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Abstract

A narrative of landmarks in computational fluid dynamics (CFD) is presented to
highlight the cornerstone achievements. Illuminating accomplishments starting from
the very beginning of the coherent development until the most recent progress will
be elucidated over the span over more than six decades. Meanwhile, the cutting-
edge scientific innovations will also be discussed for their lasting impacts to fluid
dynamics and the physics-based modeling and simulation discipline. To traverse
such a vast domain over time by a single presentation, numerous and excellent
contributions to CFD will be unavoidably overlooked. Nevertheless it is my ardent
hope that the present discussion will be able to reaffirm excellence in research and
to identify new frontiers for scientific research. Especially, the challenges to future
innovations will also be delineated to recommend for potential and fertile research
areas for the modeling and simulation science.
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1 Introduction
In order to discuss the physics-based modeling and simulation discipline, the under-

lying principles must be explicitly stipulated to define its limitations. The traditional

computational fluid dynamics (CFD) technique is mostly applying in the continuum

gas domain which is limited to the negligible Knudson number; Nn = λ/l < < 1.0. In this

physical domain, the mean-free-path of particle collisions is negligible in comparison

with the characteristic length of the flowfield considered. In the continuum regime, the

compressible Navier-Stokes equations become the governing equation for describing

fluid dynamics in the macroscopic scale, and the nonlinear partial differential equa-

tions system is the incompletely parabolic type. Even though the incompressible

Navier-Stokes was known to us as far back as 1827, only more recently the system of

equations was derived in integral form via the control-volume formulation to become

the basis for the finite-volume approach. Nevertheless, the necessary initial values,

boundary conditions, and their placement and implementation are mandatory to

achieve a unique numerical simulation.

Numerical algorithms are inseparable parts of CFD research, also are the most de-

manding and creative efforts of this discipline, because they dictate the computational

accuracy that provides the required physical fidelity to any computational simulations.

In the gist, the numerical algorithm and the computational procedure research is a tool
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development endeavor. The type of research is subjected to the most rigorous scrutin-

izing for consistency, uniqueness, and stability issues in numerical analysis. For this rea-

son, the value of a numerical algorithm always rises and falls according to practical

problem solving needs. The adopted numerical algorithms at the early stage of CFD de-

velopment are mostly explicit schemes for their simplicity in programming and limiting

by the computer memory. The widen CFD application demands have driven computer

technology from scalar to vector and finally to concurrent data processing, meanwhile

the unconditionally stable implicit schemes also reached maturate. When CFD ex-

panded to all flow regimes from subsonic, transonic, supersonic, to hypersonic; the

need for treating piecewise continuous numerical solutions is paramount and the level

of sophistication also elevated. There are simply too many numerical algorisms to be

completely and precisely discussed, as the consequence, only the classic results that

have withheld the test of time are included together with the most recent progress in

high-resolution procedures.

The landmarks for CFD accomplishments are presented according to their contribu-

tions to scientific discovery in fluid dynamics and technical breakthrough to aerospace

engineering. The brief review starts from a very few fundamental concepts which lead

to a coherent development during WWII in the middle of 1940s. Followed a remark-

able growing period initiate by NASA (National Aeronautics and Space Administration)

research centers in the later 1960s, the pursuit of scientific excellence was firmly in-

stilled in this technical discipline. In the subsequence years, CFD expands into interdis-

ciplinary arenas for combustion, propulsion, structure dynamics, flight control, thermal

protection for earth reentry space vehicles. The matured technology has opened ave-

nues for aerospace vehicle design and analysis; it is self-evident that CFD was widely

used for the Space Shuttle design and evaluation, and the National Aerospace Plane

(NASP) was entirely designed by CFD techniques. Shortly afterwards, the CFD tech-

niques are transferring into the computational electromagnetics and computational

magnetohydrodynamics disciplines.

The arriving of concurrent, high performance super computational technology pro-

vides an extraordinary opportunity for CFD to create many new science frontiers. The

first and the straightforward opportunities are to address the most challenged and the

least understood fluid dynamics phenomena such as the bifurcation, hysteresis, and tur-

bulence. Based on the kinetic theory of gas, these fluid dynamic phenomena are ad-

dressable by direct numerical simulation with accurate initial values and boundary

conditions, without imposing any statistical ensemble approximations. The second and

greater challenge is expanding the scientific basis for simulating high enthalpy or high

temperature gas phenomenon by removing the elastic collision restrictions from kinetic

theory of gas; namely the internal degree of freedom in vibrational and electron excita-

tions of atom and molecule will be described by inelastic collisions involving quantum

mechanics. Based on our accumulated knowledge, these opportunities and possible

new approaches will be discussed and outlined.

2 Governing equations
The governing equation for traditional CFD in continuum domain is the time-dependent,

compressible Navier-Stokes equations, which first published in 1827 for incompressible

flows [1]. The closure of the nonlinear partial differential equations system was achieved
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by Stokes through the relationship between the bulk and molecular viscosity coefficients

[2]. In the strict sense, the governing equations are applicable only to the Newtonian fluid

for which the shearing stress is linearly proportional to the rate of strain. In essence, the

Navier-Stokes equations describe gas particle dynamics on the macroscopic scale. The

system of equations is germinated from the kinetic theory of gas [3]: Within a given

dynamic system, the gas particles always move in random motion with the kinetic and

potential energy of their own. The individual particle’s behavior in microscopic scales can

only be meaningfully described through statistic means. Based on the probability theory,

it introduces a weighing factor known as the distribution function, f(xi,ci,t) in the

six-degree-of-freedom geometric and velocity space or the phase space. By the definition

of Hamiltonian that a system of particle possesses kinetic and potential energy, the rates

of change have the symmetric property relating to the particle velocity and geometric

position in the phase space. According to the Liouville’s theorem, the number density of a

dynamic system of moving particles in the phase space must remain constant. The rate of

changes for the distribution function of the particles is governing by the Boltzmann or

Boltzmann-Maxwell equation of the distribution function,

∂ f xi; ci;tð Þ=∂t þ ci � ∇ f xi; ci;tð Þ þ Fi � ∇u f xi; ci;tð Þ ¼ ∂ f xi; ci;tð Þ=∂t½ �c ð1Þ

where ci and xi are the specular velocity and the position of particles in the phase

space. The external force exerting on each particle is designated as Fi. The

integro-differential equation is very difficult to solve, and the solutions of the Boltz-

mann equation in term of probability is also not suitable for engineering applications.

In order to simplify the Boltzmann equation, the particles dynamics contributed by

the collision integral on the right-hand-side of the Maxwell equation are simplified by a

group of elastic spheres. This simplification makes the total energy of particle’s internal

degree of freedom an invariant; in other words, the internal excitations of the particles

are neglected. As the consequence, the inter-atomic and inter-molecular excitations

and energy cascading between internal modes of gas particles are not considered. In an

addition, the interaction of particles is limited to binary encounters. The binary dy-

namic exchange by elastic collision actually establishes the concept of collision equilib-

rium condition, leading to:

∂ f xi; ci; tð Þ=∂t½ �c ¼ ∭ f c
0
i

� �
f x

0
i

� �
− f cið Þ f xið Þ

h i
c
0
i−ci

� �
d3xid

3ci ð2Þ

Under the dynamic equilibrium condition;
f c
0
i

� �
f x

0
i

� �
¼ f cið Þ f xið Þ ð3Þ

The link between the microscopic and macroscopic description of gasdynamics can

be established by the method of moments, but the most successful approach is the

Enskog’s infinite series expansion [3]. Under the collision equilibrium condition, the

Boltzmann equations transform directly to the Euler equations, which are essentially

the Navier-Stokes equations but containing only the inviscid terms. The hierarchy of

fluid dynamics governing equation is depicting in Fig. 1.

Under the nonequilibrium collision condition, the transport properties of the gas

must be included. To be consistent with theoretic formulation, the transport properties

of gas are obtained by the gas kinetic theory of diluted gas mixtures, and it is a



Fig. 1 The hierarchy of conservation laws
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landmark achievement by the kinetic theory of gas [4]. The transport property of any

combination of gaseous mixture is derivable by the inter-molecular potential function.

The required collision integrals and cross sections for the gas molecular viscosity,

thermal conductivity, and binary diffusion coefficients of individual species have been

obtained by the Lenard-Jones potential for gas molecules [5].

The diffusion coefficient of a binary gas mixture is;

Di; j ¼ 1:858� 10−3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 3 Mi þMj

� �
=MiMj

q
=σ2i; jΩ

1;1ð Þ ð4� aÞ

The molecular viscosity of a single species is given as.
μ ¼ 2:67� 10−5
ffiffiffiffiffiffiffiffiffiffi
MiT

p
=σ2

iΩ
2;2ð Þ ð4� bÞ

and the thermal conductivities for a mono-atomic and poly-atomic molecules are;
κi;m ¼ 1:989� 10−4
ffiffiffiffiffiffiffiffiffiffiffiffi
T=Mi

p
=σ2iΩ

2;2ð Þ ð4� cÞ

κi;p ¼ 2:519� 10−4
ffiffiffiffiffiffiffiffiffiffiffiffi
T=Mi

p
=σ2

iΩ
2;2ð Þ ð4� dÞ

The collision integrals Ω(1, 1), Ω(2, 2) and the transport cross section σi are obtained by
performing three consecutive integrations of the inter-molecular potential function:

The integrations are performed first to determine the classic deflection angle as the

impact parameter, then from the impact parameters to get the relevant cross section.

Finally, an averaging process is carried over the entire range of energy to produce the

collision cross section as a function of temperature [6].

For an inhomogeneous gas mixture, the transport property can be approximated by

the Wilke’s mixing rule [5]. However, in most practical engineering applications, the

transport properties of air by kinetic theory of gas are replaced by empirical formula-

tions and similarity aerodynamic parameters such as the Prandtl number. Whence the

transport properties are known, the time-dependent, three-dimensional, compressible

Navier-Stokes equations can be given as;
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∂ρ
∂t

þ ∇ � ρuð Þ ¼ 0 ð5� aÞ

∂ρu
∂t

þ ∇ � ρuu−τð Þ−ρf ¼ 0 ð5� bÞ

∂ρe
∂t

þ ∇ � ρeuþ q þ u � τð Þ−ρ f � uð Þ ¼ 0 ð5� cÞ

The system of equations is also known as the conservation laws. Equation (5-a) is often
referred to as the continuity equation which is the most fundamental concept of Newtonian

mechanics in that the mass and energy is not exchangeable like in quantum mechanics.

The conservation of momentum equation, Eq. (5-b) is the only vector equation in the

system, and it is the Newton’s second law of motion with a possible external force f, such as

gravitation or the electromagnetic force. The nonlinear transfer of momentum by convec-

tion is represented by a dyadic, ρuu, which is the principal component of the inviscid terms.

In fact, it is also the source of turbulence from vortex interactions within the entire flow

field.

The shear stress term, on the other hand, is another second rank tensor described as;

τ ¼ −pþ λ∇ � uð ÞI þ μdef uð Þ ð6� aÞ

where, λ and μ are the bulk and molecular viscosity and I is the identity matrix. The

last term of the stress tensor is referred to as the deformation tensor;

def uð Þ ¼ ∇uþ ∇uð ÞT ð6� bÞ

The transpose operator of the gradient u, (∇u)T is simply by replacing the rows by
columns in the matrix element of ∇u. The deformation tensor has an important fluid

mechanical interpretation in that the diagonal derivatives represent the longitudinal

strain, while the off-diagonal derivatives represent the angular deformation of fluid mo-

tion. As the consequences, the viscous flow at the solid-fluid interface boundary produces

shear stress. Whereas, the inviscid terms associated with the normal component of the

stress tensor lead to expansion and compression of the flow.

Equation (5-c) is the conservation of energy law, it is just the second law of thermo-

dynamics, and the internal energy is defined as;

ρe ¼ ρ
Z

ccdT þ u � u=2
� �

ð6� cÞ

The heat transfer term includes the Fourier’s law for conductive, convective by differ-

ent species with different diffusion velocity, and the radiation energy transfer;

q ¼ −k∇T þ Σρiuihi þ qrad ð6� dÞ

It is important to know that the system of equations, Eq. (5-a), (5-b), and (5-c) consti-
tute a nonlinear, incompletely parabolic partial differential equation system [7]. Any

unique solutions to the compressible Navier-Stokes equation must satisfy the compatible

initial values and boundary conditions to the differential equations system.

It is interesting to realize that the widely adopted finite-volume formulation of

Navier-Stokes equations in integral form via a control volume formulation was first

formerly derived by Rizzi and Inouye [8]. The balancing of outward normal vector flux
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components across the control surface between adjacent control volumes becomes the

only constraint to the flux vector splitting technique.

In practical applications, the conservation laws Eq.; (5-a), (5-b), and (5-c) are usually

written in a strong conservation flux vector form. On the Cartesian coordinates, they

appear as

∂U=∂t þ ∂F=∂xþ ∂G=∂yþ ∂H=∂z ¼ 0 ð7� aÞ

where the dependent variables are;U =U(ρ, ρu, ρv, ρw, ρe).

The Rankine-Hugoniot jump condition across a shock wave is recoverable from the

Euler equations which constitutes the hyperbolic partial differential equations. There-

fore, the conservation laws are often solved separately but concurrently for the inviscid

and viscous terms. For this reason, the flux vectors F, G, and H are often split into com-

ponents of inviscid and viscous terms as;

∂U=∂t þ ∂ Fi þ Fvð Þ=∂xþ ∂ Gi þ Gvð Þ=∂yþ ∂ Hi þ Hvð Þ=∂z ¼ 0 ð7� bÞ

For simulating complex configurations, the flux vector formulation is often trans-

formed onto a generalized curvilinear, body oriented coordinate by means of the chain

rule of differentiation [9]. Again through metric identities of coordinate transformation,

the equation can still be rewritten in the strong conservation form.

3 Numerical algorithms evolution
The numerical algorithm is the heart of computational fluid dynamic, because it is the ne-

cessary translator between numerical analysis for fluid dynamics via computers. The history

of CFD is also ultimately related to the development of programmable digital computers: In

1833 Charles Baggage originated the idea of a programmable computer, but the first patent

for the ENIAC computer (electronic numerical integrator and computer) was recorded in

1947 for the truly programmable computer using transistors.

The interrelation between numerical algorithms and computational results is depicted

by a graphic presentation in Fig. 2. The illustrated algorithm is the diminishing residue

return (DRR) scheme; the right-hand-side of the conservative law represents the physics
Fig. 2 Relationship between physics fidelity and numerical algorithm



Shang Advances in Aerodynamics             (2019) 1:5 Page 7 of 36
to be simulated. The left-hand-side of the equation is the numerical process and its sole

purpose is keeping a stable computation. In fact, the illustration also implies the equiva-

lent principle held for which if a stable numerical algorithm leading to a converged

asymptote, the numerical result is ensured to be the unique solution.

There are two entirely different concepts for CFD formulations, and the most widely

adopted approach is the Eulerian frame of reference. In this formulation the fluid

dynamics is analyzed in a control volume fixed in space. Whereas, the Lagrangian

approach is analyzing fluid dynamics by following a group moving gas particles in an

enclosed control volume. The well-known direct simulation Monte Carlo (DSMC)

method is built on the Largangian formulation, together with the particle-in-cell (PIC)

method by Harlow [10]. For the PIC method, the fluid dynamics is represented by

Lagrangian mass particles within a control volume. At each time step, the calculated

internal energy and velocity are obtained and the conservation properties are checked

by the sum of these final values before the process advances to the next time level. The

DSMC and PIC methods have demonstrated to be well suited to study the time

dependent and multi-spices fluid medium, and had been widely used for simulating

rarefied gasdynamics and plasma dynamics [11].

The most predominant CFD algorithm pioneers are led by Richardson who intro-

duced point iterative scheme to solve the elliptic partial differential equation as far back

as 1910 [12]. Then Courant, Friedrichs and Lewy initiated the rigorous investigation

procedure for examining the stability of a numerical algorithm by Fourier analysis in

1928. They also addressed the uniqueness and existence of the numerical results for

partial differential equations [13]. It was Southwell who introduced a relaxation scheme

to solve both the fluid dynamic and structure problem to become an accepted proced-

ure for engineering application in 1940 [14]. Lax [15] and Godunov [16] addressed the

most challenging and difficult issues in numerical analyses for resolving discontinuous

fluid phenomena in a discrete space – the approximate Riemann problem. As it will be

seen later, it remains to be the most studied problem in CFD.

In the early 1960s, the dominated numerical algorithms are mostly explicit schemes,

such as the Lax-Wendroff, leap-frog, and fractional step methods for multi-dimensional

problems [17]. When CFD ventures into increasingly complex fluid phenomena, the more

efficient and stable implicit schemes are required. Especially, the ADI method [18, 19] has

been effectively applied to all type of partial equations, except when applying to the

time-dependent, three-dimensional hyperbolic system for which some forms of artificial

dissipative terms must be appended to maintain computational stability. This shortcoming

is removed by finite-volume formulation with an iterative solving scheme. In the subse-

quent developments, the basic ADI scheme has evolved into the strong implicit scheme

(SIP) and the diminishing residual return (DRR) formulations. The matrix inversion

procedures for ADI have also expanded to include the lower-upper (LU) decomposition

technique, as well as, the line, Jacobi, Gauss-Seidel, conjugate relaxation procedures. In

short, the ADI scheme still remains as the mainstay for most multi-dimensional solving

procedure even to date [20].

The increasing demand of greater numerical efficiency and maintaining computational

stability was met by the multi-grid approach [21]. The convergence rate of an iterative

scheme has a close tie to the spectral radius of eigenvalues of the equation system and the

residue error reduction process from the initial estimate. For the multi-grid approach, the
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data is processing through a sequence of different grid-point spacings in the computa-

tional domain to filter out the undesirable high frequency, unstable Fourier components

from the solution. Another popular approach is adopting the unstructured grid technique

to cluster cells where the high grid density is needed; the Delaunay Scheme [22] was in-

troduced first for generating two-dimensional triangular and three-dimensional tetrahe-

dron meshes. From the analytic geometry viewpoint, the pyramidal control volume

topology is natural to uniquely define the control volume. The numerical results of an un-

structured grid however can be inaccurate by introducing numerous artificial slip streams

in evaluating the viscous-inviscid interaction from multiple intersecting shock waves. This

issue and the high-order method development for the unstructured grid method remain

as the mainstay for CFD research into the future.

A major pacing item for CFD adopting shock capturing techniques is evaluating dis-

continuous solution generated by shock waves and slip streams from shock intercep-

tions. A breakthrough by Godunov demonstrates a multi-dimensional flow field that

contains shock waves and contact surfaces can still be analyzed [16]. The discontinu-

ities of the hyperbolic differential systems are treated as a piecewise continuous data

distribution within a control volume and to be solved across the singular point as the

Riemann problem. The underpinning principle is the monotonicity preserving property

of the hyperbolic difference equation; namely, temporal increment/decrement of

dependent variable is monotonic. Based on this property, Harten originates the total

variation diminishing (TVD) scheme and spans off a huge amount of research on TVD

schemes and a variety of flux limiters for analyzing piecewise discontinuous solutions

for CFD [23].

From the physics viewpoint, the treatment of shock jump by flux splitting can be

easily understood through the concept of zone of dependence for supersonic flows. By

solving a set of Riemann problems over the entire computational domain according to

their distinctive characteristics, this approach actually honors the physics of domain of

influence. The directional wave propagation is constructed according to the phase

velocity from the permissible database. In an outstanding work by Steger and Warming,

it has shown a systematic relationship of the real eigenvalue and eigenvector for the

split flux formulation. They also demonstrate the Euler equations, together with

the equation of state for gas, possessing the homogeneous function of degree one

property [24];

Fi ¼ ∂Fi=∂Uð ÞU ¼ Ax½ �U ; Gi ¼ ∂Gi=∂Uð ÞU ¼ Ay
	 


U ;

Hi ¼ ∂Hi=∂Uð ÞU ¼ Az½ �U

ð8� aÞ

where the ∂Fi/∂U, ∂Gi/∂U, and ∂Hi/∂U are the Jacobian matrices of the flux vector or
the coefficient matrices. The governing equations in split flux vector form become;

∂U=∂t þ ∂ Fþ
i þ F−

i

� �þ Fv
	 


=∂xþ ∂ Gþ
i þ G−

i

� �þ Gv
	 


=∂yþ ∂ Hþ
i þ H−

i

� �þ Hv
	 


=∂z ¼ 0

ð8� bÞ

The split flux vectors containing all inviscid terms are formed according to the signs
of eigenvalue λ of the coefficient matrices, Ax, Ay, and Az;
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Fi ¼ Fþ
i þ F−

i ¼ Sxλ
þ
x S

−1
x þ Sxλ

−
x S

−1
x

� �
U

Gi ¼ Gþ
i þ G−

i ¼ Syλ
þ
y S

−1
y þ Syλ

−
y S

−1
y

� �
U

Hi ¼ Hþ
i þH−

i ¼ Szλ
þ
z S

−1
z þ Szλ

−
z S

−1
z

� �
U

ð8� cÞ

In Eq. (8-c), the similarity and its inverse matrices for diagonalization of coefficient matri-
ces are designated as Sx and S−1x , the positive and negative eigenvalues are denoted as λþx and
λ−x . The solving procedure for the split equation is by applying one-side differencing

approximation to achieve the approximate Riemann problem. The basic issue is that the

split inviscid flux components are not differentiable at singular sonic points. This behavior

is also the peculiarity of the approximate governing equations. The continuous viscous

terms are solving simultaneously by spatially central scheme. An incisive summary for using

the approximated Riemann approximations can be found from the work of Roe [25].

In spite of the rational treatments of discontinuous numerical solution, the undesirable

artifact of numerical oscillation or the Gibbs phenomenon is always presented around a

singular point. A series of excellent algorithms for maintaining computational stability

and yielding sharp definition of a piecewise continuous numerical solution are the ENO

and WENO (weighted ENO) schemes [26, 27]. The fifth-order WENO scheme is

supported by an overall stencil of five points; the smoothness of a solution is measured by

the sum of normalized squares of the scaled L2 norm for derivatives from the lower-order

polynomials. The conditioned information is incorporated into the weights definition to

improve the convergence at the critical points. It is revealed that the enhancement of the

fifth-order scheme is derived from a large weight assigned to the discontinuous stencils,

but not from their superior order of convergence at critical points.

From the lessons learned, the desired feature of a numerical scheme may be better se-

lected from the optimization in the Fourier space rather than by focusing on the lowest

possible truncation error. Along this line of reasoning, compact-difference scheme

becomes a viable method to achieve high resolution. The basic algorithm is an implicit

procedure for evaluating derivatives, which has a small stencil dimension and yet can

maintain a lower level of dispersive and dissipative errors than the conventional numerical

schemes. The basic formulation of compact-difference approximation is derived from the

Hermite’s generalization of the Taylor series [28]. The compact differencing formulations

for evaluating the first-order and second-order derivative have been given by Lele [29] as;

β dU=dxð Þi−2 þ α dU=dxð Þi−1 þ dU=dxð Þi þ α dU=dxð Þiþ1 þ β dU=dxð Þiþ2 ¼
c Uiþ3−Ui−3ð Þ=6Δxþ b Uiþ2−Ui−2ð Þ=4Δxþ a Uiþ1−Ui−1ð Þ=2Δx

ð9� aÞ
β d2U=dx2
� �

i−2 þ α d2U=dx2
� �

i−1 þ d2U=dx2
� �

i þ α d2U=dx2
� �

iþ1 þ β d2U=dx2
� �

iþ2 ¼

c Uiþ3−2UiþUi−3ð Þ=9Δx2 þ b Uiþ2−2Ui þ Ui−2ð Þ=4Δx2 þ a Uiþ1−Ui þ Ui−1ð Þ=Δx2
ð9� bÞ

In practical applications, only the tridiagonal form is utilized and achieved by setting
β and c to zero to get the formulas relating the pertaining parameters.

a ¼ 2=3 αþ 2ð Þ; b ¼ 1=3 4α−1ð Þ; c ¼ 0 ð9� cÞ

From Eq. (9-c), the fourth-order Pade formula is obtained by choosing the value of α
= 1/4, and the sixth-order derivatives are recoverable for α = 1/3 [29].
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The formulas are three-point spatially central scheme and require attention on

boundaries. Since the scheme is inapplicable on the immediately adjacent grid point

next to a boundary, a transitional operator between the boundary and the interior do-

main is required. The transitional boundary scheme is not only required to transmit

data from the boundary to the interior domain but also must preserve the stability and

accuracy for the global solution. Although the high-resolution scheme is stable in the

classic sense but the transition operator is one of the sources that contributes to spuri-

ous high-frequency oscillations known as time-delay instability. The time-instability is

incurred by positive real eigenvalue components which dominate the numerical result.

A very effective remedy to control the time-delay instability has been demonstrated

by using a low-pass filter [30]. The spectral function is a symmetric numerical filter

that contains no imaginary part and has the low-pass amplitude response. In other

words, the low-pass filter modifies only the amplitude but not the phase relation among

all Fourier components. The tridiagonal spatial filter is given as

βUi−1 þUi þ βUiþ1 ¼ Σan uiþn þ ui−nð Þ=2 n ¼ 0; 1; 2…N ð9� dÞ

In Eq. (9-d), the variables U and u represent the filtered and raw data of the numer-
ical solution. The free parameter is bounded by the values of −0.5 < β < 0.5. When the

value approaches 0.5, the coefficients of the symmetric filter can be obtained by

expanding and matching the spectral function, SF(ω) = Σan cos(nω)/[1 + 2β cos(ω)] by a

Maclaurin series.

In Fig. 3, the accuracy and effectiveness of the 4th and 6th order compact-difference

scheme with/without including some fine tuning is depicting to reduce significantly

dispersive and isotropic errors in comparison with conventional numerical methods

such as the 2nd order MUSCL and the simple 4th order explicit schemes. The detailed

comparison on dispersive error is display in the wave numbers range of π/4 <w < 2π.

The superior behavior of compact-difference schemes are noted, but the fine tuning

may be counterproductive [31]. The reduction for isotropic error for multi-dimensional

computation by compact-difference schemes is displaying in the wave numbers range

from π/8 to 3π/4 in four quadrants. The failing of conventional methods are made in
Fig. 3 Comparison of dispersion error of compact-difference scheme with others methods
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evident in Fig. 4; when wave number reaches the value of π/2, which corresponds

roughly to a grid-point density of 12 grid points per wavelength, and become unaccept-

able at the wave number of 3π/4 for a sparser grid point density.

In most CD simulations, a high resolution solution is frequently needed in the high gra-

dient regions like shock jump, media interface, and flame front. A local grid refinement

approach appears to be very attractive; especially the grid refinement is independent from

the global mesh system. The spectral-like polynomial grid refinement method introduced

by Korpriva that meets the requirement, and the high resolution result is derived from the

Gauss quadrature [32]. By this approach, there is no need to reconstruct the overall grid

system, but by just increasing the degrees of polynomials within the refined grid block to

capture the fine-structure features.

The local grid refinement numerical procedure is equally applicable to the temporal ad-

vancement of a time-dependent problem. In some cases, it may even be possible to examine

a problem that has discontinuity between the integral intervals by relegating the singularity

to the weighting function. A unique behavior of the recursive formula for derivative compu-

tation is that the result depends on all discretized points or the roots of the polynomial

within the refined grid block. In fact, all high-resolution schemes striving to achieve a

spectral-like accuracy are by employing all discretized points in an array to mimic the

Gauss-quadrature formulation.

The spectral-like polynomial refinement for the entire computational domain is by div-

iding it into grid-refining blocks. The local high resolution solution is generated within

each grid-refining block by the unequal-spacing roots from any of the classic orthogonal

polynomials (Legendre, Laguerre, Chebyshev, Hermit, Gegenbauer, Jacobi, Meixner-

Poluckzek). For discontinuity capturing, an artificial dissipative term may not be necessary

within the subgrid domain for suppressing numerical oscillations, but just by reducing the

grid-refining space dimension or by increasing the order of the polynomial. The local grid

refinement approach has also been extended for solving the conservation laws on unstruc-

tured grids [33].

In the polynomial refinement approach for high local numerical resolution, the

dependent variable, U(x), is approximated by orthogonal polynomial through the Gauss
Fig. 4 Comparison of isotropic error of compact-difference scheme with others methods
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quadrature formula with a coordinate transformation of x = [2z − (a + b)]/(a + b) [34].

The integral limits of the grid-refining domain are designated by the values of a and b:

Zb
a

U ηð Þdη ¼ 2
n n−1ð Þ U að Þ þ U bð Þ½ � þ

Xn−1
i¼1

LiUi ηð Þ þ Rn ð10� aÞ

U xð Þ ¼ Pn xð Þ þ Rn xð Þ ¼
Xn
i¼1

Li xð ÞU xið Þ þ
Yn
i¼1

x−xið Þ
" #

Unþ1 ξð Þ
nþ 1ð Þ! ð10� bÞ

The numerical accuracy is uniquely determined by the chosen degrees of the ployno-

mial, as shown by the residue term Rn(x) of Eq. (10-b).

Li xð Þ ¼
Yn
j ¼ 0
j≠i

x−x j
� �
xi−x j
� � ð10� cÞ

The weighted (Cardinal) function, Li(x), is generated by the Newton divided-difference

formula for derivative calculation, and includes all unequal spaced roots of the orthogonal

polynomial. This unique feature provides the spectral-like accuracy for the polynomial

grid refinement method. In essence, the approximate dependent variable is defined by all

grid points within the computational grid-refining block.

The derivative of any approximation functions with respect to either spatial or temporal

independent variable can be computed by simply differentiating the Cardinal function

Li(x) that has been generated by the Newton divided differnce formula; Eq. (10-c)

dU xið Þ
dx

¼
X
n

dLi xð Þ
dx

� �
U xnð Þ ¼

Xl

i¼1

Xl

q¼1;q≠i

Xl

m¼1;m≠i;m≠q

xp−xt
� �" #

Yl
m¼1;m≠i

xi−xmð Þ
U xnð Þ: ð10� dÞ

However, the differentiation procedure is best limited to calculate the first derivative
from the approximate dependnet variable, because all othorgonal polynomials are gen-

erated by second-order hypogeometric differential equations. When attempt to use the

approximate dependent variabe again to calculate the second derivative by the Cardinal

function, the eigenvalue structure often leads to oscillatory behavior. For this reason,

the second derivative shall be generated by the consecutive approximations using the

calculated first derivatives as the input data.

Figure 5 presents the computation over a step function by the Gauss-Lobatto quadrature

formula. A sudden drop of the dependent variable is prescribed near the coordinate origin

from a value of 1500.0 at the coordinate origin to 300.0 into the computational domain.

The discontinuity is resolved by reducing the quadrature interval by decreases the size of

the grid-refining block. In turn, it redistributes numbers of points across the discontinuity.

A decreasing integral interval from 0.02 to 0.000625 cm was performed to demonstrate the

characteristic of the local grid refinement technique. In the numerical illustration, a

50-degree Legendre polynomial was used for all the calculations by the Gauss-Lobatto

formulation. It is observed that by increasing the local grid refinement, the grid points are

relocating along the vertical jump.



Fig. 5 Gauss-Lobatto quadrature across a finite Jump
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A flame front in a bench mark case for hydrogen combustion experiment with shock

acoustic wave has been conducted by the identical numerical algorithm with a 4th degree

polynomial [35]. In Fig. 6, the superior and non-oscillatory numerical result for capturing

a temperature spike across a hydrogen flame front is displayed by the Gauss quadrature

algorithm in comparison with a 2nd order explicit finite-differencing method. The flame

thickness is determined to be less than 0.5 mm to agree well with experimental data [36].

For finite-volume formulation, the basic approach is to generalize the Godunov’s scheme

and to extend it to an arbitrary order of accuracy for a hyperbolic differential equation. The

perfect internal cancellation of flux vectors across control surface between elementary

volumes known as the telescope property that makes the conservation of flux vector easily

enforceable. Harten and his colleagues have shown by a cell-center formulation using re-

construction method to achieve a superior performance in the high wavenumber range with

a lower truncation error [37]. In addition, the algorithm also avoids the Gibb’s phenomenon

at the discontinuity. The reconstruction algorithm is derived from an interpolation tech-

nique applying to a piecewise smoothed data. The basic formulation in the semi-discrete

space combines the primitive functions, up with multiple spatial cells and optimizes to
Fig. 6 Refined resolution over flame front by Guass-Lobatto quadrature
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minimizing dispersion and isotropic error. The flux reconstruction is defined by a primitive

function as

up ¼
Zx
0

udx ð11� aÞ

By the second fundamental theorem of calculus, smooth solutions of the desired
pointwise values are obtainable to the nth order of accuracy. As we will see later, all the

high-resolution algorithm development using polynomial approximation are derived

from the reconstruction concept.

uiþ1=2 ¼ dup=dxþ O Δxnð Þ ð11� bÞ

For example, the smooth solution has been obtained by a 5-point compact stencil
formulation,

αui−1=2 þ uiþ1=2 þ αuiþ3=2 ¼ b up;iþ5=2−up;i−3=2
� �

=4Δxþ a up;iþ3=2−up;i−1=2
� �

=4Δx

ð11� cÞ

The optimization is achievable by a spectral function with the modifying parameter
of the compact-difference formula for an improved wideband wave characteristic in the

high wave number range [31].

In the past decade, the Discontinuous Galerkin (DG) scheme [38] is probably the most

investigated numerical algorithm. The original studies of the DG scheme in CFD is

focused on solving the piecewise continuous hyperbolic partial differential equation or the

Euler equations. The method have two outstanding features shared with both the

finite-element and finite-volume methods: First, the high numerical accuracy of numerical

result is derived from the high-order polynomials within an element or cell. Second, the

propagation of data across a discontinuity is approximated by the Riemann problem.

From the finite-element view point, the formulation of the DG algorithm is developed

by the weak formulation of the Euler equation multiplying with a weighting function w.

The governing equation in vector flux form, Eq. (7-a) using the integral formulation

can be expressed as;

Z
v

∂U=∂tð Þwdvþ
Z
s

F iniwds−
Z
v

Fi ∂w=∂xið Þdv ¼ 0 ð12� aÞ

where the symbol ni denotes the outward normal unit vector in the second integral

over the element surface. In the semi-discrete form, the variable and weighting function

are represented by the finite-element approximations with an analytic solution to

appear as

∂=∂t
Z
v

Uwdvþ
Z
s

F i Uð Þniwds−
Z
v

Fi Uð Þ ∂w=∂xið Þdv ¼ 0 ð12� bÞ

Assume the approximate solution and the weighting function to be a piecewise

approximate polynomial, then,
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Where Bp is the basis function approximated by a polynomial of degree p. The
i

finite-volume DG scheme is similar to the finite-element formulation. In fact, the

first-order finite-element scheme is identical to the finite volume formulation but with a

constant piecewise continuous polynomial [39]. In the above high resolution formulation,

the temporal discretization is approximated by the explicit multi-stage TVD, Rung-Kutta

scheme like all other early stage development of the DG for CFD applications.

The DG scheme offers distinctive advantages for high-performance CFD simulations;

because it applies equally well to unstructured grid, as well as, multi-domains problem

with local grid refinement. Again the individual cells or elements can be processed

independently to minimize the data communication for highly scalable concurrent

computations. This attractive feature has been identified as one the three crucial

requirements for scalable parallel computations. The DG scheme has been extended to

solve Navier-Stokes equation, with the implicit discretization by the upper-lower sym-

metric Gauss-Seidel (LU-SGS) algorithm [40]. Intensive research and comparative stud-

ies have been maintained for the DG applications to solve the Navier-Stokes equations

in the areas of stagger grid (SG), spectral volume (SV), and spectral difference (SD) for-

mulations. A wide range of improvements to computational efficiency and accuracy are

made possible, because the basic DG scheme is based on polynomial approximation

that can accommodate most adaptive strategies from unstructured grid to multi-gird

block grid refinement techniques [41].

Another recent aerodynamic optimizations technique has shown impressive progresses

for solving the RANS equations with the discrete adjoint approach by the Krylov algo-

rithm [42]. The solving scheme is basically an iterative generalized minimal residue

method (GMRES) by preconditioning the adjoint matrix according to the distribution of

the eigenvalues and dimension. The unique features of its flexibility and enhanced itera-

tive convergence for the optimizing aircraft design are recognized and will be sustained

into the future.

4 Landmark achievements
The first coherent development for CFD was initiated in the Las Alamos National Labora-

tory (LANL) of United States in the middle 1940’s for nuclear weapon development. Von

Neumann and his colleagues have generated a substantial amount of fundamental know-

ledge for CFD through the path-finding research [19, 43]. He developed the critical stability

criterion for finite-difference approximation and addressed the issue for resolving hydro-

dynamic shock [44]. At the same time frame, Taylor independently completed his work for

a spherical blast wave computation and led to the equivalence theory for hypersonic flow

[45]. In few years later, Harlow developed the particle in cell (PIC) method based on a

combination of Lagrangian-Eulerian description for fluid particle motion, and is still in use

today for Magnetohydrodynamic research and rarefied gasdynamics [10]. All these

accomplishments are substantiated by proof in order to illustrate the validity of the
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approximations and the numerical accuracy. The rigorous process actually established the

standards for all future CFD algorithm and numerical procedure research.

Unfortunately, all valuable information was largely unknown to the aerospace commu-

nity. The design and analysis tools in the aircraft industry prior to 1970’s were mostly de-

veloped from linearized potential flow theory, method of characteristics, and boundary-

layer theory. The shortcoming of these modeling and simulation tools becomes glaring

when applying to high-speed aerospace vehicle design. It was realized that the computa-

tional capability by solving the compressible Navier-Stokes equation must be achieved for

any further practical progress.

The vision of a systematic CFD development for aerospace community was crystalized by

NASA Ames Research Center in the later 1960’s, and their solution to limited computa-

tional resource distribution is the process of peer review and open debate [46]. The most

important contributions beyond science and technology are the tradition of unselfish know-

ledge sharing, mutual support in the CFD community, and managing science and technol-

ogy development by a clear distinction between these activities. A very large number of

scientists, engineers, and scholars worldwide were participated in the basic research to-

gether. The successful CFD activities quickly expanded to all NASA science and technology

centers, research laboratories of Department of Defense, aerospace industry. The knowledge

transfer in that period actually reverses the traditional mode; the knowledge transition is

actually from government agencies to academia and industry. The intensive CFD research

activities have been sustained over more than three decades to become an unprecedented

revolutionary discipline for aerospace science and engineering. The impact of CFD also

expands beyond aerospace industry; the innovative and surged computational resource

demand actually ignites the rapid growth of Silicon Valley.

In 1969, MacCormack developed an explicit numerical algorithm for solving compressible

Navier-Stokes equations based on the classic Lax-Wendroff scheme [47]. His numerical

method provides the tool for simulating and understanding the strong viscous-inviscid

phenomena, meanwhile exposed the weakness of rudimentary turbulent closure models. A

typical and classic computational simulation for a compression ramp with strong viscous-

inviscid interaction including boundary-layer separation is presented by Fig. 7. The numer-

ical result by solving the Reynolds-averaged Navier-Stokes (RANS) equations is fully vali-

dated by experimental observation for the recirculating separated flow, and the coalescing

compression waves upstream at flow separation and reattachment.

In 1977, a first three-dimensional hypersonic problem was also successfully simulated

using the MacCormack’s explicit algorithm [48]. The computational domain of a strong
Fig. 7 Supersonic strong viscous-inviscid interaction over compression ramp
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hypersonic shock-boundary-layer interaction was conducted in a frustum of a rectangular

pyramid bounded by a wedge and a flat plate. A physically meaningful solution was gener-

ated on a very spare grid system, guided by the hypersonic equivalence principle in that

the dominant flow perturbation occurs mostly in the cross-flow plane [49]. A triple-point

shock structure in the corner flow region was captured by the numerical simulation, and

correctly identified an intensive heat transfer spot adjacent to the corner juncture by a

penetration inviscid stream beneath the triple-point. Although at that time numerical

computations can only resolve the essential features of interacting flow fields, but CFD

began to be recognized as a powerful tool for aerodynamic basic research. A sustained re-

search effort for shock-shock and shock-boundary interactions has been maintained for

the past fifty years, all these accomplishments have been summarized by Dolling [50].

Thompson and his colleagues first introduced the body orientated coordinate trans-

formation technique which permitted CFD venturing into the reign of practical engin-

eering application [9]. Their contributions have created a new CFD procedure to

simulate fluid motion around practical and complex configurations. For structured grid

computations, the grid generation technique evolved from the conformal mapping to

transfinite method and by solving elliptic or hyperbolic partial differential equations.

The generalized non-orthogonal three-dimensional coordinate transformation tech-

nique is crucial for applying CFD to aerospace engineering.

Another significant growth of CFD application is the coupling with chemically reac-

tions, which also occurred in the early 1970’s, by Spalding and his colleagues, and even-

tually integrated CFD to combustion and propulsive systems [51]. The interdisciplinary

CFD technique has been refined by the significant progress in numerical algorithm and

chemical kinetics modeling. The combustion in rocket, chemical laser system, and

scramjet was accomplishments in the next decades [20]. These research efforts revealed

a rapidly interdisciplinary advancement in CFD with nonequilibrium chemical kinetics.

In the same period, Jameson developed an explicit numerical procedure for transonic

flows by solving the Euler equations [52]. He has made remarkable contributions in de-

veloping the shockless transonic wing, multigrid algorithm development, and several

ingenious aerodynamic optimizing techniques. Meanwhile, major groups of two dimen-

sional RANS simulations have also been devoted to investigate transonic airfoil in-

cluded the near- and far-wake region. The theory of transonic small disturbance theory

has been proved to be crucial in solving the flow past thin airfoils with imbedded shock

waves. From the basic knowledge, the mixed elliptic-hyperbolic differential equation

was solved by differencing formulas in the subsonic and supersonic regions to properly

account for the local domain of dependence [53]. Equally important, outstanding CFD

efforts have been exerted to explore previously unsolvable physics for airfoil buffet [54]

and aileron buzz phenomena [55].

A group of implicit schemes for CFD was created to alleviate the conditional stability

constraint inherent to explicit algorithms [56]. Another important step forward in CFD

technology is the maturation of the finite-volume formulation. The finite-volume for-

mulation of the macroscopic conservation law is intrinsic to the Eulerian frame of ref-

erence. This formulation is also less susceptible than the finite-difference

approximation to the carbuncle anomalies at the axis of symmetry associated with the

singular metric of coordinate [17]. However, the finite-volume method was not widely

used until the 1980’s.
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In the first decade of CFD development, the application to aerodynamics was limited

mostly to canonical problems or aerodynamic shape that can be described by analytic

means. For an example, the asymmetric vortical formation in the lee-side of a sharped-nose

cylinder at a high angle of attack was illustrated and validated by experimental observations

[57]. An even more fundamental challenge of examining boundary-layer stability was tack-

led by Fasel solving the Navier-Stokes equations [58].

In a short period of little less than a decade, aided by the rather crude and heuristic

turbulence models, success simulations were achieved for aerodynamic phenomena

over a wide range of Reynolds and Mach numbers. Equally important, CFD has con-

tributed significant knowledge for flow separation and flows over arbitrary aerodynamic

configuration; the knowledge gained is exemplified by the thorough understanding of

separated flow topology and aerodynamic hysteresis of bifurcation [59]. The newly

gained knowledge becomes invaluable for understand the intrigue shear flow patterns

over most aerospace vehicle to improved aerodynamic performance.

In spite of all these convincing demonstrations, the objective of practical application

of CFD for engineering design was yet to be achieved. Efforts to develop more efficient

finite differencing schemes led to a group of implicit and hybrid procedures [20]. On

the other hand, a class of computers designed for vector processing; the CRAY-1, STAR

100, and ILLIAC IV became available. At that period, the performance of a typical

three-dimensional Navier-Stokes program on the CRAY-1 computer has achieved a

data processing rate of 42.9 MFLOPS (million floating point operations per second) in

the vector mode which was hundred times faster than the rate of a scalar computer.

Rapid progress was also made for simulating airfoil and wing, wing-fuselage, afterbody,

wake, combustion, propulsion system, and unsteady phenomena. Various simplifica-

tions to the Navier-Stokes equations were also developed by the parabolized and the

thin-layer approximations for more efficient computational simulations [17].

The first ever CFD simulation of a complete aerospace vehicle configuration was accom-

plished in 1986 for X-24C-10D, which is a complete reentry vehicle with a blunt leading

edge forebody, canopy, strake, fin, and wing [60]. A series of boost-glide vehicles were built

for exploring the landing characteristics for low lift-drag ratios performance and unknow-

ingly provided a design data base for the Space Shuttle. The numerical solution was gener-

ated at the Mach number of 5.95, a characteristic Reynolds number of 16.4 × 106/m, and at

a six-degrees-of-angle-of-attack to duplicate the experimental condition. The numerically

predicted aerodynamic performance data for CL and CD are within 6% of the wind tunnel

measuring error band. The side-by-side comparison of the surface shear flow pattern by nu-

merical simulation and the surface oil flow is presented in Fig. 8 includes lines of scavenging

and converging shear flow pattern on the vehicle surface. The central fin was found to be

ineffective, because it is embedded deeply within the aerodynamic shadow, and was elimi-

nated from future design. As a benchmark, the CFD technique was recognized as a critical

technology for National Aero-space Plane (NASP) and Space Shuttle applications.

In the next five years, the CFD capability was rapidly developed to evaluating aero-

dynamic performance for aircrafts. The first aircraft simulation was focused on the F-16A

fighter through a close collaboration between the Air Force Research Laboratory, NASA

Ames Research Center, and General Dynamics. The CFD simulations were also applied to

study the vortex breakdown and tail buffet phenomenon of the F-18 fighter. The modeling

and simulation capability was also used to analyze the airborne laser turret, the structural



Fig. 8 Comparison of computational and experimental observation of X-24c reentry vehicle
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response to a flexible vertical tail of the F-15, and for many advanced fighter aircraft de-

signs. Equal numbers of application have focused on high-lift civilian transport design and

analysis; such as the Airbus 380, Boeing 737, and 777–200 [20].

The CFD applications in the 1990s’ were dominated by NASP and Space Shuttle opera-

tions. The NASP Program initiated from 1986 through to 1994 was the principal motivator

for progresses in CFD. Nearly all sectors of the US national laboratories, NASA Centers,

aerospace industry, and more than fourteen major universities are actively participated in

this program [61]. The NASP design was and still is a quantum leap from the traditional

approaches to aircraft and space vehicle design. The demonstration aircraft, X-30, was to

operate through the atmosphere from subsonic to orbital velocities at a Mach number

exceeding 25. The challenge in developing the high-temperature material for vehicle fabri-

cation was one of the major issues. The design and analysis of X-30 must integrate multiple

engineering disciplines consisting of aerodynamics, propulsion, structure, and flight control.

The capability for airframe design and flight control/stability was not an overreach, but the

required propulsion systems based on subsonic and supersonic ramjet combustion faced a

formidable challenge [62].

The CFD application to the Space Shuttle accelerated after the Challenger

(STS51-L) accident in 1986 [63]. A higher accuracy requirement was imposed to pre-

dict the orbiter wing root shear to within 5% of the maximum structural capability of

the wing. The multiple-zonal grid consists 111 grid blocks with a 16 million grid point

system, and the surface resolution on average was about 10 cm [64, 65]. Figure 9

depicting all the possible perturbations to flowfield by fine-scale structures in the grid

generation process on the external tank. The full-scale, high fidelity grid generation of

the Space Shuttle launch vehicle with all fine-scale details was using the ICEM/CFD

CAD and gridding software. The earlier numerical solutions for the vehicle were ob-

tained using the chimera domain decomposition technique, and then logically transi-

tioned into the unstructured grid method to describe the complex and

multi-component configurations. The simulated Space Shuttle configuration consists

of the orbiter, external tanks, plus two solid rocket boosters, and the complex mul-

tiple shock-on-shock interactions are capturing by the solving procedure. The CFD

simulation for space shuttle in launching configuration represents the state-of-the-art

at that period and is displaying by Fig. 10.



Fig. 9 Required fine-scale geometric details space shuttle external tank [64]
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The increasing complexity in physics and managing a huge amount numerical data for

practical applications put a tremendous pressure on improving computational efficiency

for the even higher data processing rates and large memory storage. The parallel or con-

current computing with shared or distributed memory by a cluster of multiple computers

or reduced instruction set computers (RICS) was the solution offered by the computing

technology community. At the early stage of concurrent multi-computers development,

there were a group of different shared- and distributive- memory computers (Cray T3E,

IBM SP, SGI Origin 2000, N-cube and others). Therefore the strategy of porting the most
Fig. 10 CFD simulation of space shuttle launching configuration [96]
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sequential CFD computer codes adopted the domain decomposition approach because it was

the most flexible and efficient data partition. The message passing interface (MPI) becomes

the mainstay of concurrent computing paradigm [66]. In the early 2000’s, the data processing

rate had reached a value of one GFLOPS (Giga floating point operation per second, 109

FLOPS) and the size of distributed memory has approached a terabyte. From basic research

result, the load balancing, communication minimization among processors, and efficient cash

memory utilization were found to be paramount for high parallel numerical simulation effi-

ciency [67]. The versatility of unstructured Navier-Stokes/Euler solvers has been demon-

strated for aircraft design. The most noticeable accomplishments were the computational

simulations for Boeing 737, 777–200, and Airbus 330. A dream that one can evaluate the

aerodynamic performance of any complete aircraft in a few weeks has been realized.

However, the leading stumbling block in fluid dynamics is still the turbulent flow, which

is strictly a chain of events from the unsteady, three-dimensional, nonlinear vortices inter-

action with a wide range of length scales and frequency spectra. The dimensions of vortices

vary from the Kolmogorov inner scales to large-scale vorticities comparable to the entire

flow field [68]. The finest length scale of turbulence is defined as (ν3/ε)1/4 which involves the

kinematic viscosity ν and turbulent kinetic energy dissipation rate ε. The time and velocity

scales also knew as (ν/ε)1/2 and (νε)1/4 respectively. At the atmosphere condition, the Kol-

mogorov scale has a dimension around ten millimeters. For simulating aircraft in flight con-

ditions by directly solving the Navier-Stokes equations (DNS) requires a mesh system of

more than quintillions of points and a data processing rate of hundreds of petaflops (1018

floating point operations per second) [69]. An engineering alternative becomes necessary.

According to our physical understanding of wall-bounded turbulent flow, the larger ed-

dies extract energy from the main flow and its structures are highly anisotropic. On the

other extreme, the small eddies dissipate energy, tend toward isotropy and are nearly uni-

versal in character. In Fig. 11, the streamwise turbulent energy spectra for various type of

wall-bound flows is assembled [46]. It is clearly demonstrated that near the wall or in the

inner region of turbulent shear layers, the spectra of the small energy-dissipating eddies

are clearly universal – it is independent of both Reynolds number and type of flows. This

is the guiding principle for subgrid scale modeling for large eddy simulation (LES) [70].

For LES formulation, the compressible Navier-Stokes equations are decomposed by the

scales of temporal and spatial independent variables. The large-scale turbulence is resolved

by solving the time-averaged Navier-Stokes equations over the large-scale motion, and the

small-scale turbulence is approximated by some dynamic subgrid models [71]. The tem-

poral scales separation for LES formulation is achieved by the Reynolds-average, but truly is

the mass- or Favre-average. The temporal ensemble is obtained by some predetermined but

arbitrary characteristic time scales;

~f ¼
R
ρfdtR
ρdt

ð13� aÞ

and the small spatial scale fluctuations are eliminated by a low-pass filter G(x − x');

f ¼
Z

G x−x
0

� �
f
0
x
0

� �
dx

0 ð13� bÞ

After a rather arbitrary separation of the large and small scale eddies, the governing
equation of LES acquires the following form;



Fig. 11 Streamwise turbulent energy spectra for various turbulent flows [46]
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The closure of the above equation systems are provided by the subgrid scale stress
(SGS) tensor τi; j ¼ ρð―uiu j−uiu jÞ and heat flux qi ¼
―
eui−eui. A range of the SGS models

have been developed and loosely grouped as the eddy viscosity, dynamic eddy viscosity,

and similarity models [72]. The numerical results by LES when comparing with experi-

mental observations have exhibited close correspondence in distributions of standard

deviation, skewness, kurtosis, and intermittency of turbulent dynamics.

The rapid maturation of CFD for aerospace applications and supporting by parallel com-

putational become directly usable for engineering. From the lessons learned in the aero-

space vehicle design, the integration of aerodynamics, propulsion, structural dynamics, and

flight control shall be implemented at the preliminary design stage to minimize the ineffi-

cient iterative cycle. The data base for the final design has also gradually shifted from experi-

mental to computational simulations and finally verified by flight test. The computational

simulation, in spite of the obvious shortcomings in predicting laminar-turbulent flow transi-

tion and turbulent, is very reliable for interpreting the flow behavior between two adjacent

states. This feature has been adopted for comparative study to determine the final vehicle

configuration. It also realized for high-speed flight in a high enthalpy environment, the

governing equations derived from the gas kinetic theory are inadequate for modeling flow

medium that are significantly affecting by internal degrees of excitations from vibration,

disassociation to ionization. These phenomena stand out for hypersonic flight, earth reentry
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from space exploration, and applying the electromagnetic force/energy for flow control and

performance enhancement.

For high-speed aerodynamics simulation, the nonequilibrium thermodynamic and

chemical reaction within the enveloping bow shock must be examined. The

temperature of the compressed air within the hypersonic shock layer routinely exceeds

ten thousand degree Kelvin, where the nonequilibrium thermodynamics and chemical

kinetics phenomena dominated. The physical fidelity requirement thrusts CFD into the

modeling for atomic/molecular internal degrees of excitation by quantum physics. The

works of Park [73], Candler and MacCormack [74], and Josyula and Shang [75] exem-

plified this path-finding research and opened a new research arena for CFD. Mean-

while, the needs of stealth technology and embedded antenna design also inspired the

knowledge transfer from CFD to computational electromagnetics (CEM) in the time

domain. This need was intended to augment the radar cross section (RCS) prediction

from the ray-tracing technique using optical physics to CEM in the time and frequency

domain. The interaction between CFD, CEM, and CMA (computational

magneto-aerodynamics) needs to sustain into the future.

The interdisciplinary CFD (ICFD) governing equations are shared for analyzing the

hypersonic flows and the multi-fluid and multi-temperature plasma. Under the low

magnetic Reynolds number condition (Rm = σμu∞L, σ denotes the electric conductivity

of the medium) and by restricting the plasma frequency within the microwave

spectrum, the Faraday induction law can be decoupled from Maxwell’s equations. This

simplification focuses the study of magneto-aerodynamic interaction to fluid motion ra-

ther than on electromagnetic waves propagation. By this formulation, the electrostatic

force, the Lorentz acceleration, and the Joule heating appear as the source terms in the

ICFD equations. The essential physics of aerodynamics-electromagnetics interaction for

ionized gas can be effectively approximated by a simplified interdisciplinary governing

equations system [35]:

∂ρi
∂t

þ ∇ � ρi uþ uið Þ	 
 ¼ dwi

dt
; ð14� aÞ

∂ρu
∂t

þ ∇ � ρuuþ p−τð Þ ¼ ρeE þ J � Bð Þ; ð14� bÞ

∂ρe
∂t

þ ∇ � ρeu−κ∇T þ
X

ρiuihi þ qrad þ u � pþ u � τ
h i

þ Qvt−Qet ¼ E � J :
ð14� cÞ

The vibrational energy conservation equations for polyatomic molecular species are
∂ρieiV
∂t

þ ∇ � ρi uþ uið ÞeiV þ qiV
	 �� ¼ eiV

dwi

dt
þ QV ;Σ ð14� dÞ

The electronic energy conservation equation has been traditionally given as
∂ρiee
∂t

þ ∇ � ρi uþ uið Þee þ u � pe þ qe
	 �� ¼ ee

dwi

dt
þ E � J

þ ρeE þ J � Bð Þ	 
 � uþ uið Þ þ Qe;Σ

ð14� eÞ

The definition of the internal energy is now generalized to appear as,
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ρe ¼
X
i≠e

ρi cV ;iT þ u � u
2

� �
þ
X
i≠e

ρeeV ;i þ
X
i≠e

ρih
o
i þ ρe cV ;eTe þ ue � ue

2

� �
ð14� fÞ

where hoi is the standard heat of formation for all reacting species.

The production and depletion rates for gas species of different energy states (dwi/dt) in

the continuity equation, Eq. (14-a), are calculated by the law of mass action for chemical

kinetics. The diffusion velocity, ui of different species is determined from the gas kinetic

theory. In Eq. (14-c) through (14-e), the energy cascading from the translation, vibration

and electron excitations of gas species, Qvt,Qet, Qv, Σ and Qe, Σ by quantum jumps are mod-

eling either by the principal of detail balancing or by empirical formulations. Again in the

governing equations, (14-b), (14-c), and (14-f), the electrostatic force ρeE, Lorentz acceler-

ation, J ×B and Joule heating E ⋅ J represent the coupling between fluid motion and electro-

magnetic force/energy. The electric and magnetic field intensities E and B are the sum of

the externally applied and the induced field intensities. In the absence of an externally ap-

plied magnetic field, the charged particles are accelerated by the electrostatic force alone

due to charge separation in free space. These numerical simulation capabilities become the

backbone of engineering design and analysis for hypersonic flight, reentry thermal protec-

tion [76, 77]. Computational simulations have been successfully applied to all space vehicle

programs from the first FIRE reentry probe prior to the Apollo mission, the radio attenu-

ation measurement probe RAM-C, Orion, to Stardust for earth reentry. Numerical simula-

tion also carried out for entry into other planets such as the Pioneer to Venus, Galileo

probe to Jupiter, as well as Neptune and Titan.

Among all reentry investigations, the Stardust reentry probe exemplifies the shape of re-

entry vehicle and enters the earth atmosphere with the highest speed than all other

man-made objects. A common feature for all reentry vehicles has a blunt forebody to re-

duce the maximum stagnation point heat transfer rate. The forebody of Stardust consists

of a 60-degree one-half angle spherical cone with a nose radius of 0.229m. The afterbody

is a truncated 30-degree cone with a base radius of 0.406m. The corner radius at the

juncture of the forebody and afterbody is merely 0.02m. The flowfield structures by vel-

ocity traces over the Stardust probe are depicted in Fig. 12; the probe reenters at an angle

of attack of eight degrees and after 54 s elapsed from a designated reentry altitude. At this

point in time, the probe is still traveling at the speeds of 11.37 km/s. The flow topology is

shared by all the reentry vehicles; they all have a strong bow enveloping shockwave to

contain a relatively thin shock later following by a rapid expansions between forebody and

the afterbody, then emerging into the wake region. In the base region, the flow is sepa-

rated from the vehicle downstream at corner region of the base to form recirculating flow

with the lowest heat transfer rate. All these dominant flow topologies have been clearly

captured and displayed by the computational simulations [78].

The RAM-C-II probe generated the most valuable verification flight data for the

physical-based modeling with nonequilibrium chemical reaction in the shock layer, includ-

ing the ionized gas spices. The probe consists of a hemispherical-nosed cone with a cone

angle of 18 degrees and an overall length of 1.3m. The probe collects the ionized air data

by a reflectometer and at a single double check point by an electrostatic device. The com-

parison between data and computational results for electron density is reasonable and re-

veals the electron density in the reentry environment have reached a nearly equilibrium

state at the later stage of reentry (Alt =61 km, M= 23.9, and Re = 1.95×104). During all the



Fig. 12 Velocity traces of Stardust probe at reentry speed of 11.37 km/s
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stages of reentry, the depletion of molecular oxygen and redistribution of nitro oxide in the

stagnation region stands out during the earth reentry. All the translational, vibrational, and

electronic temperatures (by assuming to have Maxwell distributions) attain the equilibrated

condition approaching the stagnation point. The calculated species concentrations; O2, N2,

NO, N and O, as well as, the ionized components N+, O+, electron E−, Nþ
2 ,O

þ
2 , and NO+,

along the stagnation streamline are displayed in Fig. 13. The agreement among computa-

tional simulations and flight data confirms that physical-based approximation to quantum

mechanics is acceptable for engineering purpose, but does not necessarily represent the ac-

tual physics involves quantum jumps.

In the aspect of ICFD evolution, technique transition to computational electro-aero

dynamics (CMA) has enhanced aerospace vehicle aerodynamic performance. The ion en-

gine is one of the genuine successful CMA applications to aerospace engineering. Since

1998 the gridded electrostatic ion thrusters and the Hall effects thrusters have routinely

been used for geosynchronous satellites and space stations orbital position keeping. Both

ion engines operate in a rarefied gas environment, and the maximum electron/ion num-

ber density is around 1013/cm3(1019/m3) and each charged particle possesses an energy

level over 3 eV (1.6022×10−12erg). Therefore, computational simulations must be conduct-

ing by either the PIC or PIC-DSMC methods. Although the thrust from ion engines is

generally limited form hundreds of mille-Newton to a few Newton, and the output power

is in the order of tens of kW, but the life cycle of ion engines exceeds thousands of hours

for deep-space exploration missions. The unique features of ion thruster are the high ex-

haust ion velocity which can be as high as 210.0 km/s by an impulse magneto-plasma

thruster, and a high specific impulse from 1700 to 12,000 s. Innovation is still continuing

for the development of the magneto-plasma-dynamic thruster.



Fig. 13 Species concentration along stagnation streamline of RAM-C-II probe
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Adopting plasma actuator for flow control for aerodynamic applications is very attractive,

because the process does not require any movable components or servo mechanisms. The

electrically conducting medium imparts additional electromagnetic force and energy onto

the flow field by Joule heating, electrostatic and Lorenz acceleration [35]. The flow control

based on Joule heating is through suddenly growth of the boundary-layer displacement by a

localized cathode heating, which is effective for hypersonic flows at the outer atmosphere.

On the other hand, the periodic electrostatic force across electrodes with an AC electric

current in microwave frequency by the dielectric barrier discharge (DBD) is the most effect-

ive for flow control by the momentum transfer via collisions between ions with neutral par-

ticles. An induced jet-like jet stream over the overlapping electrodes can move at a velocity

up to 10m/s, but ceases beyond the thin cathode layer [79]. For these reasons, in a weakly

ionized air, the added electromagnetic force and energy for flow control are presented only

in the perturbation level to the main flow, therefore needs to amplify by aerodynamic

viscous-inviscid interaction or by a strong externally applied magnetic field to be effective.

The plasma flow control mechanisms, without a high-degree of ionization or a strong exter-

nally applied magnetic field, are applicable only for a special purpose implementation. How-

ever, the most recent research using plasma for ignition and maintaining combustion

stability may result in unfathomable scientific innovations [80].

The technique transition from CFD to CEM is rested on the numerical algorithm for

solving the hyperbolic differential equations. In specific, the characteristic-based formula-

tion, the perfectly matched layer technique, and the dispersion-relationship-preserving

scheme have alleviated one the two fundamental limitations for imposing far-field boundary

condition for solving the Maxwell equations in the time domain. CEM has demonstrated

fully for electromagnetic wave scattering prediction and antenna design up to the resonance

frequency domain [35]. The second limitation imposed by the numerical resolution require-

ment for CEM is defined by the well-known Enquist limitation - At least two grid points
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per wavelength are required to resolve wave dynamics. For a millimeter microwave that

must propagate over a hundred-kilometer distance, the needed grid-point number for a sat-

isfactory numerical resolution along the beam path is astronomical. To date, the parallel

computation capability has permitted the CEM venturing into optical frequency domain by

an optical physics approximation through the ray-tracing method. The maturation of

high-performance supercomputing technology with the data processing rate approaching

the Exa floating operation points per second (EFLOPs, 1018 FLOPS) definitely will remove

the last hurdle of CEM for practical aerospace applications.

In the early 2000s, the Micro aerial vehicle (MAV) and unmanned aerial vehicle

(UAV) are another application of ICFD to aerospace engineering and become an inter-

esting development in fluid dynamics [81]. It highlights the dynamic lift generation by

vortex formation at extremely low Reynolds number condition for MAV. In the case

for mimicking the bio-inspired design, the coupling of aeroelasticity and advanced

flight control algorithm with fluid dynamics for reliable flight is essential [82]. On the

other hand, the UAV operation requires precision guidance to long-endurance autono-

mous flight for extremely maneuverable flight vehicle. The broadened CFD applications

accelerate the ICFD development into increasing complex scientific disciplines and

demanding new numerical algorithm development on moving frame of references. The

basic issues of hydrodynamic instability, laminar-turbulent transition, and turbulence

emerge repetitively as the most sever challenge to computational simulations.
5 New Frontiers
From the brief reviews of the CFD history, it becomes clear that the formidable chal-

lenges before us are to resolve the least understood fluid dynamics phenomena and to

expand the governing equations of CFD beyond the classic kinetic theory of gas. For

the former, the issues of fluid dynamics bifurcations ranging from hysteresis, vortex

breakdown, laminar-turbulence transition, to turbulence are easily identified. For the

latter, the simplified elastic collisions between gas particles need to be replaced by the

inelastic collision including the internal degrees of freedom for gas molecular and

atomic excitations in high-speed, high-temperature flight environments.

Understanding fluid dynamic bifurcations by solving directly the Navier-Stokes equa-

tions is not necessarily a brute force effort but must be approach by a better understand-

ing of the physics. For example; the vortical breakdown is trackable by the formation of

the stagnation point in free space for a vortical motion [83]. The hysteresis of fluid motion

is exclusively associated with a delay consequence of an initial condition. The laminar-

turbulent transition is arisen from hydrodynamic instability, environmental disturbances

or receptivity, and the distribution of intermittency [84]. To analyze the most difficult tur-

bulence is best by understand the phenomena of simultaneous interactions of large- and

small-scale eddies in time and space with the ever present hairpin vortices that travel in

packets over fluid-solid interface [68]. It is realized that there is a common dominator for

better understanding of all these largely unknown phenomena, which is to resolve the fine

temporal and length scales structures; either for turbulence, electromagnetic wave propa-

gation, or nonequilibrium quantum chemical-physics. The crucial numerical resolution

requirements for resolving these physics-based computational simulations are begin to be

met by the high-performance supercomputers.
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Computational technology outgrows the Moore’s and Amdahl’s arguments. On June

2016, the Sunway Taihulight supercomputer clocked a data processing rate of 93.01

PFLOPS, running the LINPACK benchmark, and with a mindboggling memory capacity

of 1.32 PiB (250 bytes). Exact two years later, the fastest benchmark data processing rate

was claimed by the Summit supercomputer at 122.3 PFLOPS. It is anticipated that the

data processing rate of supercomputer will attain a value over EFLOPS (1000 PFLOPS)

within the next few years. The massive parallel computing technology has opened avenues

for basic research and created new scientific frontiers in quantum physics, molecular

dynamics, climate, and artificial intelligence research. In Fig. 14, the CFD requirements

for direct simulating turbulence and nonequilibrium quantum chemical-physics are map-

ping onto the capability of supercomputers of today. The match of supply and demand

shows the time is here for direct and real-time numerical investigations.

Based on our basic understanding of turbulence, which is consist of chaotic vortices

interactions, the formulation of Navier-Stokes equations in vorticity and velocity is dir-

ect and more advantageous than the traditional conservative variables for study turbu-

lence. The vorticity-velocity formulation of the three-dimensional, compressible

Navier-Stokes equations by combining the continuity, momentum equations, and en-

ergy equation; Eq. (5-a) through (5-c) yield;

∂Ω=∂t þΩ ∇ � uð Þ þ u � ∇ð ÞΩ− Ω � ∇ð Þu−∇ p−λ ∇ � uð Þ½ � � ∇ 1=ρð Þ
−∇� ∇μ=ρð Þ � def uð Þ½ �−2∇ν� ∇ ∇ � uð Þ½ � þ ∇ν� ∇�Ωð Þ−ν∇2Ω ¼ 0

ð15� aÞ

ρ∂ cvT þ u � u=2ð Þ=∂t þ ρu � ∇ cvT þ u � u=2ð Þ þ ∇ � q þ ∇p � u−Φ ¼ 0 ð15� bÞ

The vorticity is traditional defined as the curl of velocity; Ω = ∇ × u, and the dissipa-

tion function in the internal energy conservation equation, Eq. (15-b), is Φ = λ(∇ ⋅ u)2

+ μdef(u) ⋅ ∇ u.
Fig. 14 Performance of supercomputer and CFD requirements
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It is immediately recognized that the coupling between the vorticity dynamic equa-

tion and the energy conservation equation is only through the velocity component. In

order to couple explicitly the two conservation laws with vorticity and velocity, the

energy equation is split to get the kinetic energy transport equation as;

ρ∂ u � u=2ð Þ=∂t þ ρu � ∇ u � u=2ð Þ þ ∇p � u− ∇ � τð Þ � u ¼ 0 ð15� cÞ

Substitute Eq. (15-c) into Eq. (15-b), the conservation energy law in thermodynamic

variables to get

T∇S þ u�Ω ¼ ∂u=∂t þ ∇ho þ ∇ λ∇ � uð Þ þ ∇μ ∇uþ ∇uT
� �	 


=ρþ 2ν∇ ∇ � uð Þ−ν∇�Ω

ð15� dÞ

Equation (15-d) is the generalized Crocco’s theorem for compressible flow. The
Navier-Stokes equation in vorticity and velocity formulation, Eq. (15-a) and (15-c) is

formerly closed by including the equation of state for the gas mixture and the consti-

tute relationships of transport properties. The governing equations in vorticity-velocity

formulation are completely consistent to the gas kinetic theory.

A few interesting physics of vortical dynamics can be distracted from Eq. (15-a) and

(15-c): First, the forth term of Eq. (15-c), (Ω ⋅ u)u has no counterpart in the equation of

conservation of momentum, and it gives the vorticity dynamics a distinguish characteristic

only existing in the three-dimensional flow field. In turbulent research its commonly

referred as the vorticity stretching to become a critical property of turbulence, because

the vorticity stretching is identically zero in two-dimensional field; (Ω ⋅ u)u ≡ 0. Second, in

any vector field, there is a vector identity that is ∇ ⋅ (∇ × u) = ∇ ⋅Ω ≡ 0, which means the

vorticity is a divergentless or divergent-free vector.

In an incompressible fluid medium, the governing equations, Eq. (15-a) and (15-c)

degenerate into the classic results [85]

∂Ω=∂t þ u � ∇ð ÞΩ− Ω � ∇ð Þu−ν∇2Ω ¼ 0 ð15� eÞ
T∇S þ u�Ωþ ν∇�Ω ¼ ∂u=∂t þ ∇ho ð15� fÞ

For incompressible flow, the vorticity dynamic equation is linear and homogenous in Ω,

if the initial value of vorticity of flow field is null then the vorticity must be an invariant in

time. It leads to the classic Helmholtz theorem that vorticity cannot be created nor

destroyed in the interior of a homogeneous fluid and can be produced only on the inter-

face boundaries. From Eq. (15-f), it is observed that only under the condition of constant

enthalpy and a steady flow, the classic Crocco’s theorem shows a unique relationship

between entropy and vorticity [86].

From physical understanding, the Navier-Stoke equations in vorticity-velocity formulation

shall be the most comprehensive approach for direct numerical simulation for turbulence.

The physical fidelity is determined exclusively by the finest vorticity scales in time and space

which are knew prior before the computational process. There are also known fact that the

specification and implementation of boundary conditions for a wall-bound vorticity are

difficult, but a physical compatible vorticity boundary condition can be derived from the

non-slip velocity condition [87, 88]. In addition, the governing equation system is an incom-

pletely parabolic system in the discrete space, and the well-established guidance for

well-posed initial conditions and boundary values can be found in classic literatures [20].
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The initial value and boundary conditions are paramount for computational simulation and

are also problem dependent, thus must be remained as a research endeavor. The accom-

plishments by direct simulation for turbulence impact the basic understanding of fluid dy-

namics for future applications are invaluable.

On the challenge by expanding CFD beyond the realm of classic gas kinetic theory is

based on the need to simulate the real gas effect in high-speed and high-enthalpy

conditions. When the temperature is elevated above 1500 K, the properties of air differ

considerably from the perfect gas, because the excitations of internal structure of gas

particle become significant. The internal degrees of freedom of molecule include the

translational, rotational, vibrational, and electronic modes [4]. The electronic mode has

also been referred to as nuclear excitation and can be further split into dissociation and

ionization. All these internal excitations are quantized, and the bridge between the mi-

crostate of individual particle and macroscopic properties of gas mixture is linked by

statistic mechanics through theories of probability and distribution functions. Only in

equilibrium state, the internal energy distributions of a gas molecule or atom have been

made easily understood by the quantum mechanics through the partition functions.

Under the equilibrium states and from the statistic thermodynamics, the total energy of

a molecule is additive and the partition functions on the other hand are factorized.

In other words, the energy of a molecule is measured above its zero-energy or ground state

and is the sum of the energy of translational, rotational, vibrational, and electronic degrees of

freedom. For atoms, the total energy includes only the translational and electronic modes

ei ¼ et þ er þ ev þ ee; ei ¼ et þ ee ð16� aÞ

The energy transfer by inelastic collisions is quantum restricted; the energy is trans-

ferred through discrete states and the transfer process is instantaneous because there is

no continuity between quantum states. The sum of the internal energy by Eq. (16-a) is

described individually by the partition function Z from statistical thermodynamics

which distributes the energy of particles among all the internal modes. Under the

thermodynamic equilibrium condition, it is a function of specific volume V, and static

temperature T;

Z V ;Tð Þ ¼
X
i

gi exp −ei=κTð Þ ð16� bÞ

The partition function describes a measure for a fraction of the total number of the ith
molecules/atoms, of the system which possess an energy state of ei. The symbol gi denotes

the degeneracy which explicitly affirms how the molecule is formed. The partition func-

tion of a molecule is the product of all possible internal modes;

Z V ;Tð Þ ¼ Zt V ;Tð ÞZr V ;Tð ÞZv V ;Tð ÞZe V ;Tð Þ ð16� cÞ

From the partition functions, all thermodynamic properties of a system can be easily
determined from statistics mechanics [4, 35]. The factorization property of the partition

functions is only valid so long as each energy mode can be assigned an energy level which

is independent from the other energy modes. The schematic quantum spectrum of internal

energy of a gas molecule is depicted in Fig. 15. The energy states of translation mode are

so closely packed relative the datum; they are practically continuous, and contribute solely

to the partial pressure of the gas mixture. All other internal degrees of freedom are clearly



Fig. 15 Schematic quantum spectrum of internal energy of a gas molecule

Shang Advances in Aerodynamics             (2019) 1:5 Page 31 of 36
distinctive quantum phenomena which are independent to the specific volume of the sys-

tem thus do not contribute to the partial pressure of the gas mixture. In addition the rota-

tional degree of freedom requires very few numbers of collisions to reach a fully excited

state, for this reason, it is always considered to be equilibrated with the translation mode.

Although the actual transition process or the quantum jump is instantaneous, but to ac-

cumulate a sufficient energy to reach the next quantum state still requires a sufficient

number of collisions to occur. The time lagging between jumps is often labelled as the re-

laxation phenomenon [89]. When the jump is limiting only to a next adjacent quantum

state, the process is designated as the ladder-climbing process. Otherwise the transition

over multiple quanta by a single collision and is known as the big-bang process.

In earth reentry simulations, the thermodynamic equilibrium conditions are not at all at-

tainable; therefore the results by partition function are inapplicable. A wide range of approx-

imations ether based on the principle of detail balance [90] or empirical data [73] are used

to model the transitions of quantum mechanics. The energy exchange between translation

and vibration, Qt, v in Eq. (14-c) is approximated by formulation of Landau and Teller;

Qt;v ¼ ρ e�v tð Þ−ev
	 


=τ

e�v tð Þ ¼ RΘv= eΘv=T−1
� �

; τ ¼ k1T
5=6e k2=Tð Þ1=3= p 1−e−Θv=T

� �h i ð17� aÞ

where Θv and τare the characteristic temperature and relaxation time scale of the vibra-

tion excitation transition. The energy transfer among vibration modes of different spe-

cies is modelled by the empirical formula that derived from the experimental data

collected and correlated by Millikan and White [89].

Qt;v ¼ ρ e�v tð Þ−ev
	 


=τ

e�v tð Þ ¼ RΘv= eΘv=T−1
� �

τ ¼ 1:16� 10−3 mi þmj
� �

=mimj
	 
1=2

Θ4=3
v T−1=3−0:15mimj= mi þmj

� �
−18:42

h i
ð17� bÞ

The energy transfer between vibration and electron excitation is often adopted the
Treanor and Marlone model [91].
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Qe;v ¼
X
i

ρi et−evð Þ=τ− et;v−ev
� �

=xi dni=dtð Þ f þ ev;t−ev
� �

=xi dni=dtð Þb
h i

ð17� cÞ

Equation (17-c) is commonly referred to as the coupled vibration and dissociation
(CVD) excitation model. In Eq. (17-c), the symbols et;v and ev;t denote the average en-

ergy gained or lost during the quantum transition, and the notation ev is the vibration

energy calculated from the Boltzmann distribution. There are a wide range of energy

transition models between electron-ion collision by either the Coulomb logarithm for-

mulation or other more recent estimates [35, 73, 76, 78]. The total energy transfer be-

tween the quantum transitions that appeared in interdisciplinary governing equations;

Eq. (14-c), (14-d), and (14-e) is actually the sum of each permissible mechanisms Qv, Σ

=Qt, v +Qv, v +Qe, v and Qe, Σ =Qe, v +Qe, i.

The approximate energy transfer by quantum transition among all internal degrees of

freedom has often assumed that the quantum jumps follow the ladder-climbing process.

The process can also be systematically determined from the population density distribu-

tion in a quantum state through the generation and the depletion process. The quantum

jumps from translation-vibration, vibration-vibration, and vibration-dissociation transi-

tions are describable by the changing vibrational quanta through inelastic collisions

between diatomic molecules M2 and the quantum states of i, i', j, and j';

M2 ið Þ þM2⇄M2 i
0

� �
þM2; i

0 ¼ i� 1

M2 ið Þ þM2 jð Þ⇄M2 i
0

� �
þM2 j

0
� �

; i
0 ¼ i� 1; j

0 ¼ j� 1

M2 ið Þ þM2⇄2M þM2

ð18� aÞ

The quantum jump is restricted to the immediate adjacent quantum level according
to the Ladder-climbing process, and has been determined numerically by solving the

master equation for population density distribution [92, 93];

df =dt ¼
X
i

kv;t i→i
0

� �
f i f −kv;t i

0
→i

� �
f i f

h i
þ
X
i; j

kv;v i
0
; j

0
→i; j

� �
f i0 f j0−kv;v i; j→i

0
; j

0
� �

f i f j
h i

þ
X
i

kv;d i→contiuumð Þ f M2
f M−kv;d contimuum→ið Þ f M f M

	 
 ð18� bÞ

The modeling of quantum transition has served the engineering purposes for thermal
protection for reentry space flights. All the models described by the forgoing discus-

sions produced similar results from different numerical simulations [35, 76, 77], espe-

cially in the prediction of vibrational temperatures of oxygen and nitrogen molecules

under the reentry conditions of the RAMC-II and Stardust probes.

A direct physical validation of the predicted nonequilibrium thermodynamic and chem-

ical kinetics including quantum transitions with flight test data is presented by Fig. 16. The

estimated error bar of the RAMC-II probe data covers a range of the peak-to-peak electron

number density fluctuation from 3.0 × 1011 to 1.2 × 1012 due to the probe motion. The

computational electron number densities under the chemically equilibrium and nonequi-

librium models are depicted together with the validating flight test data at three altitudes

along the reentry trajectory. The reentry speed decelerates from 7.66 km/s to 7.65 km/s

from the altitudes from 81 km to 61 km and the ambient temperatures increased by 56.16
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K. It is anticipated that the nonequilibrium ionization occurs mostly in the stagnation re-

gion over the probe, and the equilibrium state shall be reached downstream and when the

probe entered the denser atmosphere layer. However, there are large discrepancies among

different chemical-physics models in predicted translational temperature within the shock

layer. A detailed and incisive description of the quantum chemical-physics for basic under-

standing is still completely absented. The fundamental issue must be answered for basic

understanding and to become another critical challenge to CFD.

A scientific breakthrough opportunity presents itself by employing the unprecedented

high performance supercomputing capability to answer the formidable challenge through

the ab initio (first principle) approach to quantum chemical-physics [94]. In other words,

the nonequilibrium chemical reactions and energy transfer by the quantum transitions

among internal excitations can be calculating directly from the chemical kinetics and

quantum physics. The approach is based on the Born-Oppenheimer approximation by sep-

arating the wave function of the nuclei from the electron, in theory; the approximation is

also applicable to molecule. The Schrodinger equation for a single electron is then solved

for energy and wave function of an atom or a molecule, the required computational re-

source is truly prohibitive. From the most recent progress in molecular mechanics research,

computations have been simplified by semi-empirical methods. In the ab initio computation

process, the potential energy surface (PES) of atom/molecule structure becomes the center

of computational quantum chemistry because the saddle point on the PES is closely related

to the transition state [95]. The required topology knowledge has been developed by CFD

for study surface shear pattern for three-dimensional separated flows. The complex

topological formations of noddle, saddle, and focus singularities were established more than

thirty years ago by the work of Tobak and Peaks [59].

The required research for interdisciplinary CFD involved quantum chemical-physics has

clearly revealed that the pathfinding effort is unmistakably pointing to the need by returning

to basic scientific research. These undertakings, no doubt are forbidden and arduous, but

they also offer the undisputable scientific and technologic leadership worldwide.

6 Concluding remarks
From a glimpse of the remarkable CFD evolution over more than sixty years, one realizes

that any scientific innovation for enriching human endeavor always reaches farther and
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thrives more vigorously by meeting the need of practical applications. The traditional

CFD is established on the foundation of gas kinetic theory via a simplified elastic collision

mechanism. And yet the critical aerodynamic bifurcations such as laminar-turbulent tran-

sition, turbulence, vortex breakdown, and dynamic stall are still beyond our reach. The

barrier can be and shall be removed by embracing massive concurrent computational

technique with the aid of high resolution algorithm development.

In order to expand and to increase our knowledge in basic science to meet future

challenge for hypersonic flights and deep space explorations; research and developmen-

tal efforts must be focused on interdisciplinary simulation for selected critical technical

areas. Only the knowledge that builds on the understanding of basic physical phenom-

ena can further advance the modeling and simulation capability to attain the widest

range of application.
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