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Abstract

This paper presents an engineering-oriented UGKS solver package developed in
China Aerodynamics Research and Development Center (CARDC). The solver is
programmed in Fortran language and uses structured body-fitted mesh, aiming for
predicting aerodynamic and aerothermodynamics characteristics in flows covering
various regimes on complex three-dimensional configurations. The conservative
discrete ordinate method and implicit implementation are incorporated. Meanwhile,
a local mesh refinement technique in the velocity space is developed. The parallel
strategies include MPI and OpenMP. Test cases include a wedge, a cylinder, a 2D
blunt cone, a sphere, and a X38-like vehicle. Good agreements with experimental or
DSMC results have been achieved.

Keywords: Unified gas kinetic scheme, Conservative discrete ordinate method,
Implicit algorithm, Mesh refinement, MPI, OpenMP, Application
1 Introduction
During the reentry process, vehicles may encounter different flow regimes such as free

molecular, transitional, near continuum, and continuum regime. The determination of

aerodynamic forces and heat loads has great impact on the design of vehicles [1]. In

the non-continuum regimes, traditional macroscopic methods, such as Euler,

Navier-Stokes and Burnett equations, may become invalid. The following methods are

mainly used for the non-equilibrium flow simulations. The first kind of method is

based on probabilistic modeling. The most popular one is the direct simulation Monte

Carlo (DSMC) method. DSMC was first proposed by Bird [2] more than half a century

ago. It follows the evolution of representative particles with uncoupled transport and

collision process. The DSMC has been fully validated for providing physical solutions

through its comparison with the experiments measurements [3, 4]. It has played a key

role in the design and flight analysis of vehicles in the rarefied environment. Some of

the most cited DSMC codes in literature are DS2V/3 V [5], DAC [6], SMILE [7],

MONACO [8], and DSMCFOAM [9]. The main differences among these codes are in

the treatment of collision selection methods and mesh topology.

Another kind of approach is the deterministic method. Deterministic method mainly

concerns the Boltzmann equation. Due to the complexity of the Boltzmann collision

term, researchers usually choose the simplified collision model, such as BGK model

[10], Shakhov model [11], Rykov model [12]. Titarev [13] has developed an implicit
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solver named Nesvetay-3D on unstructured mesh. Three-dimensional TVD method is

applied for the numerical discretization. Both spatial and velocity mesh decomposition

are used in the parallelization. A total number of 6.9 × 109 mesh points in the

six-dimensional space is used for the supersonic flow simulation around a re-entry

space vehicle. Wadsworth [14] has developed a parallel, finite volume 2D/axisymmetric

code SMOKE which is based on conservative numerical schemes developed by Mieus-

sens [15]. In Baranger’s team, a 3D code [16] has been used in the past years for rar-

efied flow simulations. This code can handle polyatomic gases. It uses block structured

mesh and hybrid parallelization, i.e., space domain decomposition with MPI and inner

parallelization with OpenMP. Furthermore, the code is equipped with velocity mesh re-

finement technique which improves the code in both CPU time saving and memory

storage. Li’s team has developed a 3D code based on the model equation with the name

gas-kinetic unified algorithm (GKUA) [17, 18]. Three-dimensional hypersonic flows

around sphere and spacecraft with different Knudsen numbers and Mach numbers

have been studied. The total six-dimensional mesh for a complex wing-body configur-

ation reaches 7.3 × 1011 and 23,800 CPU cores [19] have been used in the computation.

However, the above deterministic methods share a common feature. They decouple

the particle transport and collision. Therefore, the cell size and time step in these

numerical schemes are limited by the particle mean free path and mean collision time

in order to provide accurate numerical solutions. When the flow regime is close to

continuum or near continuum, the time step and cell size limitations are rather severe

and make these methods extremely time-consuming and inefficient.

Another distinguishable deterministic method, which is named unified gas kinetic

scheme (UGKS), was proposed by Xu et al. [20–22]. UGKS is a multi-scale method

with coupled particle transport and collision in its numerical flux modeling. It is based

on an integral solution of the gas-kinetic model equation. It can recover the flow phys-

ics from the kinetic particle transport and collision to the hydrodynamic wave propaga-

tion. Moreover, the time step is determined only by the CFL condition, which is not

limited by the mean collision time. So the scheme becomes more efficient in various

flow regimes, especially when the local Knudsen number is low. Applying UGKS to

analyze aerodynamic and aerothermodynamics on flying vehicles in near space flight is

our long term objective.

This paper is organized in the following. Section 2 is about the introduction of UGKS

and some techniques to accelerate convergence. Section 3 is a simple description of the

framework. Section 4 is some 2D and 3D validation test cases. The last section is the

conclusion.
2 Method
2.1 Unified gas kinetic scheme

The three-dimensional Shakhov model equation [11],which can give the correct Prandtl

number, in non-dimensional form reads

f t þ uf x þ vf y þ wf z ¼
f þ− f
τ

ð1Þ

where the free-stream parameters density ρ∞ , velocity U∞ , viscosity coefficient μ∞ and
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the characteristic length L are used and the resulting non-dimensional variables are

given by.

ðx; y; zÞ ¼ ðx; y; zÞ=L, t ¼ t=ðL=U∞Þ, ðu; v;wÞ ¼ ðu; v;wÞ=U∞, ρ ¼ ρ=ρ∞

p ¼ p=ðρ∞U2
∞Þ, τ ¼ τ=ðL=U∞Þ, μ ¼ μ=μ∞, λ ¼ λ=ð1=U2

∞Þ, f ¼ f =ðρ∞=U3
∞Þ

f þ ¼ f
þ
=ðρ∞=U3

∞Þ, gM ¼ gM=ðρ∞=U3
∞Þ.

f+ can be given in the form, f+ = gM + g+

Here gM is the Maxwellian distribution function

gþ ¼ gM 1− Prð Þ c!• q! c2=RT−5
� �

= 5pRTð Þ

and c!¼ u!−U
!

is the peculiar velocity. T, q!, Pr are the temperature, heat flux and

Prandtl number, respectively.

The relations between conservative variables ρ, ρU, ρV, ρW, ρE with the probability

density function is

ρ; ρU ; ρV ; ρW ; ρEð ÞT ¼
Z

ψTfdΞ ð2Þ

where ψT = (1, u, v,w, 1/2(u2 + v2 +w2))T is vector of moments and dΞ = dudvdw is the

volume element in the phase space.

Integrating Eq. (1) in the volume element we can get

∂Q
∂t

þ ∂F
∂x

þ ∂G
∂y

þ ∂H
∂y

¼ 0

F ¼
Z

ufψαdΞ G ¼
Z

vfψαdΞ H ¼
Z

wfψαdΞ
ð3Þ

where the conservation constraint or compatibility condition in the following form has

been used
Z

f − f þ
� �

ψαdΞ ¼ 0 ; α ¼ 1; 2; 3; 4; 5 ð4Þ

For curvilinear coordinate system, applying the finite volume method eq. (3) goes to
ΔQ ¼ −V −1
Z tnþ1

tn

J � Sð Þiþ1=2; j;k− J � Sð Þi−1=2; j;k
þ J � Sð Þi; jþ1=2;k− J � Sð Þi; j−1=2;k
þ J � Sð Þi; j;kþ1=2− J � Sð Þi; j;k−1=2

2
4

3
5dt

J ¼ Fiþ GjþHk

ð5Þ

where V is the cell volume, S and J are the cell face vectors and flux vectors,

respectively.

The flux across a cell interface is based on the integral solution of the model equa-

tion. Discontinuous spatial reconstruction with nonlinear limiter is used to introduce

artificial dissipation for UGKS once the scheme becomes a shock capturing method

when the dissipative flow structure cannot be well resolved by the cell size. Details can

be found in [20]. In this paper, we use van Leer limiter in the reconstruction. Due to

the discreteness of the velocity space, numerical quadrature should be used to calculate

various integrals. In this paper, composite Newton-Cote’s (N −C) quadrature is adopted.

The Rykov model [12] for diatomic gases is also implemented in our UGKS code

package. The corresponding details are omitted.
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2.2 Conservative discrete ordinate method [23]

The compatibility condition Eq. (4) is the basis for the governing Eq. (3). But once the

DOM is introduced and the velocity space is discretised, Eq. (4) no longer holds and

becomes

Z
f − f þ

� �
ψαdΞ ¼ Err N−Cð Þ ð6Þ

Here Err is the numerical error introduced by the numerical quadrature. Err can be

reduced by increasing the velocity space mesh in a certain extent but will finally stay in

some level, which is determined by the intrinsic nature of numerical quadrature.

This numerical error results in a source term in the governing Eq. (5). The source

term can be expressed in the form
R tζþ1

tζ ½1τ ErrðN−CÞ�dt
Define

SS ¼ 1
Δt

Z tζþ1

tζ

1
τ
Err N−Cð Þ

� �
dt ≈

1
τ
Err N−Cð Þ

� �ζþ1

ð7Þ

Here Δt is the marching time step. The five components of SS correspond to the gov-
erning equations of mass, momentum in the x, y and z directions and the energy, re-

spectively. After some simple derivations we can get

τ ¼ μ
pRe∞

∝
Kn∞
M∞

μ
p

ð8Þ

From Eq. (7) and Eq. (8) we can see that SS is related to free-stream condition and
numerical quadrature.

In order to eliminate the numerical source term completely, we introduce CDOM

proposed by Titarev [24] into UGKS,

∭
f þ− f
τ

ψT
1 dudvdw ¼ 1

τ
0; 0; 0; 0; 0;−2=3qx;−2=3qy;−2=3qz

� �T
ð9Þ

where

ψT
1 ¼ 1;u; v;w;

1
2

u2 þ v2 þ w2
� �

;
1
2

u−Uð Þ c!2
;
1
2

v−Vð Þ c!2
;
1
2

w−Wð Þ c!2
� 	T

c!2 ¼ u−Uð Þ2 þ v−Vð Þ2 þ w−Wð Þ2

The first five equations in (9) represent conservation of mass, momentum and energy
during collision process. In discretised velocity space, the multiple integral is replaced

by numerical quadratures. If the equilibrium distribution function remains in the form

given in section 2.1, Eq. (9) no longer holds due to numerical error of quadratures. In

other words, the conservation property will not be maintained.

Substituting the expression ∭ f ψT
1 dudvdw ¼ ðρ; ρU ; ρV; ρW; ρE; qx; qy; qzÞT into Eq. (9)

we can get a new Eq. (10), which can be solved by the Newton iteration method. An initial

guess equals to (ρ,U,V,W, λ, qx, qy, qz) is provided. Then a new group of variables, ðρ0;U 0;

V 0;W 0; λ0; q0x; q
0
y; q

0
zÞ can be got.
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X
f þψT

2− ρ; ρU ; ρV ; ρW ; ρE; qx; qy; qz
� �T

¼ 0; 0; 0; 0; 0;−2=3qx;−2=3qy;−2=3qz
� �T ð10Þ

where

ψT
2 ¼ 1;u; v;w;

1
2

u2 þ v2 þ w2
� �

;
1
2

u−U 0ð Þ c!02
;
1
2

v−V 0ð Þ c!02
;
1
2

w−W 0ð Þ c!02
� 	T

c!02 ¼ u−U 0ð Þ2 þ v−V 0ð Þ2 þ w−W 0ð Þ2

Here the symbol ∑ indicates that numerical quadratures are used. With the discrete

f + determined by the above group of variables, the conservation property holds and the

numerical source term Err goes to machine zero, which has been validated in numer-

ical experiments.

The UGKS in Section 2.1 has a second-order of accuracy. What we do in this section

only changes the form of the heat flux modified equilibrium state. The spatial recon-

struction and the evaluation of the numerical flux remain unchanged. Thus, CDOM

does not affect the spatial accuracy and the coupling of particle transport and collision.

2.3 Implicit UGKS [25]

The governing equation in a physical control volume (i,j,k), at velocity mesh point

ul, m, n = (ul, vm, wn), is given by

∂ f i; j;k;l;m;n

∂t
þ ul

∂ f i; j;k;l;m;n

∂x
þ vm

∂ f i; j;k;l;m;n

∂y
þ wn

∂ f i; j;k;l;m;n

∂z
¼

f þi; j;k;l;m;n− f i; j;k;l;m;n

� �
τ

ð11Þ

Define Δf = f ζ + 1 − f ζ and Δt = tζ + 1 − tζ, then the implicit method reads
1þ Δt � 1
τζ

þ Δt � ul;m;n∇
� 	

Δ fð Þi; j;k;l;m;n ¼ Δt � Rζ
i; j;k;l;m;n

Rζ
i; j;k;l;m;n ¼ −ul

∂ f ζi; j;k;l;m;n

∂x
−vm

∂ f ζi; j;k;l;m;n

∂y
−wn

∂ f ζi; j;k;l;m;n

∂z
þ 1
τζ

f þ− f
� �

¼ −R0 þ 1
τζ

f þ− f
� �

ð12Þ

where R' is the evolving time averaged flux which can be written as

R0 ¼

R Δtt
0

X6
ii¼1

un f p tð Þdt

Δtt
ð13Þ

where un = ul, m, n • nii and nii is the unit vector normal to the cell interface. The evolving

time step Δtt is different from the marching time step Δt. Based on some numerical

experimental results, we propose in this paper the following principle to determine Δtt

Δtt < Δtmin=CFL ð14Þ

where Δtmin is the minimum time step in the whole field determined by the CFL condition.
Eq. (12) can be rewritten in the following form

1þ Δt � 1
τζ

� 	
Δ fð Þi; j;k;l;m;n þ

Δt

V i; j;k



 


X6
ii¼1

ul;m;n � nii
� � � Si; j;k;ii



 

 � FF Δ fð Þi; j;k;l;m;n; Δ fð Þi1; j1;k1;l;m;n

� �

¼ Δt � Rζ
i; j;k;l;m;n

ð15Þ



Fig. 1 Temperature contour for the jet case
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where the subscripts (i1,j1,k1) indicates the cell sharing the iith edge with the

(i,j,k) cell. The quantity FF can be expressed as

FF Δ fð Þi; j;k;l;m;n; Δ fð Þi1; j1;k1;l;m;n

� �

¼ 1
2

Δ fð Þi; j;k;l;m;n þ Δ fð Þi1; j1;k1;l;m;n

h i
þ 1
2
sign ul;m;n � nii

� �

Δ fð Þi; j;k;l;m;n− Δ fð Þi1; j1;k1;l;m;n

h i

Substituting the above expression into Eq. (15) we can get
Fig. 2 Distribution function at pts4



Fig. 3 Framework of UGKS solver package
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1þ Δt � 1
τζ

þ Δt � bi; j;k;l;m;n

� �
Δ fð Þi; j;k;l;m;n þ

X6
ii¼1

Δt � ci; j;k;l;m;n � Δ fð Þi1; j1;k1;l;m;n ¼ Δt � Rζ
i; j;k;l;m;n

bi; j;k;l;m;n ¼
X6
ii¼1

ul;m;n � nii
� � � 1þ sign ul;m;n � nii

� �� � Si; j;k;ii


 


2 V i; j;k



 



ci; j;k;l;m;n ¼ ul;m;n � nii
� � � 1− sign ul;m;n � nii

� �� � Si; j;k;ii


 


2 V i; j;k



 



ð16Þ

Writing Eq. (16) in matrix form

Iþ Δt � Zl;m;n
� � � Δ fð Þl;m;n ¼ Δt � Χ−1

l;m;n � Rζ
l;m;n ð17Þ

Δ fð Þl;m;n ¼
Δ fð Þ1;1;1;l;m;n
Δ fð Þ2;1;1;l;m;n
⋯
Δ fð ÞNI−1;NJ−1;NK−1;l;m;n

0
BB@

1
CCA Rζ

l;m;n ¼
Rζ
1;1;1;l;m;n

Rζ
2;1;1;l;m;n

⋯
Rζ
NI−1;NJ−1;NK−1;l;m;n

0
BBB@

1
CCCA

Χl;m;n ¼
χ1;1;1;l;m;n 0 ⋯ 0
0 χ2;1;1;l;m;n ⋯ 0
0 0 ⋯ 0
0 0 ⋯ χNI−1;NJ−1;NK−1;l;m;n

0
BB@

1
CCA
Table 1 Free-stream conditions

Configuration Mach Kn λ definition Working gas L(m) ω T∞(K) Tw(K)

Wedge 10 0.05 HS Argon 0.2 0.81 200 300

Cylinder 1.96 0.0162, 0.162 VHS Nitrogen radius 0.74 124.94 259.87

Cylinder 5 0.01, 0.1, 1 VHS Argon radius 0.81 273 273

Cylinder 10 3.03e-3, 7.58e-2 VHS Argon radius 0.81 200 500

Cylinder 25 3.69e-3, 1.84e-2
9.22e-2, 0.461

VHS Argon radius 0.734 200 1500

Cone 8.1 9.75e-3, 3.38e-1 VHS Argon 0.02 0.81 247, 189 273

Sphere 4.25 0.031~0.672 VHS Nitrogen 0.002 0.74 65 302

Sphere 5.45 0.256~1.96 VHS Nitrogen 0.002 0.74 43 315

X38-like 4 8.41e-5~8.41e-2 VHS Argon 0.28 0.81 56 300

X38-like 6 1.26e-4~1.26e-1 VHS Argon 0.28 0.81 56 300

X38-like 8 1.68e-4~1.68e-1 VHS Argon 0.28 0.81 56 300



Fig. 4 Pressure contour of the wedge
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where NI, NJ and NK are the physical mesh points in the i, j and k directions,

respectively.

Applying approximate LU decomposition to (I +Δt ⋅ Zl,m,n) we can get

Iþ Δt � Zl;m;n ¼ Ll;m;n �Ul;m;n þ ◯ Δt2
� �

Where Ll,m,n and Ul,m,n are both diagonal matrices and can be given by
lpq ¼ Δt � zpq p < q
0 p > q

�
upq ¼ 0 p < q

Δt � zpq p > q

�
lpp ¼ upp ¼ 1

The implicit method in the final form reads

Ll;m;n �Ul;m;n � Δ fð Þl;m;n ¼ Δt � Χ−1
l;m;n � Rζ

l;m;n ð18Þ
Fig. 5 Pressure distribution on the wedge surface



Fig. 6 Heat flux distribution on the wedge surface
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In structured meshes, (Δf )l,m,n can be obtained after backward and forward substitu-

tion and f ζ + 1 can be got subsequently.

In the above procedure, the gain term f + in the collision term is treated explicitly.

Since UGKS is a multi-scale hybrid method with both macroscopic and microscopic

variable updates. The macroscopic variables can be updated implicitly first to give a

pre-evaluating f +, resulting in a complete implicit implementation [26] for the collision

term. This is very useful for continuum or near continuum flows.
2.4 Local refinement in the velocity mesh

Generic adaptive mesh refinement (AMR) [27, 28] in velocity can greatly decrease the

CPU time and memory requirements for UGKS. However, the resulting velocity meshes

are usually different for different spatial cells, making it rather difficult to apply the im-

plicit technique.
Fig. 7 Shear stress distribution on the wedge surface



Fig. 8 |SS(1)| on the cylinder surface
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In our UGKS solver package, we combine the merits of both methods through the

following procedure. First, the bounds and interval of a global uniform velocity mesh

are calculated according to numerical experiences or a pre-conducted Navier-Stokes

simulation results. Obviously, the lower and upper limits of the velocity mesh in each

direction are determined by the highest temperature which usually appears in the shock

layer. While the mesh interval Δv is determined by the lowest temperature in the whole

field. Second, a global uniform velocity mesh is generated which we call background

mesh. The interval of this mesh is a • Δv where a is larger than one. Then we give a

patch on the background velocity mesh for the spatial cells whose velocity mesh inter-

val should be less than a • Δv. The location of the patch can be determined by the

pre-calculated Navier-Stokes results or even by the UGKS results with the background

velocity mesh. The resulting velocity mesh is still structured. The implicit method can

be applied without any difficulties.
Fig. 9 Cylinder drag coefficient vs points in u(v) direction



Fig. 10 Convergent histories of the drag coefficient with Ma = 5.0 and Kn = 0.01
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Up to now, the only difficulty arising may be the interpolation of distribution func-

tions from the background mesh to the patch. We use the following conservative

method. Take 1D case for example, the composite Newton-Cote’s quadrature requires

that the total number of velocity points is 4 N + 1, where N is a positive integer. We

can get an interpolation polynomial from the five distribution functions which is

equally spaced on a small block of four successive intervals on the velocity mesh. Since

Newton-Cote’s quadrature coefficients are derived from this polynomial, they are

consistent. It can be easily proved that the conservations of mass, momentum and energy

hold if we extend the original 5 points equally spaced mesh to a 9 points equally spaced

mesh. For 2D or 3D cases, extending a block mesh of 5 × 5 or 5 × 5 × 5 to 9 × 9 or 9 × 9 ×

9 can be done in the same way. Proof of the conservation law can be verificated through

some mathematical software such as MAPLE.

We have applied this technique in a 2D jet case on a blunt cone. The freestream

Mach number is 8.1 with an altitude of 90 km. The jet condition is ρj = 7.468e − 3,
Fig. 11 Convergent histories of the residual with Ma = 5.0 and Kn = 0.01



Table 2 Comparison of the explicit and implicit methods in convergence rate

Ma Kn Nc.E Nc.I Rs = Nc.E/ Nc.I/1.02

5 0.01 502,450 5800 84.93

5 0.1 463,500 3500 129.83

10 0.01 505,900 4645 106.78
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uj = cj, pj = 373Pa, Tj = 240K. The pressure ratio of the jet to the free-stream is

about 2000. For the jet-off case, a velocity mesh of 121 × 121 is enough. For the

jet-on case, the local temperature decreases severely due to rapid expansion from

the jet exit. Figure 1 shows the temperature contour. The temperature in the

downstream of the jet near pts4 is about one order lower than the free-stream

temperature. Thus, it’s necessary to refine the velocity mesh in order to resolve the

corresponding distribution function. From the pre-conducted UGKS results, we

choose 9 blocks of 5 × 5 sub-mesh and extend them to 9 × 9 sub-mesh. The final

distribution function and the velocity mesh are shown in Fig. 2.

In this case, if we use global uniform mesh, the total mesh will be 241 × 241. With

the local refinement technique, the total mesh is 121 × 121 + 9 × (9 × 9 - 5 × 5) = 15,145

which is only 1/3.8 of the former.

2.5 Parallelization

At present, hybrid parallelization similar to that in [16] is used. The space mesh is

decomposed and parallelized with MPI which has been broadly applied in many trad-

itional CFD software. In every MPI process, several threads are used with OpenMP.

However, due to the architecture change of our new super cluster, three space dimen-

sions and one velocity dimension decomposition technique is under developing, allow-

ing for a larger parallel scale up to 10,000 cores in the near future.

3 Code framework
The UGKS solver package is based on the framework of our in-house NS solver,

CARDC Hypersonic Aerodynamic Numerical Tunnel (CHANT) [29]. Figure 3 shows
Fig. 12 Pressure distributions on the cylinder surface at M = 1.96



Fig. 13 Slip velocity distributions on the cylinder surface at M = 1.96
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the general sketch. The whole package is composed of five parts: input, output,

initialization, control and calculation. The flowfield of a certain configuration is ob-

tained through calculations over all structured blocks one by one. Multi-stage interface

is devised for further development. Fortran90 is used for all subroutines.

The current features of UGKS solver package can be summarized as follows:

� 2D and 3D body-fitted structured multi-block mesh

� Steady and unsteady simulations

� Explicit and implicit methods

� Conservative discrete ordinate method

� Local refinement in velocity mesh

� Shakhov model for monatomic gases

� Rykov model for diatomic gases
Fig. 14 Incident heat flux distributions on the cylinder surface at M = 1.96



Fig. 15 Reflective heat flux distributions on the cylinder surface at M = 1.96
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� Diffuse or specular reflection wall boundaries, free-stream boundary, outflow

boundary, symmetrical boundary

� Several models for the viscosity calculation such as hard sphere model, variable

hard sphere model [30] or the Sutherland model

� Hybrid parallelization with MPI and OpenMP
4 Validation cases
Five test cases are considered. UGKS results are compared with those obtained from

either DS2V [5], MONACO [31], RariHV [32] or experiments. Fully diffuse solid

boundary is used. In all cases, the global Knudsen number Kn is defined as
Fig. 16 Pressure distributions on the cylinder surface at M = 5



Fig. 17 Heat flux distributions on the cylinder surface at M = 5
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Kn ¼ λ

L
ð19Þ

where λ is the mean free path which is determined for either hard sphere (HS) mole-

cules [30].

λ ¼ 16
5

ffiffiffiffiffiffiffiffiffiffiffi
m

2πkT

r
μ
ρ

ð20Þ

or variable hard sphere (VHS) molecules

λ ¼ 2 5−2ωð Þ 7−2ωð Þ
15

ffiffiffiffiffiffiffiffiffiffiffi
m

2πkT

r
μ
ρ

ð21Þ

where ω is the power law index of the viscosity, m is the atomic mass, k is the

Boltzmann constant.
Fig. 18 Pressure distributions on the cylinder surface at M = 10



Fig. 19 Shear stress distributions on the cylinder surface at M = 10
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The main free-stream conditions for all cases are summarized in Table 1.
4.1 Hypersonic flow over a 400 wedge

The angle of attack is 10 degrees. Figure 4 shows the pressure contour predicted by

UGKS. Figures 5, 6 and 7 display the pressure, heat flux and shear stress distributions

on the surface, respectively. The UGKS results and DS2V results are almost identical,

indicating that UGKS code package and DS2V can predict flows with similar accuracy.
4.2 Super and hypersonic flows over a 2D cylinder

This is a quite comprehensive test case covering supersonic and hypersonic flows in all

regimes. We also use this case for validating the CDOM and implicit techniques de-

scribed in section 2.
Fig. 20 Pressure distributions on the cylinder surface at M = 25



Fig. 21 Heat flux distributions on the cylinder surface at M = 25

Jiang et al. Advances in Aerodynamics             (2019) 1:8 Page 17 of 24
For Mach number 10, both DOM and CDOM calculations are conducted. Figure 8

shows the variable |SS(1)| in the cells just near the wall at different velocity space

meshes. When the velocity space mesh increases, the numerical source term decreases

but will stay at a certain level finally. So increasing the velocity space mesh will not elimin-

ate the source term. However, the source term will be on an order of 10− 14~10− 15 if

CDOM is applied. The total drag at different velocity space meshes is given in Fig. 9. Ob-

viously, the mesh dependence with CDOM is much smaller than that with DOM. The so-

lution at 61 × 61 mesh with CDOM can be considered as mesh convergent while with

DOM the same result can only be obtained at a much finer mesh of 121 × 121. Thus, the

time and memory cost will decrease by nearly three quarters with the help of CDOM.

Figures 10 and 11 show the convergent histories of the drag coefficient and residual

for Mach number 5 and Knudsen number 0.01, respectively. A comparison of the expli-

cit and implicit methods in convergence rate is shown in Table 2. Nc.E and Nc.I are

the total iterations steps for a convergent solution for the explicit and implicit methods,
Table 3 Comparisons of cylinder drag

M∞ Kn∞ UGKS DS2V/MONACO Relative error (%)

1.96 0.0162 1.597 1.582 0.92

1.96 0.162 1.862 1.863 −0.06

5 0.01 1.320 1.316 0.31

5 0.1 1.527 1.523 0.28

5 1 1.929 1.917 0.62

5.43 0.303 1.774 1.775 −0.05

5.43 1.52 2.277 2.304 −1.19

10 0.00303 1.258 1.252 0.56

10 0.0758 1.500 1.496 0.27

25 0.00369 1.256 N-A/1.259 −0.21

25 0.0184 1.348 1.349/1.347 0.07

25 0.0922 1.531 1.521/1.528 0.22

25 0.461 1.807 1.792/1.771 2.03



Fig. 22 Cone model
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respectively. Rs is the speed-up ratio for the implicit method, where the denominator

1.02 comes from the fact that the computational cost of one time step for the implicit

method is about 2% more than that for the explicit method. A speed up ratio of nearly

two orders can be achieved.

Figures 12, 13, 14 and 15 show the comparisons between UGKS and DS2V for a di-

atomic nitrogen gas. The UGKS results are obtained with the Rykov model with rota-

tional degrees of freedom. Thus, the heat flux can be divided into two parts, the

contributions of translational degree and rotational degree. Good agreements can be

seen, providing a sound validation for our UGKS code for diatomic gases.

Figures 16 and 17 are the results for Mach number 5. Figures 18 and 19 are the re-

sults for Mach number 10. Figures 20 and 21 are the results for Mach number 25. We

omit some comparisons at certain Mach numbers because of space limitations.

Table 3 gives the drag coefficient comparisons. The maximum relative error is only

2.03%.
Fig. 23 Pressure contour and streamlines



a b

Fig. 24 Pressure distributions on the cone surface (a) Body (b) Bottom
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4.3 Hypersonic flow over a 2D cone

Figure 22 gives the computational configuration. The angle of attack is 0 degree. The

pressure contour and streamlines are shown in Fig. 23. The altitude in the figure is only

‘nominal’ which means that only the temperature and number density at the corre-

sponding altitude are used, since the air is treated as a monatomic gas. In other words,

internal degrees of freedom are ignored. The two global Knudsen numbers in Table 1

for cone case correspond to nominal altitudes 60 km and 85 km, respectively. The flow

pattern is relatively simple, i.e., a bow shock in front of the blunt body and a vortex in

the bottom similar to that in a backward step case. However, the bow shock in front of

the 85 km case is much weaker than that in the 60 km case. The recirculation zone in

the bottom is smaller, too.

Figures 24, 25 and 26 show the pressure, heat flux, and shear stress distributions on

the cone surface, respectively. The abscissa indicates the distance from the very begin

of the cone on the surface. The bottom pressure at 60 km rises about one order from

the corner to the center of the bottom, resulting in a large adverse pressure gradient

and inducing a large separation. At 85 km, the pressure curve is rather flat and only
a b

Fig. 25 Heat flux distributions on the cone surface (a) Body (b) Bottom



a b

Fig. 26 Shear stress distributions on the cone surface (a) Body (b) Bottom
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small adverse pressure gradient occurs. Moreover, the minimum pressure, heat flux and

stress at the bottom are almost three orders lower than the maximum values on the

cone. UGKS can capture these phenomena as accurately as the DS2V.
4.4 Supersonic and hypersonic flows over a sphere

The flow past a sphere is simulated with Rykov model to compare with the experimen-

tal drag coefficients [33]. The space mesh contains 21,840 cells while a velocity mesh of

41 × 41 × 41 is used.

Figure 27 shows the pressure contour for two cases. When the Knudsen number is

large, variable gradient in the whole field is small. There is only weak compressive wave

in front of the sphere.
a b

Fig. 27 Pressure contour on the symmetry plane and the sphere surface (a) M = 4.25, Kn = 0.031 (b)
M = 5.45, Kn = 1.96



Table 4 Comparisons of sphere drag

M∞ Re Kn∞ UGKS (Nitrogen) Exp (Air) Relative error (%)

4.25 9.55 0.672 2.356 2.42 2.64%

4.25 19.0 0.338 2.101 2.12 0.87%

4.25 53.0 0.121 1.694 1.69 −0.27%

4.25 80.5 0.080 1.558 1.53 −1.80%

4.25 150.0 0.043 1.410 1.37 −2.91%

4.25 210.0 0.031 1.355 1.35 −0.39%

5.45 4.2 1.960 2.595 2.60 0.18%

5.45 8.6 0.957 2.449 2.44 −0.36%

5.45 16.8 0.490 2.248 2.28 1.41%

5.45 32.1 0.256 2.005 2.04 1.71%
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Table 4 gives the drag coefficient comparisons. The maximum relative error is only

2.64%. The agreements can be considered as excellent since the root mean square

(RMS) error of the experiments is about ±2%.
4.5 Supersonic and hypersonic flows over a X38-like vehicle

The angle of attack is 20 degrees in this case. The space mesh contains 334,434 cells

while a velocity mesh of 33 × 33 × 33 is used. The total six-dimensional mesh reaches

1.2 × 1010. The reference area for the aerodynamic coefficient is 2.41 × 10− 2 m2.

Figure 28 gives the spatial streamlines around the vehicle with Mach number 4.

When the free-stream Knudsen number is relatively small, the adverse pressure gradi-

ent can be large enough to induce the flow to separate from the boundary, resulting in

the vortex in Fig. 28(a).

Figure 29 shows the local Knudsen number distribution near the surface. Local Knudsen

number is calculated through Eq. (19) with the characteristic length L substituted by the

local gradient-length Q/|dQ/dl| proposed by Boyd [34]. In this paper, the density-based

gradient-length is used. The local Knudsen number can cover a wide range of values with
a b

Fig. 28 Spatial streamlines around the X38-like vehicle (a) M = 4, Kn = 8.41e-5 (b) M = 4, Kn = 8.41e-3



a b

Fig. 29 Local Knudsen number distribution (a) M = 6, Kn = 1.26e-4 (b) M = 6, Kn = 1.26e-2
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four to five order of magnitude difference. Thus, such a multi-scale method as UGKS is

needed in order to correctly simulate these flow fields.

Table 5 gives the aerodynamic coefficients comparisons for Mach number 8. The

DSMC results are provided with RariHV which is an in-house DSMC software

based on unstructured mesh in our group. The maximum relative error is only

2.27%.
5 Conclusions
Our UGKS solver package is introduced including the main numerical techniques for

improving the efficiency and accuracy, such as implicit method and local mesh refine-

ment technique in the velocity space. It is devised for simulating flow fields around

complex configurations for all flow regimes.

Several validations are conducted by comprehensive comparisons with industry-

standard DSMC code and experimental results including the pressure, heat flux, shear

stress and aerodynamic coefficients for supersonic and hypersonic flows at almost all

regimes. The agreements are satisfactory in all cases.

Future work include more application to 3D complex configurations and complex

flow, improvement on physical models to consider vibrational degree, implementation

of models for gas mixtures, and increases in computational efficiency and accuracy.
Table 5 Comparisons of X38-like coefficients with Mach number 8

Coefficients Kn UGKS RariHV Relative error(%)

Lift 1.68e-1 1.98E-01 1.96E-01 0.98

1.68e-2 1.94E-01 1.92E-01 1.15

1.68e-3 1.93E-01 1.94E-01 −0.69

Drag 1.68e-1 1.00E+ 00 9.79E-01 2.27

1.68e-2 5.56E-01 5.46E-01 1.85

1.68e-3 2.90E-01 2.95E-01 −1.71
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