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Abstract
Problems in unsteady aerodynamics and aeroacoustics can sometimes be formulated
as integral equations, such as the boundary integral equations. Numerical discretization
of integral equations in the time domain often leads to so-called March-On-in-Time
(MOT) schemes. In the literature, the temporal basis functions used in MOT schemes
have been largely limited to low-order shifted Lagrange basis functions. In order to
evaluate the accuracy and effectiveness of the temporal basis functions, a Fourier
analysis of the temporal interpolation schemes is carried out. Based on the Fourier
analysis, the spectral resolutions of various temporal basis functions are quantified. It is
argued that hybrid temporal basis functions be used for interpolation of the numerical
solution and its derivatives with respect to time. Stability of the proposed hybrid
schemes is studied by a matrix eigenvalue method. Substantial improvement in
accuracy and efficiency by using the hybrid temporal basis functions for time domain
integral equations is demonstrated by numerical examples. Compared with the
traditional temporal basis functions, the use of hybrid basis functions keeps numerical
errors low for a larger frequency range given the same time step size. Conversely, for a
given range of frequency of interest, a larger time step can be used with the hybrid
temporal basis functions, resulting in an increase in computational efficiency and, at
the same time, a reduction in memory requirement.

Keywords: Time domain integral equation, Temporal basis function,
March-On-in-Time

1 Introduction
Unsteady aerodynamics and aeroacoustics problems can sometimes be formulated as
integral equations. For instances, boundary integral equations can be derived for the
quasi-potential flows and for acoustic wave scattering problems [1–8]. Historically,
numerical solutions of integral equations are often carried out in the frequency domain. A
vast majority of computational solvers for boundary integral equations have been devel-
oped assuming a single fixed frequency. Compared with the frequency domain approach,
time domain solutions have several distinct advantages. For instances, solutions at all
frequencies can be obtained within one single computation by post-processing the time
domain solution, and acoustic sources of broadband nature can be more naturally sim-
ulated in the time domain. However, the development of time domain approach has
been hindered by two major difficulties. The first was the intrinsic instability in the time
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domain formulations due to the presence of resonant frequencies which are bound to exist
in time domain calculations. The second was the formidably high computational costs
in solving the time domain integral equation. Significant progresses have been made in
recent years in resolving these two major difficulties. Stable boundary integral formula-
tion can now be achieved by using a Burton-Miller type reformulation or a discretization
by Convolution Quadrature [1, 3, 5, 8–10]. And there are recent developments where
computational complexity can be reduced from O

(
NtN2) to O

(
NtN log2N

)
where N is

the total number of unknowns on the scattering surface in the three-dimensional space,
and Nt is the total number of time steps [11, 12]. For instance, for March-On-in-Time
(MOT) schemes, the recently developed Plane Wave Time Domain (PWTD) algorithm
can be used to accelerate the far interactions [11], akin to the Fast Multipole Methods
in the frequency domain. Another efficient time domain propagation algorithm is the
multi-level Cartesian Non-uniform Grid Time Domain Algorithm (CNGTDA), based on
the delay- and amplitude-compensated acoustic field [12–14]. With these breakthroughs,
as well as the advances in computational power and new computing architectures, an
increase in the application of time domain integral equations for unsteady aerodynamics
and aeroacoustics is expected in the future.
Compared to these recent efforts, far less attention has been given to the temporal basis

functions used in the MOT schemes. In fact, with a few exceptions (e.g., [15–19]), the
time basis functions used in MOT schemes are still largely limited to low-order shifted
Lagrange basis functions. The focus of the present paper is on suitable temporal basis
functions for the solution of time domain integral equations. Improving temporal basis
functions is important because it will lead to larger allowable time step sizes and will, in
turn, significantly reduce the total number of time steps Nt , and thus has a direct impact
on the efficiency and accuracy as well as memory requirements of a time domain solver.
Currently, the most popular temporal basis function remains to be the third-order shifted
Lagrange polynomial. A traditional metric of assessing the accuracy of basis functions has
been the order of the polynomials employed. In the present paper, we study the accuracy
in the Fourier frequency space. Unlike the traditional Taylor series analysis on the tempo-
ral basis functions, a Fourier analysis examines the error in the Fourier frequency space.
Lagrange basis functions up to the 6th-order are analyzed for their spectral resolution. As
a result of the Fourier analysis, it is shown that for a given order of the basis functions, the
spectral resolutions for approximating the solution are different from that for approxi-
mating its temporal derivatives that are also required in the integral equation formulation.
To improve the overall temporal spectral resolution, it is proposed that hybrid temporal
basis functions be used in the MOT schemes where different basis functions are used for
interpolating the solution and it derivatives. Stability of the proposed hybrid schemes is
validated by a numerical matrix eigenvalue analysis.
The rest of the paper is organized as follows. In Section 2, formulation of a time domain

integral equation is introduced as it appears in acoustic scattering problems. The need for
temporal basis functions is demonstrated when the integral equation is discretized as a
March-On-in-Time scheme. In Section 3, the Lagrange basis function is defined and for-
mulated as an interpolation problem. Its essential properties as an interpolation tool are
discussed. In Section 4, a Fourier analysis of the Lagrange basis functions is presented.
Based on the Fourier analysis, hybrid schemes are proposed that increase the spectral
resolution of the interpolation in the numerical solution of integral equations. Stability
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of the proposed hybrid schemes for the solution of time domain integral equation is dis-
cussed in Section 5. Numerical examples that demonstrate the effectiveness of the hybrid
schemes are presented in Section 6. Section 7 has the conclusions.

2 Time domain boundary integral equations and temporal basis functions
As an example of time domain integral equation and its requirements on the temporal
basis functions developed in the present paper, we consider the problem of acoustic scat-
tering which, under the no-flow assumption, is governed by the wave equation with a
source term,

∂2u
∂t2

− c2∇2u = q(r, t) (1)

The domain V ∈ R
3 is exterior of a scattering body defined by a closed surface, or

surfaces, S. In (1), c is the wave speed and q is the known source. The wave equation can
be converted into a Time Domain Boundary Integral Equation (TDBIE) as follows (e.g.,
[3, 5, 6, 8]):

2πu(rs, t) = 1
c2

∫

V

1
R
q(r, tR)dr+

∫

S

1
R

[
∂u
∂n

(rs, tR) + 1
R

∂R
∂n

u(rs, tR) + 1
c

∂R
∂n

∂u
∂t

(rs, tR)
]
drs

(2)

where rs is a smooth point on surface S, ∂
∂n is the in-ward normal derivative on S, and tR

is the retarded time between rs and rs:

tR = t − R/c, where R = |rs − rs| (3)

For a boundary value problem, the normal derivative ∂u/∂n is often given and therefore
Eq. (2) establishes an integral equation for the solution u(rs, t) on the scattering surface.
For instance, if u represents acoustic velocity potential, then on solid surfaces, we have
∂u/∂n = 0. To solve the integral Eq. (2) by a Time Domain Boundary Element Method
(TDBEM), the integral surface S is discretized into boundary elements Si, i.e., S = ⋃

Si,
and the time t is discretized by a temporal grid with a uniform time step �t,

tj = t0 + j�t (4)

where t0 is an arbitrary time at j = 0. Numerical solution for u(rs, t), denoted by U(rs, t),
is often conveniently expressed as an expansion in surface and temporal basis functions as

U(rs, t) =
Ne∑

i=1

Nt∑

j=0
ujiψj(t)ϕi(rs) (5)

in which Ne is the total number of surface nodes and Nt is the total number of time
steps. In this expression, ϕi(rs) is the surface basis function for the i-th surface node, and
ψj(t) denotes the temporal nodal basis function for tj. For simplicity, a constant boundary
element approach is assumed in this paper where ϕi(rs) is unity when rs is inside the
i-th element and is zero elsewhere. Then, the expansion coefficients in (5), uji, represent
the solution at the i-th node and at time tj. Furthermore, in this paper, only temporal
basis functions with a finite support are considered. Specifically, we assume ψj(t) = 0 for
t ≤ tj−1 or t > tj+m wherem is a fixed constant. Consequently, the summation over index
j in (5) will result in no more thanm + 1 non-zero terms for any given t.
In the collocation MOT approach, expansion (5) is substituted into (2) and the integral

equation is enforced at each surface nodal collocation point and progressively at each
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time step. Using the discretization stipulated in (5), the MOT approach for Eq. (2) results
in an algebraic iteration scheme of the form

B0un = qn −
K∑

k=1
Bkun−k (6)

where un denotes the vector of all coefficients uni at time level tn, qn denotes the source
term generated by the volume integral in (2), and K denotes the limit for index k. The
matrices B0, B1, ..., BK are the coefficient matrices resulting from the discretization of
TDBIE (2) as described above. Explicit expressions for the Bmatrices can be found in [8].
While it has been well-known that the MOT scheme derived directly from the TDBIE

(2) suffers from long time instability, the instability can be effectively eliminated by apply-
ing a Burton-Miller type reformulation to the TDBIE [1, 3, 5, 8]. The Burton-Miller
reformulation involves applying the follow differential operator, a linear combination of
the time and normal derivatives, to the TDBIE (2):

∂

∂t
− c

∂

∂n
(7)

As evident from the discussions above, to solve the integral Eq. (2), there is a need
to evaluate the solution U(rs, t) and its temporal derivative dU

dt (rs, t) at retarded time
tR = tn − R/c which may or may not fall on temporal nodal points. When tR does not lie
on a nodal point, approximation by interpolation would be required. Furthermore, when
Eq. (2) is cast into a Burton-Miller type reformulation by the operator (7), there is also a
need to compute the second-order time derivative d2U

dt2 (rs, t). It has been customary in the
literature that these time derivatives are to be computed using the same temporal basis
functions as in expansion (5). This results in the following approximations:

∂U
∂t

(rs, t) =
Ne∑

i=1

Nt∑

j=0
ujiψ

′
j (t)ϕi(rs) (8)

∂2U
∂t2

(rs, t) =
Ne∑

i=1

Nt∑

j=0
ujiψ

′′
j (t)ϕi(rs) (9)

where ψ ′
j (t) and ψ ′′

j (t) denote, respectively, the first and second derivatives of ψj(t) with
respect to t.
The focus of the present paper is to study in detail suitable temporal basis functions

ψ j(t) to be used for computing U(rs, t), ∂U
∂t (rs, t), and ∂2U

∂t2 (rs, t).

3 Formulation of temporal basis functions
3.1 Classical shifted Lagrange basis function

In the literature (e.g., [3, 5, 16]), temporal basis function ψj(t), appearing in (5), is often
taken to be of the following form,

ψj(t) = �(τ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�0(τ ) −1 < τ ≤ 0
�−1(τ ) 0 < τ ≤ 1
�−2(τ ) 1 < τ ≤ 2

... ...
�−m(τ ) m − 1 < τ ≤ m

0 other

(10)



Hu Advances in Aerodynamics             (2019) 1:9 Page 5 of 18

in which τ = (t−tj)/�t,m is the chosen order of basis function, and�	(τ), 	 = −m, ..., 0,
are shifted Lagrange polynomials formed as follows:

�	(τ) =

0∏

i=−m,i�=	

[−τ + (i − 	)]

0∏

i=−m,i �=	

(i − 	)

, 	 = −m, ..., 0 (11)

Here, the product notation is used where, e.g.,
n∏

i=1
ai denotes a1 · a2 · a3 · · · an. For

convenience of discussion, �	(τ) will be referred to as τ -normalized basis functions.
Equation (11) yields a temporal basis function that is a piece-wisem-th order polynomial.
For instances, the popular third-order shifted Lagrange basis functions are the following:

�(τ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + 11
6 τ + τ 2 + 1

6τ
3 −1 < τ ≤ 0

1 + 1
2τ − τ 2 − 1

2τ
3 0 < τ ≤ 1

1 − 1
2τ − τ 2 + 1

2τ
3 1 < τ ≤ 2

1 − 11
6 τ + τ 2 − 1

6τ
3 2 < τ ≤ 3

0 other

(12)

Function �(τ) is plotted in Fig. 1 for cases of m = 3, 4, 5, and 6. It represents the
influence of the nodal value at tj on other points in time. Here, the temporal basis function
is considered to be causal on a discretized grid if ψj(t) = 0 for all t ≤ tj−1. Because the

Fig. 1 τ -normalized basis function for the 3rd- to 6-th order Lagrange basis functions as defined in (11). Here
τ = (t − tj)/�t with respect to temporal node tj
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temporal basis function (10) has a finite support in time and causal by design, we have,
for any t ∈ (tn−1, tn],

Nt∑

j=0
ujiψj(t) = uni ψn(t) + un−1

i ψn−1(t) + · · · + un−m
i ψn−m(t) (13)

That is, the value at time t ∈ (tn−1, tn] depends only on those at a time no later than
tn and no earlier than tn−m. In terms of the τ -normalized basis functions �	(τ) the
expansion in the above is

Nt∑

j=0
ujiψj(t) = uni �0

(
t − tn
�t

)
+un−1

i �−1

(
t − tn−1

�t

)
+· · ·+un−m

i �−m

(
t − tn−m

�t

)

(14)

Equation (13) shows that a use of the basis function of the form (10) results in
an interpolation for the value at t ∈ (tn−1, tn] from those on temporal nodal points
tn−m, · · · , tn−1, tn.

3.2 Generalized temporal basis function

To further analyze the accuracy of an interpolation scheme of the form (14), we consider
a general interpolation problem for a value at t̃j, where t̃j = tj − η�t, 0 ≤ η < 1, using a
stencil from tj−M to tj+N :

U
(
t̃j
) =

N∑

	=−M
S	(η)uj+	 (15)

as illustrated in Fig. 2. Here U(t) denotes the approximation for u(t) by the interpolation.
To satisfy causality for the interpolation, it would be required that N = 0. The analysis
presented below, however, will be valid for any N ≥ 0. For brevity, the subscript in uji has
been dropped in (15).

Fig. 2 A schematic diagram for a general interpolation stencil (denoted by closed circles) along the time grid
for a point t̃j (denoted by the open square) between tj−1 and tj . Open circles indicate the temporal grid points
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In (15), S	(η) are the coefficients of the interpolation scheme for the value at any point
t̃j located in (tj−1, tj]. For the Lagrange interpolation polynomials, we have simply

S	(η) =

N∏

	′=−M,	′ �=	

(t̃j − tj+	′)

N∏

	′=−M,	′ �=	

(tj+	 − tj+	′)

=

N∏

	′=−M,	′ �=	

(	′ + η)

N∏

	′=−M,	′ �=	

(	′ − 	)

(16)

It is also straightforward to find that when S	(η) in (15) is converted to temporal basis
functions and expressed similarly to that in (10), we have the equivalent τ -normalized
basis functions as

�	(τ) = S	(−τ − 	), 	 = −M, ...,N (17)

where τ and η are related as

τ = t̃j − tj+	

�t
= −η − 	 (18)

Conversely, we have

S	(η) = �	(−η − 	) (19)

For convenience of discussion, the Lagrange interpolation basis function as defined by
(15) and (16) will be denoted as the Lag-(M,N) scheme. For instance, the third-order
shifted Lagrange basis function (12), with M = 3 and N = 0, is denoted as Lag-(3, 0)
scheme. The explicit forms of the τ -normalized basis functions for Lag-(4, 0), Lag-(5, 0),
and Lag-(6, 0) schemes are given in Appendix 1.
As noted earlier, in the formulation of time domain integral equations, interpolations

for the derivatives with respect to time (up to second-order when the Burton-Miller type
formulation is used) are also required. Their approximations can now be written as

dU
dt

(t̃j) = − 1
�t

N∑

	=−M
S′
	(η)uj+	 (20)

d2U
dt2

(t̃j) = 1
�t2

N∑

	=−M
S′′
	 (η)uj+	 (21)

where S′
	(η) and S′′

	 (η) are respectively the first and second derivatives of S	(η) with
respect to η.

4 Fourier analysis of temporal basis functions
Next, we present an error analysis of temporal interpolation schemes (15), (20) and (21)
in the Fourier frequency space. While the accuracy of an interpolation scheme is tradi-
tionally assessed by the order of the interpolating polynomials, the present error analysis
will be carried out in the Fourier frequency space.
Given a grid function uj, defined on a uniform grid of tj = t0 + j�t, its discrete Fourier

transform is [20]

û(ω) = �t
∞∑

j=−∞
ujeitjω (22)
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where ω is the frequency. The inverse transform for (22) is

uj = 1
2π

∫ π/�t

−π/�t
e−itjωû(ω)dω (23)

Equations (22) and (23) indicate that the frequency range for the spectrum of a grid
function uj would be one that is continuous but limited to π

�t , the Nyquist limit. The
objective of the present study is to investigate interpolation schemes that preserve the
spectrum û(ω) as much as possible.
It is well-known that a special interpolation function called cardinal interpolation,

denoted as UI(t), that recovers the full spectrum û(ω) as defined in (22) and (23) can be
constructed as follows [20],

UI(t) = 1
2π

∫ π/�t

−π/�t
e−itωû(ω)dω =

∞∑

j=−∞
ujsinc

( t − tj
�t

π

)
(24)

Its Fourier spectrum is

ÛI(ω) =
∫ ∞

−∞
UI(t)eiωtdt =

{
û(ω), |ω�t| < π

0, |ω�t| > π
(25)

While ÛI(ω) does preserve the full spectrum of uj, its interpolation stencil is unfortu-
nately infinitely wide.
We now consider the accuracy of the interpolation defined in (15), (20) and (21) in the

Fourier frequency space. Following the definition of discrete Fourier transform in (22),
the spectrum of the interpolated values U(t̃j) computed on the grid t̃j = tj − η�t is

Û(η,ω) = �t
∞∑

j=−∞
U
(
tj − η�t

)
ei(tj−η�t)ω = �t

∞∑

j=−∞

⎛

⎝
N∑

j=−M
S	(η)uj+	

⎞

⎠ ei(tj−η�t)ω

=
N∑

	=−M
S	(η)

⎛

⎝�t
∞∑

j=−∞
uj+	eitjω

⎞

⎠ e−iηω�t

= e−iηω�t
N∑

	=−M

⎡

⎣S	(η)e−i	ω�t

⎛

⎝�t
∞∑

j=−∞
uj+	eitj+	ω

⎞

⎠

⎤

⎦

= e−iηω�t
( N∑

	=−M
S	(η)e−i	ω�t

)

û(ω) (26)

As the last expression in the above shows, an interpolation scheme of the form given in
(15) will modify the spectrum of the original data uj by a factor of

F0(η, ξ) = e−iηξ

( N∑

	=−M
S	(η)e−i	ξ

)

(27)

where ξ is the non-dimensional frequency,

ξ = ω�t (28)

The ideal value for F0(η, ξ) is of course unity for all η and ξ , and any deviation of
F0(η, ξ) from unity represents the error of interpolation in the Fourier frequency space.
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To facilitate the ensuing discussions, we introduce the following as a measure for the error
of interpolation in the frequency space:

E0(η, ξ) =
N∑

	=−M
S	(η)e−i	ξ − eiηξ (29)

Furthermore, interpolation errors for approximating the first and second derivatives
with respect to time will be assessed by E1(η, ξ) and E2(η, ξ) respectively defined as
follows:

E1(η, ξ) = dE0
dη

(η, ξ) =
N∑

	=−M
S′
	(η)e−i	ξ − iξeiηξ (30)

E2(η, ξ) = d2E0
dη2

(η, ξ) =
N∑

	=−M
S′′
	 (η)e−i	ξ + ξ2eiηξ (31)

While convenient to work with, the error functions E0(η, ξ), E1(η, ξ), and E2(η, ξ) can
be shown to be related to the relative errors in the Fourier space for the approximations
(15), (20) and (21), respectively (see Appendix 2). Clearly, magnitude of the errors depends
on η as well as ξ . The value η indicates the location of the point between two nodal points
and the value ξ is the frequency non-dimensionalized by the time step. For instance, a
value of ξ = π/n represents a wave of period 2n�t. For the Lagrange basis functions of
order 3 to 6, the maximum values of these errors in the range of 0 ≤ η < 1 as functions of
the non-dimensional frequency ξ are plotted in Fig. 3. It is seen that for a given interpo-
lation stencil, the largest error occurs for E2 for interpolating the second derivatives. On
the other hand, all the errors become smaller when the number of stencils increases.
As Fig. 3 reveals, the magnitude of the interpolation errors in Fourier frequency space

is not the same for approximating U, dU/dt, and d2U/dt2, being largest for E2(η, ξ) and
the smallest for E0(η, ξ). To reduce the impact of the lowered accuracy in approximat-
ing the derivatives, it is proposed that a hybrid approach be taken where a wider stencil
be used for computing dU/dt and d2U/dt2. For instances, when Lag-(3, 0) is used for
the expansion for U, Lag-(4, 0) or Lag-(5, 0) might be used for the expansion for dU/dt
and d2U/dt2 in (20) and (21). In this way, the accuracy in spectrum approximation can

Fig. 3 Maximum of error functions E0(η, ξ), E1(η, ξ) and E2(η, ξ) for 0 ≤ η < 1 as a function of ξ = ω�t, for
Lagrange schemes Lag-(3,0), Lag(4,0), Lag-(5,0), and Lag-(6,0) as indicated
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be kept relatively the same. Temporal schemes with one set of basis functions for U and
another for its derivatives will be referred to as hybrid schemes, denoted by Lag-(M,N)-
(M1,N1)-(M2,N2) where (M1,N1) and (M2,N2) indicate, respectively, the interpolation
stencils used for approximating the first and second derivatives. To the author’s best
knowledge, this is the first time a hybrid temporal basis function is proposed for MOT
formulations.
Of particular interest would be the hybrid scheme Lag-(3,0)-(5,0)-(6,0). For this par-

ticular combination, the errors curves in Fig. 3 behave similarly when |E0| for Lag-(3,0),
|E1| for Lag-(5,0), and |E2| for Lag-(6,0) are compared. All the three curves show a spec-
tral resolution up to about ω�t = 0.6, or about 11 points per wavelength, if a criteria
of errors being less than 0.5% is used. This is a significant increase from using Lag-
(3,0) for all three types of interpolations where the spectral resolution would be limited
to about 25 points per wavelength. Unfortunately, Lag-(3,0)-(5,0)-(6,0) hybrid scheme is
found to be unstable by the eigenvalues analysis to be presented in Section 6. In fact,
the only stable hybrid schemes using the Lagrange basis functions are Lag-(3,0)-(4,0)-
(4,0) and Lag-(3,0)-(4,0)-(5,0) when Lag-(3,0) is used for approximating U. To gain still a
broader spectral resolution and better stability properties, we consider in the next section
optimized temporal basis function to be coupled with Lag-(3,0).

5 Optimized scheme
We carry out an optimization of the Lagrange interpolation scheme where the for-
mal order of interpolation is lowered but spectral resolution is increased. The general
polynomial form of S	(η) for an interpolation scheme written in (15) is:

S	(η) =
M+N∑

n=0
a(	)
n ηn (32)

The coefficients a(	)
n are to be determined such that the following expression, which is a

sum of the three types of error functions in the Fourier space,

OBJECTIVE : E =
∫ ξ0

−ξ0

∫ 1

0

[|E0(η, ξ)|2 + |E1(η, ξ)|2 + |E2(η, ξ)|2] dηdξ (33)

is minimized. In (33), E0(η, ξ), E1(η, ξ) and E2(η, ξ) are that given in (29), (30) and (31)
respectively, and ξ0 is a chosen limit of the non-dimensional frequency for optimization.
In carrying out the optimization process, two additional conditions will also be

imposed. The first is the order of interpolation m. By expanding (29) as a Taylor series in
ξ and enforcing the equation up to orderm, we get

N∑

	=−M
S	(η)	k − (−η)k = 0, k = 0, 1, 2, ...,m (34)

This condition ensures that the resulting optimized interpolation is accurate to order
m in η and ξ . In terms of the coefficients a(	)

n as defined in (32), the order condition (34)
leads to the following constraint for optimization:
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CONSTRAINT I :
N∑

	=−M
	ka(	)

n = (−1)kδnk , n = 0, 1, ...,M + N , k = 0, 1, ...,m

(35)

In particular, when the highest possible order for (34) is enforced at m = M + N ,
Lagrange interpolation results. For the optimizations carried out in this section, the
imposed order will be taken to be less thanM+N , which frees up some of the coefficients
a(	)
n for optimization.
The second condition is to ensure that for the point that falls on the grid, t̃j = tj, the

interpolation will return exactly the value at the grid point, i.e., by (15), we require that

U(tj) =
N∑

	=−M
S	(0)uj+	 = uj (36)

This leads to

CONSTRAINT II : a(0)
0 = 1, and a(	)

0 = 0, 	 �= 0 (37)

To find stable hybrid schemes where Lag-(3,0) is used for approximating U(t), mini-
mization of (33) has been carried out for the case of M = 5 and N = 0, by lowering the
formal order to be m = 3 in (34) and letting ξ0 = 0.5 in (33). The optimized scheme will
be denoted as Opt-(5,0) and is given below:

τ -normalized optimized Opt-(5,0) basis functions:

�(τ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + 2.253708396282178τ + 1.802980567846060τ 2 −1 < τ ≤ 0
+0.6435629579203238τ 3 + 0.09800825706055226τ 4 + 0.003717475566444615τ 5

1.000000022219608 + 1.065309832128350τ − 0.6500315444685530τ 2 0 < τ ≤ 1
−1.031571801034928τ 3 − 1.031571801034928τ 4 − 0.02170250467191372τ 5

1.044537108372981 + 0.1359348949708500τ − 0.9227689658981300τ 2 1 < τ ≤ 2
−0.7129692500148930τ 3 + 0.4056309092908941τ 4 + 0.04963526302320873τ 5

0.04191437020961000 + 1.961226842612910τ − 3.482150290025250τ 2 2 < τ ≤ 3
+1.518893756288150τ 3 − 0.02495127344286200τ 4 − 0.05.586551670259000τ 5

4.045886482021400 − 6.017025386585420τ + 2.570200374862790τ 2 3 < τ ≤ 4
+0.009592652006509000τ 3 − 0.2090154495994932τ 4 + 0.03104788519098566τ 5

−1.096201066066790 + 0.2270301998286800τ + 0.6817698576829370τ 2 4 < τ ≤ 5
−0.4275083151651400τ 3 + 0.09233156086346440τ 4 − 0.006832602406135260τ 5

0 other

(38)

The errors in Fourier frequency space for the optimized Opt-(5,0) scheme is shown in
Fig. 4. Also shown in Fig. 4 is the error function E0 of scheme Lag-(3,0) for approximating
U(t), which is seen to be now comparable with that of E1 and E2 of the Opt-(5,0) scheme.
As such, using Opt-(5,0) to approximate dU/dt and d2U/dt2 will result in a more uniform
accuracy in the frequency space than using Lag-(3,0) for approximating all the temporal
derivatives.

This hybrid scheme will be denoted as Opt-(3,0)-(5,0)-(5,0) to indicate that the inter-
polation for U(t), dU/dt, and d2U/dt2 is done by Lag-(3,0), Opt-(5,0), and Opt-(5,0)
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Fig. 4 Maximum of error functions E0(η, ξ), E1(η, ξ) and E2(η, ξ) for the optimized Opt-(5,0) scheme. Also
shown is the error function E0 for the Lag-(3,0) scheme

respectively. The hybrid Opt-(3,0)-(5,0)-(5,0) scheme is found to be stable by an eigen-
value analysis that is to be described in the next section.

6 Stability of hybrid temporal schemes
To check for the stability of the proposed hybrid schemes, a matrix eigenvalue analysis
is conducted. Stability of iteration schemes of the form (6) can be analyzed by the eigen-
values of its corresponding homogeneous system [21]. We look for solutions of the form

un = λne0 (39)

to the homogeneous system of (6), where λ is the amplification factor of the eigen-
solution. By substituting (39) into (6), we obtain a polynomial eigenvalue problem

[
B0λ

K + B1λ
K−1 + B2λ

K−2 + · · · + BK−1λ + BK
]
e0 = 0 (40)

The above can be cast into a generalized eigenvalue problem as follows:

⎡

⎢
⎢
⎢⎢
⎣

−B1 −B2 · · · · · · −BK−1 −BK
I 0 · · · · · · 0 0
0 I · · · · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 · · · · · · 0 0
0 0 · · · · · · I 0

⎤

⎥
⎥⎥⎥
⎦

⎡

⎢
⎢
⎢⎢
⎣

eK−1
eK−2·

·
e1
e0

⎤

⎥
⎥
⎥⎥
⎦

= λ

⎡

⎢
⎢⎢
⎢
⎣

B0 0 0 · · · 0 0
0 I 0 · · · 0 0
0 0 I · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · I 0
0 0 0 · · · 0 I

⎤

⎥
⎥⎥⎥
⎦

⎡

⎢
⎢
⎢⎢
⎣

eK−1
eK−2·

·
e1
e0

⎤

⎥
⎥
⎥⎥
⎦

(41)

where ej = λje0. For numerical scheme (6) to be stable, it is required that |λ| ≤ 1 for all
eigenvalues of (41).
Eigenvalues of the generalized eigenvalue problem (41) can be found via a sparse eigen-

value solver available in MATLAB and Python. Since here the eigenvalue analysis is
conducted numerically, the tests for stability of the hybrid schemes have been carried out
for two types of geometry. One is a smooth body of a sphere with radius being 0.5 and the
other a sectional convex parabolic wing defined as follows:

z = 0.1Lx
(
1 − x2/L2x

)
, −Lx ≤ x ≤ Lx, −Ly ≤ y ≤ Ly (42)
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where Lx = Ly = 0.5. The scattering surfaces of the sphere and parabolic wing are
discretized, respectively, by 960 and 1092 quadrilateral elements. It is found that stable
hybrid schemes are Lag-(3,0)-(4,0)-(4,0), Lag-(3,0)-(4,0)-(5,0), as well as Opt-(3,0)-(5,0)-
(5,0) as noted in Table 1.

7 Numerical results
In this section, the hybrid temporal basis functions are applied to the numerical solution
of scattering of a point source by a sphere, as shown in Fig. 5. The sphere is assumed to
have a rigid surface for which an analytical solution exists. The radius of the sphere is 0.5
and a point source is placed at r = (0, 0, 1). Specifically, the source term in (1) is of the
form

q(r, t) = e−σ t2δ(r − r0)

where r0 = (0, 0, 1) and σ = 1.42/(6�t)2. By solving the time domain boundary integral
equation, scattering solutions at all frequencies, within the resolution of time domain
temporal basis functions used, can be obtained in one single time domain calculation. In
Fig. 5, the time domain solution and the converted frequency domain solution are both
illustrated.
To examine the accuracy and benefits of the hybrid temporal basis functions, numerical

solution along a line in the plane z = −2.5 and y = 0 will be compared with the exact
solution, as shown in Fig. 6. For the examples presented in this section, 32,642 constant
elements are used. Here, the extra fine resolution on the surface is used for the purpose of
isolating as much as possible the errors by the temporal basis functions from that by the
spatial discretization.
We define an L2 error of numerical solution along a field line as follows:

EL2(ω) = ||Û(r,ω) − ûexact(r,ω)||2
||ûexact(r,ω)||2 (43)

where ûexact(r,ω) is the known analytical solution. The L2 errors as defined in (43) are
tabulated in Table 1 for results at frequencies ω�t = π/12,π/8,π/6, and π/4. The cho-
sen frequencies are respectively for spectral resolution of 24, 16, 12, and 8 points per
wavelength.
Compared with the traditional Lag-(3,0) temporal basis function, using Lag-(4,0) for

the first and second derivatives in the hybrid approach increases the spectral resolution
considerably. For instance, for the frequency of ω�t = π/8, namely to resolve a wave
period of 16�t, the Lag-(3,0) scheme has an error of nearly 2% while the hybrid Lag-
(3,0)-(4,0)-(4,0) has the error reduced to less than 0.4%. Furthermore, using the optimized

Table 1 A list of stable hybrid schemes where U(t) is interpolated by using the Lag-(3,0) scheme and
its derivatives by a wider stencil

Hybrid schemes denoted as Eigenvalue Temporal Resolution Errors (L2 norm (43))

(M,N)-(M1,N1)-(M2,N2) analysis ω�t = π/12 ω�t = π/8 ω�t = π/6 ω�t = π/4

Lag-(3,0)-(3,0)-(3,0) Stable 0.00533780 0.01995454 0.04894223 0.15217784

Lag-(3,0)-(4,0)-(4,0) Stable 0.00091520 0.00389055 0.01211062 0.09690772

Lag-(3,0)-(4,0)-(5,0) Stable 0.00106346 0.00413456 0.01189096 0.05654576

Opt-(3,0)-(5,0)-(5,0) Stable 0.00114423 0.00392707 0.00700110 0.01436286

Also shown are the errors in L2 norm for the example presented in Section 7
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Fig. 5 Illustration of a time domain solution (a and b) and its converted frequency domain solution
(c and d), scattering of a point source at point (0, 0, 1) by a sphere of radius a = 0.5 centered at (0, 0, 0).
Shown are the solutions at frequency ω�t = π/8 and π/4, computed with c�t/a = 1/24

hybrid scheme Opt-(3,0)-(5,0)-(5,0), the solution at ω�t = π/6, or a wave of period 12�t,
is still quite accurate with an error of 0.7%. Solutions along a field line located at r =
(x, 0,−2.5) for − 2.5 ≤ x ≤ 2.5 are shown in Fig. 6. By using the optimized Opt-(3,0)-
(5,0)-(5,0) scheme, even the solution at ω�t = π/4, or a wave of period 8�t, is reasonably
accurate while the traditional Lag-(3,0) scheme, on the other hand, has lost its resolution
completely.

Fig. 6 Frequency domain solution along a field line r = (x, 0,−2.5) for − 2.5 ≤ x ≤ 2.5. Shown are the
computational results by using the traditional Lag-(3,0) and the hybrid scheme Opt-(3,0)-(5,0)-(5,0) schemes.
Also shown is the analytic solution for comparison. (a): ω�t = π/6; (b): ω�t = π/4
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For the solution of time domain integral equations, an increase in time step also results
in a reduction in memory requirement. For the MOT scheme shown in Eq. (6), storage of
the solution up to the previous K time steps are required where K is the following [8]:

K = L
c�t

+ M (44)

in which L is the spatial dimension of the scattering body and M is the limit of interpo-
lation stencil appearing in (15). So K is nearly inversely proportional to the time step �t.
An increase in resolution from 16 points per wavelength to 8 points per wavelength, for
instance, results in a reduction of memory by nearly 50%.

8 Conclusions
A Fourier analysis of the temporal basis functions used in the March-On-in-Time
schemes is presented. One of the advantages of a Fourier analysis is that it provides a
quantitative measure of the temporal interpolation errors in the frequency space. Tempo-
ral resolutions of 3rd, 4-th, 5-th, and 6-th shifted Lagrange basis functions are presented.
Based on the formulation of the Fourier analysis, hybrid temporal basis functions that
significantly extend the resolution in the frequency space are proposed. Stability of the
hybrid scheme is achieved by an optimization process that reduces the formal order of
the scheme but extends the spectral solution. The substantial gain in accuracy as well as
stability of the new basis functions are demonstrated by numerical examples. The use of
hybrid basis functions keeps the error low for a larger range in the frequency space and,
conversely, for a given range of frequency of interest, a larger time step can be used with
the optimized temporal basis functions. The increased time step size not only results in
an increase in computational efficiency, it reduces substantially the requirement on the
memory as well.

Appendix 1
The classical Lagrange τ -normalized basis functions for the 4th-, 5th-, and 6th-order are
listed in this appendix. Also listed are the optimized Opt-(3,0) and Opt-(4,0) schemes.
The Opt-(5,0) scheme is given in (38).
Lag-(4,0), 4th-order basis functions:

�(τ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + 25
12τ + 35

24τ
2 + 5

12τ
3 + 1

24τ
4 −1 < τ ≤ 0

1 + 5
6τ − 5

6τ
2 − 5

6τ
3 − 1

6τ
4 0 < τ ≤ 1

1 − 5
4τ

2 + 1
4τ

4 1 < τ ≤ 2

1 − 5
6τ − 5

6τ
2 + 5

6τ
3 − 1

6τ
4 2 < τ ≤ 3

1 − 25
12τ + 35

24τ
2 − 5

12τ
3 + 1

24τ
4 3 < τ ≤ 4

0 other

(45)
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Lag-(5,0), 5th-order basis functions:

�(τ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + 137
60 τ + 15

8 τ 2 + 17
24τ

3 + 1
8τ

4 + 1
120τ

5 −1 < τ ≤ 0

1 + 13
12τ − 5

8τ
2 − 25

24τ
3 − 3

8τ
4 − 1

24τ
5 0 < τ ≤ 1

1 + 1
3τ − 5

4τ
2 − 5

12τ
3 + 1

4τ
4 + 1

12τ
5 1 < τ ≤ 2

1 − 1
3τ − 5

4τ
2 + 5

12τ
3 + 1

4τ
4 − 1

12τ
5 2 < τ ≤ 3

1 − 13
12τ − 5

8τ
2 + 25

24τ
3 − 3

8τ
4 + 1

24τ
5 3 < τ ≤ 4

1 − 137
60 τ + 15

8 τ 2 − 17
24τ

3 + 1
8τ

4 − 1
120τ

5 4 < τ ≤ 5

0 other

(46)

Lag-(6,0), 6th-order basis functions:

�(τ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + 40
20τ + 203

90 τ 2 + 49
48τ

3 + 35
144τ

4 + 7
240τ

5 + 1
720τ

6 −1 < τ ≤ 0

1 + 77
60τ − 49

120τ
2 − 7

6τ
3 − 7

12τ
4 − 7

60τ
5 − 1

120τ
6 0 < τ ≤ 1

1 + 7
12τ − 7

6τ
2 − 35

48τ
3 + 7

48τ
4 + 7

48τ
5 + 1

48τ
6 1 < τ ≤ 2

1 − 49
36τ

2 + 7
18τ

4 − 1
36τ

5 2 < τ ≤ 3

1 − 7
12τ − 7

6τ
2 + 35

48τ
3 + 7

48τ
4 − 7

48τ
5 + 1

48τ
6 3 < τ ≤ 4

1 − 77
60τ − 49

120τ
2 + 7

6τ
3 − 7

12τ
4 + 7

60τ
5 − 1

120τ
6 4 < τ ≤ 5

1 − 49
20τ + 203

90 τ 2 − 49
48τ

3 + 35
144τ

4 − 7
240τ

5 + 1
720τ

6 5 < τ ≤ 6

0 other
(47)

Opt-(3,0) basis functions (optimized usingm = 2 and ξ0 = 0.3):

�(τ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + 1.820157538622123τ + 0.9767629249288535τ2 + 0.1566531198507175τ3 −1 < τ ≤ 0

1.000113218750436 + 0.4956014496892710τ − 1.015054210410179τ2 0 < τ ≤ 1
−0.4806604580295282τ3

1.019228975642691 − 0.5462868241880500τ − 0.9643869448304550τ2 1 < τ ≤ 2
+0.4913615565069039τ3

0.9954960870152810 − 1.833678754987600τ + 1.002678230311782τ2 2 < τ ≤ 3
−0.1673542183280932τ3

0 other
(48)
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Opt-(4,0) basis functions (optimized usingm = 3 and ξ0 = 0.3):

�(τ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + 2.071420901300948τ + 1.431748981057308τ2 −1 < τ ≤ 0
+0.3968541430128426τ3 + 0.03652710780440761τ4

0.9999963005105105 + 0.8273470830390340τ − 0.8387509509706590τ2 0 < τ ≤ 1
−0.8381631715385190τ3 − 0.1504292610403665τ4

0.9725752546323810 + 0.09692699551253000τ − 1.383137253924310τ2 1 < τ ≤ 2
+0.08151469866566900τ3 + 0.2321251362946538τ4

1.187102550021850 − 1.177122587323870τ − 0.6000184370871300τ2 2 < τ ≤ 3
+0.7640435452328490τ3 − 0.1590709206858386τ4

0.8614444096135440 − 1.922272308274318τ + 1.390157660924802τ2 3 < τ ≤ 4
−0.4042492153728422τ3 + 0.04084793762714370τ4

0 other
(49)

Appendix 2
In this section, we show the relationship between the error functions E0(η, ξ),E1(η, ξ),
E2(η, ξ) defined in (29)-(31) and the approximation errors in the Fourier space.
Under the order condition (34), we have Ei(η, ξ) = O(ξm+1) for i = 0, 1, 2, where

ξ = ω�t. By Eq. (21) and the definition of E0(η, ξ) in (29), we get the following relation
between the Fourier spectrum of the original grid data û(ω) and that of the interpolated
values Û(η, ξ):

Û(η, ξ) = e−iηξ
(
E0(η, ξ) + eiηξ

)
û(ω) = (

e−iηξE0(η, ξ) + 1
)
û(ω) (50)

It follows that
∣∣∣∣∣
Û(η, ξ) − û(ω)

û(ω)

∣∣∣∣∣
= |E0(η, ξ)| (51)

Therefore, E0(η, ξ) represents the relative error of the interpolation approximation
U(t̃j) of (15) in the Fourier space.
Similarly, using Eqs. (20) and (21) and the definition of E1(η, ξ) and E2(η, ξ) by (30) and

(31), respectively, it can be shown that
∣
∣∣∣∣∣

d̂U
dt (η, ξ) − d̂u

dt (ω)

d̂u
dt (ω)

∣∣∣∣∣∣
= |E1(η, ξ)|

|ξ | (52)

and
∣∣∣∣
∣∣

d̂2U
dt2 (η, ξ) − d̂2u

dt2 (ω)

d̂2u
dt2 (ω)

∣∣∣∣
∣∣
= |E2(η, ξ)|

|ξ2| (53)

where it is assumed that, for the original grid data, d̂u
dt (ω) = (−iω)û(ω) and d̂2u

dt2 (ω) =
(−iω)2û(ω). That is, E1(η, ξ) and E2(η, ξ) are respectively related to the relative errors of
approximation (20) and (21) for the first and second derivatives in the Fourier space.
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