 , DSMC necessitates 700 steps to reach the steady state, 
while DIG requires approximately 400 steps. However, when the Knudsen number 
decreases to 0.01, while the DSMC needs 50,000 steps to reach the steady state, the 
DIG requires only 300 steps.

Figure  4 shows the steady-state velocity contours, the density, temperature, and 
velocity along the stagnation stream line, and the flow variables along the cylinder 
surface. It can be seen that the DIG results agree well with the DSMC, especially 
when Kn = 0.01 where the spatial resolution in DIG is much smaller than DSMC. This 
is attributed to the GSIS’s asymptotic-preserving property, where accurate solutions 
can be found even using coarse spatial grids.

Thanks to the fast convergence and asymptotic-preserving properties brought by 
the macroscopic synthetic equation, Table 1 confirms that the DIG is much more effi-
cient than the DSMC in the near-continuum flow regime. That is, when Kn = 0.01 , 

(3)Kn =
�

L
=

µ0(T0)

p0L

√

πkBT0

2m
,

Table 1 The computational overhead in the hypersonic flow around a cylinder

The computational time is expressed in core-hours. Results with * were obtained from the SPARTA program, using non-
uniform Cartesian grids and uniform initial conditions. In contrast, other simulations were initialized using solutions from 
the traditional Navier-Stokes equations

Kn Methods CFL Ncell Transition state Steady state

steps time steps time

0.1 DSMC 0.2 100× 64 700 0.3 10,000 4.7

DIG 400 0.3 5000 3.2

0.01 DSMC∗ 0.2 2,010,616 50,000 300 50,000 295

DIG 0.5 200× 200 300 2.1 3000 15.2
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since the iteration step is reduced by several orders of magnitude, the time for solv-
ing the synthetic equation can be neglected. Consequently, the overall CPU time of 
DIG is smaller than DSMC by two orders of magnitude. However, in the transition 
flow regime, e.g., Kn = 0.1 , although the number of iterations required in the tran-
sition state is reduced, the overall CPU cost of DIG is similar to the DSMC due to 
the extra cost in solving the synthetic equation. Additionally, since the complicated 
time-relaxed Monte Carlo is replaced by the standard DSMC, the simulation time is 
reduced by several times when compared to our previous version of GSIS and DSMC 
coupling [15].

3.2  Lid‑driven cavity flow

We then test the DIG in the low-speed lid-driven cavity flow. The computational domain 
is an L× L square cavity. All solid walls have the same temperature T0 . The top lid of the 
cavity moves horizontally at a speed of Uw =

√
2c0 when Kn ≥ 0.01 . And in the near-

continuum regime, to avoid turbulence, Uw is reduced to 0.21c0 and 0.42c0 , correspond-
ing to Kn = 2.63× 10−3 and 5.26× 10−4 , respectively. As summarized in Table 2, when 
Kn = 0.1 , 50× 50 uniform spatial grids are employed in both DIG and DSMC. When 
Kn = 0.01 , 100× 100 non-uniform grids are applied in DIG, which are refined near the 
solid walls, e.g., the first layer cell has a thickness of �h = 0.002 , contrasting with the 
500× 500 uniform grids in DSMC. For cases with Re = 100 and Re = 1000 , 150× 150 

Fig. 3 The evolution of the temperature in the horizontal direction in the windward side of the cylinder 
surface when Kn = 0.1 (first row) and Kn = 0.01 (second row)
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non-uniform grids with the first layer thickness �h = 0.001 are employed in DIG. At the 
beginning of the simulation, each computational cell is populated with 100 simulation 
particles, and the velocities of all particles satisfy the Maxwell distribution function of 
ρ = T = 1,u = 0 . The CFL numbers of DIG and DSMC are also shown in Table 2.

The first row of Fig.  5 compares the evolution of horizontal velocity in the transi-
tion state, between the DSMC and DIG when Kn = 0.1 . Since the Knudsen number 
is not small, after a few hundreds of evolution steps, the steady states are reached in 

Fig. 4 The hypersonic flow passing over a cylinder when Kn = 0.1 (left column) and Kn = 0.01 (right column). 
(First row) The mesh and velocity contour. The results of DIG and DSMC are shown as background and lines, 
respectively. (Second row) Density, horizontal velocity, and temperature along the stagnation stream line in 
windward side of the cylinder. (Third row) Shear stress, pressure, and heat flux on the cylinder surface, where 
the angle θ ( ◦ ) is measured from the leading edge of the cylinder
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both schemes. Of course, DIG evolves slightly faster than the DSMC due to the help 
of macroscopic synthetic equation. However, when the Knudsen number is small, e.g., 
Kn = 0.01 in the second row of Fig. 5, DIG still needs a few hundreds of evolution steps 
to reach the steady state, but that of DSMC is much longer (not shown).

Table 2 Computational overhead in the lid-driven flow

The computational time is given in core-hours

 “-” means that the computational cost of DSMC is huge

Kn Re Uw Methods CFL Ncell Transition state Steady state

steps time steps time

0.1 17.73 1.41 DSMC 0.2 50× 50 800 0.027 1E4 0.32

DIG 300 0.029 1E4 0.38

0.01 177.3 1.41 DSMC 0.2 500× 500 2E4 17 1E5 80

DIG 0.2 100× 100 600 0.24 5E4 18

2.63E-3 100 0.21 DSMC - - - - - -

DIG 0.5 150× 150 1000 1.1 5E4 48

5.26E-4 1000 0.42 DSMC - - - - - -

DIG 0.5 150× 150 2000 2.9 5E4 71

Fig. 5 The evolution of horizontal velocities (at x = 0.5L ) in the transition stage in the lid-driven cavity flow 
when Kn = 0.1 (top) and 0.01 (bottom)
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Figure  6 shows the temperature contour and streamlines of heat flux, and good 
agreement is observed between the DSMC and DIG when Kn = 0.1 and 0.01. The 
DIG is applied further into the continuum flow regime when the Knudsen numbers 
are Kn = 2.63× 10−3 and 5.26× 10−4 , and the Navier-Stokes equation can be used to 
describe the gas dynamics. The third row of Fig. 6 depicts the velocity profiles on the 

Fig. 6 Temperature contours and heat flux streamlines in the lid-driven cavity flow when Kn = 0.1 (first 
row) and 0.01 (second row). For temperature contours, the colored backgrounds (black lines) represent the 
results obtained by DIG (DSMC), while for heat flux streamlines, DIG (DSMC) results are denoted by red (black) 
lines. (Third row) Horizontal (U, at x = 0.5 ) and vertical (V, at y = 0.5 ) velocities in the lid-driven flow with the 
Reynolds number being 100 and 1000 (or Kn = 2.63× 10

−3 and 5.26× 10
−4 ). Ghia’s data of Navier-Stokes 

equations are obtained from Ref. [25]
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vertical and horizontal central lines of the cavity, and good agreement between the 
DIG and Ghia’s benchmark solutions [25] is observed.

Therefore, the fast convergence and asymptotic preservation of the DIG method 
are also notably evident in the lid-driven cavity flow. Consequently, the superiority of 
DIG in comparison to the DSMC is distinctly observed in Table 2, particularly when 
the Knudsen number is less than 0.1.

4  Conclusions and outlooks
We have developed a direct intermittent GSIS-DSMC solver (DIG) to simulate the 
rarefied gas dynamics. The solver inherits the fast convergence and asymptotic-
preserving properties of the GSIS, since the macroscopic synthetic equation is con-
structed and solved exactly as the GSIS in the deterministic solver [12, 26]. However, 
in order to strike a balance between the computational efficiency and accuracy in 
the stochastic solver, the synthetic equation is solved (and its solutions of macro-
scopic conservative quantities are fed back to the standard DSMC) intermittently, 
in every 50 simulation steps of DSMC. Such feedback is achieved by a simple lin-
ear transformation of particles’ velocities, which satisfies the principles of mass, 
momentum, and energy conservation. Numerical simulations of the hypersonic flow 
passing over a cylinder and the lid-driven cavity flow have demonstrated DIG’s effi-
ciency and accuracy.

It is noted that, although the restriction on spatial resolution is removed in DIG, that 
on the time step is not. In fact, in our simulations, the effective time step is roughly the 
same as the mean collision time1. If a much larger time step is used, applying the syn-
thetic equation every 100 steps will lead to numerical errors, as demonstrated in our 
preliminary tests in Fig.  1. However, the disadvantage of a smaller time step, which 
leads to a slower evolution, is tackled by the synthetic equation, which swiftly steers the 
DSMC towards steady state.

It is also noted that, compared to the hybrid Navier-Stokes-DSMC method  [3], the 
DIG solves the macroscopic synthetic equation, which is derived exactly from the Boltz-
mann equation, in the whole computational domain. Therefore, no empirical parame-
ters are needed to designate the continuum flow regime for applying the Navier-Stokes 
solver. The DIG is also different to the moment guided Monte Carlo method [13], where 
the macroscopic equations, without the explicit inclusion of Newton’s law of viscosity 
and Fourier’s law of heat conduction, are solved explicitly using the same time step as 
the DSMC. As a consequence, unlike the DIG, the flow information is not adequately 
exchanged. If, however, a larger time step is applied to solve the macroscopic equations 
in the moment guided Monte Carlo method, the macroscopic equation would become 
unstable [27].

Given the minimal adjustments that the GSIS makes to the standard DSMC, the DIG 
is poised to substantially accelerate simulations of polyatomic gas flows, gas mixture 
flows, and even hypersonic flows with complicated chemical reactions. Also, the DIG 

1 From the physical perspective, this small time step is necessary, since in order to capture the Knudsen layer near the 
solid surface, the spatial cell size should be smaller than the mean free path, and hence the time step in DSMC is smaller 
than the mean collision time.
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can be applied to improve the efficiency of the PIC-MCC (particle-in-cell, Monte Carlo 
collision) method for plasma simulations, where the species of disparate masses makes 
the traditional method extremely slow.

Appendix A: The synthetic equation and the macroscopic sampling
In the gas kinetic theory, macroscopic flow quantities are obtained by taking the 
moments of the velocity distribution function f:

where c = v − u is the peculiar velocity, and c〈icj〉 is a trace-less tensor. Note that all vari-
ables are written in their dimensionless forms related to reference length L, reference 
density ρ0 , reference temperature T0 , and most probable speed c0 =

√

kBT0/m , where 
kB and m are respectively the Boltzmann constant and molecular mass. The stress σ and 
heat flux q are respectively normalized by ρc20 and ρc30.

The evolution of the density, velocity and temperature is governed by the following 
synthetic equation:

where p = ρT  and E = 3
2ρT + 1

2ρu
2 . In general rarefied gas flows, the stress and heat 

flux cannot be expressed in terms of the velocity and temperature gradients only. There-
fore, in GSIS, the constitutive relations are decomposed into two parts [15, 26]:

where the first part describes the Newton law of viscosity and Fourier law of heat con-
duction ( δij is the Kronecker delta):

and the second part describes the rarefaction effects (high-order terms, HoTs):

Note that variables marked by * are obtained from the DSMC. When solving the syn-
thetic equation to the steady state, HoTs are fixed, and therefore, the updated ρ , u and 
T are different to those in Eq. (8), during the transition state. However, when the steady 
state is reached, there will be little difference between σij,NS and σ ∗

ij,NS (and so is for the 

(4)
ρ =

∫

R3
fdv, u =

1

ρ

∫

R3
vfdv, T =

1

3ρ

∫

R3
c2fdv,

σij =
∫

R3
c�icj�fdv, q =

1

2

∫

R3
cc2fdv,

(5)

∂ρ

∂t
+ ∇ · (ρu) = 0,

∂ρu

∂t
+ ∇ · (ρuu)+ ∇p+ ∇ · σ = 0,

∂ρE

∂t
+∇ · (ρEu+ pu + u · σ + q) = 0,

(6)σij = σij,NS +HoTσij , q = qNS +HoTq ,

(7)σij,NS = −µ

(

∂ui

∂xj
+

∂uj

∂xi
−

2

3
δij∇ · u

)

, qNS = −κ∇T ,

(8)HoTσij =
∫

f ∗c∗�ic
∗
j�dv − σ ∗

ij,NS , HoTq =
1

2

∫

f ∗c∗
(

c∗
)2
dv − q∗NS.
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heat flux). Therefore, the synthetic equation (5) can be viewed as exactly derived from 
the Boltzmann equation (equivalently, DSMC), which applies to the continuum, slip, 
transition, and free-molecular flow regimes.

Now we discuss how to obtain the macroscopic quantities in DSMC to be utilized in 
the synthetic equation. According to Eq.  (4), macroscopic properties at the k-th time 
step in a computational cell with volume Vcell and number of particles Np can be calcu-
lated as:

where the parameter Neff is the number of real molecules represented by one simulated 
particle. Usually, the number of simulation particles in each cell is small, such that these 
quantities have significant fluctuations, and cannot be directly used in the synthetic 
equation. The time-averaged strategy may be used, but since in DIG the DSMC only runs 
a few (e.g., N = 50 ) steps, the fluctuation is still large. Here, the exponentially weighted 
moving time averaging method [24] is employed to reduce thermal fluctuations. That is, 
the summation variables � =

{

ρ, ρu, ρT , σij , qi
}

 in Eq. (9) are calculated as:

where na is the number of time steps applied in the time-averaging process ( na = 100 in 
this paper), and sk =

{

1, vi, |c|2/3, c�icj�, ci|c|2/2
}

.

Appendix B: Linear transformation on particle information
For the sake of simplicity, the updated macroscopic properties, which represent the 
solution of the  synthetic equations, are denoted as M(u) = {ρ(u),u(u),T (u)} . First, 
the number of simulation particles within a single cell should be adjusted according 
to the updated number density, thus a simple replicating and discarding procedure is 
applied  [13]. According to the updated number density ρ(u) , the predicted number of 
particles in a specific cell N (u)

p  can be determined. Since N (u)
p  should be an exact integer, 

an appropriate stochastic rounding technique is essential, given by:

where the stochastic rounding function Iround(x) is defined as:

(9)

ρ =
Neff

Vcell
Np, ui =

1

Np

Np
∑

p=1

vi, T =
1

3Np

Np
∑

p=1

|v − u|2,

σij =
Neff

Vcell

Np
∑

p=1

[

(vi − ui)
(

vj − uj
)

−
δij

3
|v − u|2

]

,

qi =
Neff

2Vcell

Np
∑

p=1

(vi − ui)|v − u|2,

(10)�(t) =
na − 1

na
�(t −�t)+

1

na

Neff

Vcell

Np
∑

p=1

sk(t),

(11)N (u)
p = Iround

(

ρ(u)Vcell

Neff

)

,
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where ⌊x⌋ represents the integer part of x. When the current number of particles in a 
specific cell Np is smaller than N (u)

p  ( Np < N
(u)
p  ), �Np = N

(u)
p − Np simulated par-

ticles need to be replicated. The replicated particle velocities are assigned based on a 
random selection of particles within the current cell, and their positions are uniformly 
distributed across the cell. Conversely, when Np > N

(u)
p  , the discarding process will be 

executed. A number of �Np = Np − N
(u)
p  simulated particles are randomly selected and 

subsequently eliminated. In general, the replicating and discarding processes guarantee 
the number of simulation particles within a single cell to satisfy the value of the updated 
number density.

Second, to preserve the momentum and energy conservation, a linear transformation for 
the velocities of individual particles is implemented, i.e.,

where v(t)i  represents the component of the temporary particle velocity in the i-th direc-
tion. The correction parameters ξ and ηi are written in the form of the temporary veloc-
ity u(t) and temperature T (t):

with

In general, the replicating and discarding processes adjust the number of simulated parti-
cles to align with the updated density predictions. Subsequently, the linear transformation 
on particle velocities is applied to ensure that the mean velocities and temperature corre-
spond with the updated macroscopic properties. Since the macroscopic synthetic equa-
tions inherently conserve mass, momentum, and energy, when the macroscopic properties 
are solved and reach their updated values, the conservation laws are still satisfied.
Acknowledgements
The authors thank Qi Li and Ruifeng Yuan for helpful discussions.

Authors’ contributions
Wu and Luo contributed to conceptualization and programming, respectively. Both authors analyzed the data, partici-
pated in writing the manuscript, read and approved the final manuscript.

Funding
This work is supported by the National Natural Science Foundation of China (No. 12172162) and the Stable Support Plan 
(No. 80000900019910072348).

Availability of data and materials
All data generated or analyzed during this study are included in this published article.

(12)Iround(x) =
{

⌊x⌋ + 1, with probability x − ⌊x⌋,
⌊x⌋, with probability 1− x + ⌊x⌋,

(13)v
(u)
i = ξv

(t)
i + ηi,

(14)ξ =

√

T (u)

T (t)
and ηi = u

(u)
i − u

(t)
i

√

T (u)

T (t)
,

(15)u
(t)
i =

1

N
(u)
p

N
(u)
p

�

p=1

v
(t)
i,p , T (t) =

1

3N
(u)
p







N
(u)
p

�

p=1

�

�

�
v(t)p

�

�

�

2
− N (u)

p

�

�

�
u(t)

�

�

�

2






.



Page 16 of 16Luo and Wu  Advances in Aerodynamics            (2024) 6:22 

Declarations

Competing interests
The authors declare no competing interests.

Received: 9 July 2024   Accepted: 18 August 2024

References
 1. Bird GA (1994) Molecular gas dynamics and the direct simulation of gas glows. Oxford University Press, New York
 2. Su W, Zhu LH, Wu L (2020) Fast convergence and asymptotic preserving of the general synthetic iterative scheme. 

SIAM J Sci Comput 42:B1517–B1540
 3. Wang WL, Boyd I (2003) Hybrid DSMC-CFD simulations of hypersonic flow over sharp and blunted bodies. In: 36th 

AIAA thermophysics conference, Orlando, 23-26 June 2003
 4. Pareschi L, Russo G (2001) Time relaxed Monte Carlo methods for the Boltzmann equation. SIAM J Sci Comput 

23:1253–1273
 5. Ren W, Liu H, Jin S (2014) An asymptotic-preserving Monte Carlo method for the Boltzmann equation. J Comput 

Phys 276:380–404
 6. Fei F (2023) A time-relaxed Monte Carlo method preserving the Navier-Stokes asymptotics. J Comput Phys 

486:112128
 7. Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. Small amplitude processes in 

charged and neutral one-component systems. Phys Rev 94:511–525
 8. Shakhov EM (1968) Generalization of the Krook kinetic relaxation equation. Fluid Dyn 3(5):95–96
 9. Xu K, Huang JC (2010) A unified gas-kinetic scheme for continuum and rarefied flows. J Comput Phys 

229:7747–7764
 10. Zhu YJ, Zhong CW, Xu K (2016) Implicit unified gas-kinetic scheme for steady state solutions in all flow regimes. J 

Comput Phys 315:16–38
 11. Su W, Zhu LH, Wang P et al (2020) Can we find steady-state solutions to multiscale rarefied gas flows within dozens 

of iterations? J Comput Phys 407:109245
 12. Liu W, Zhang YB, Zeng JN et al (2024) Further acceleration of multiscale simulation of rarefied gas flow via a general-

ized boundary treatment. J Comput Phys 503:112830
 13. Degond P, Dimarco G, Pareschi L (2011) The moment-guided Monte Carlo method. Int J Numer Methods Fluids 

67:189–213
 14. Liu C, Zhu YJ, Xu K (2020) Unified gas-kinetic wave-particle methods I: Continuum and rarefied gas flow. J Comput 

Phys 401:108977
 15. Luo LY, Li Q, Fei F et al (2024) Boosting the convergence of DSMC by GSIS. arXiv preprint, arXiv:2406.16639v2
 16. Zeng JN, Li Q, Wu L (2024) General synthetic iterative scheme for rarefied gas mixture flows. arXiv preprint, 

arXiv:2405.01099
 17. Su W, Zhang YH, Wu L (2021) Multiscale simulation of molecular gas flows by the general synthetic iterative scheme. 

Comput Methods Appl Mech Eng 373:113548
 18. Zhang YB, Zeng JN, Yuan RF et al (2024) Efficient parallel solver for rarefied gas flow using GSIS. Comput Fluids 

281:106374
 19. Radtke GA, Hadjiconstantinou NG (2009) Variance-reduced particle simulation of the Boltzmann transport equation 

in the relaxation-time approximation. Phys Rev E Stat Nonlin Soft Matter Phys 79:056711
 20. Luo LY, Li Q, Wu L (2023) Boosting the convergence of low-variance DSMC by GSIS. Adv Aerodyn 5:10
 21. Wild E (1951) On Boltzmann’s equation in the kinetic theory of gases. Math Proc Camb Philos Soc 47:602–609
 22. Grad H (1949) On the kinetic theory of rarefied gases. Commun Pure Appl Math 2:331–407
 23. Wu L, Zhang J, Liu HH et al (2017) A fast iterative scheme for the linearized Boltzmann equation. J Comput Phys 

338:431–451
 24. Jenny P, Torrilhon M, Heinz S (2010) A solution algorithm for the fluid dynamic equations based on a stochastic 

model for molecular motion. J Comput Phys 229:1077–1098
 25. Ghia U, Ghia KN, Shin CT (1982) High-Re solutions for incompressible flow using the Navier-Stokes equations and a 

multigrid method. J Comput Phys 48:387–411
 26. Zhu LH, Pi XC, Su W et al (2021) General synthetic iterative scheme for nonlinear gas kinetic simulation of multi-scale 

rarefied gas flows. J Comput Phys 430:110091
 27. Zeng JN, Su W, Wu L (2023) General synthetic iterative scheme for unsteady rarefied gas flows. Commun Comput 

Phys 34:173–207

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Multiscale simulation of rarefied gas dynamics via direct intermittent GSIS-DSMC coupling
	Abstract 
	1 Introduction
	2 The intermittent GSIS: proof of concept
	3 The direct intermittent GSIS-DSMC coupling
	3.1 Hypersonic flows passing over a cylinder
	3.2 Lid-driven cavity flow

	4 Conclusions and outlooks
	Appendix A: The synthetic equation and the macroscopic sampling
	Appendix B: Linear transformation on particle information
	Acknowledgements
	References


