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Abstract
In this paper, a class of compact higher-order gas-kinetic schemes (GKS) with spectral-
like resolution will be presented. Based on the high-order gas evolution model, both
the flux function and conservative flow variables in GKS can be evaluated explicitly from
the time-accurate gas distribution function at a cell interface. As a result, inside each
control volume both the cell-averaged flow variables and their cell-averaged gradients
can be updated within each time step. The flow variable update and slope update are
coming from the same physical solution at the cell interface. This strategy needs time
accurate solution at a cell interface, which cannot be achieved by the Riemann problem
based flow solvers, even though they can also provide the interface flux functions and
interface flow variables. Instead, in order to update the slopes in the Riemann-solver
based schemes, such as HWENO, there are additional governing equations for slopes or
equivalent degrees of freedom inside each cell. In GKS, only a single time accurate gas
evolution model is needed at the cell interface for updating cell averaged flow variables
through interface fluxes and updating the cell averaged slopes through the interface
flow variables. Based on both cell averaged values and their slopes, compact 6th-order
and 8th-order linear and nonlinear reconstructions can be developed. As analyzed in
this paper, the local linear compact reconstruction without limiter can achieve a
spectral-like resolution at large wavenumber than the well-established compact
scheme of Lele with globally coupled flow variables and their derivatives. For nonlinear
gas dynamic evolution, in order to avoid spurious oscillation in discontinuous region,
the above compact linear reconstruction from the symmetric stencil can be divided
into sub-stencils and apply a biased nonlinear WENO-Z reconstruction. Consequently
discontinuous solutions can be captured through the 6th-order and 8th-order compact
WENO-type nonlinear reconstruction. In GKS, the time evolution solution of the gas
distribution function at a cell interface is based on an integral solution of the kinetic
model equation, which covers a physical process from an initial non-equilibrium state
to a final equilibrium one. Since the initial non-equilibrium state is obtained based on
the nonlinear WENO-Z reconstruction, and the equilibrium state is basically constructed
from the linear symmetric reconstruction, the GKS evolution models unifies the
nonlinear and linear reconstructions in a gas relaxation process in the determination of
a time-dependent gas distribution function. This property gives GKS great advantages
in capturing both discontinuous shock waves and the linear aero-acoustic waves in a
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single computation due to its dynamical adaptation of non-equilibrium and equilibrium
states in different flow regions. This dynamically adaptive model helps to solve a long
lasting problem in the development of high-order schemes about the choices of the
linear and nonlinear reconstructions. Compared with discontinuous Galerkin (DG)
scheme, the current compact GKS uses the same local and compact stencil, achieves
the 6th-order and 8th-order accuracy, uses a much larger time step with CFL number
≥0.3, has the robustness as a 2nd-order scheme, and gets accurate solutions in both
shock and smooth regions without introducing trouble cell and additional limiting
process. The nonlinear reconstruction in the compact GKS is solely based on the
WENO-Z technique. At the same time, the current scheme solves the Navier-Stokes
equations automatically due to combined inviscid and viscous flux terms from a single
time evolution gas distribution function at a cell interface. Due to the use of multi-stage
multi-derivative (MSMD) time-stepping technique, for achieving a 4th-order time
accuracy, the current scheme uses only two stages instead of four in the traditional
Runge-Kutta method. As a result, the current GKS becomes much more efficient than
the corresponding same order DG method. A variety of numerical tests are presented
to validate the compact 6th and 8th-order GKS. The current scheme presents a
state-of-art numerical solutions under a wide range of flow conditions, i.e., strong shock
discontinuity, shear instability, aero-acoustic wave propagation, and NS solutions. It
promotes the development of high-order scheme to a new level of maturity. The
success of the current scheme crucially depends on the high-order gas evolution
model, which cannot be achieved by any other approach once the 1st-order Riemann
flux function is still used in the development of high-order numerical algorithms.

Keywords: Gas-kinetic scheme, WENO reconstruction, Linear reconstruction, Compact
scheme

1 Introduction
High-order methods with spectral resolutions and shock capturing capability are needed
in many engineering applications, such as turbulent flows, aeroacoustics, and various
complex flows with shock and boundary layer interactions. With the great potentials
of the high-order methods in solution accuracy and computational efficiency, extensive
effort has been paid on the development of high-order schemes in the past decades. How-
ever, the spectral accuracy and shock capturing seem to be contradictory in the current
CFD algorithms, where the linear schemes for the smooth flow and nonlinear schemes
for discontinuous flow play different roles under different flow conditions [1]. It seems
hard to possess both properties in a single high-order method.
For smooth flows, the compact schemes [2–4] and discontinuous Galerkin methods

(DG) or flux reconstruction (FR) [5–8] are very attractive. The compact finite difference
scheme constructs implicit relation between flow variables and their derivatives from a
compact stencil. Dispersion and dissipation properties of the scheme have been fully ana-
lyzed [2], and the scheme influences greatly on the development of linear schemes. The
reason for designing compact scheme is its flexibility in complex geometries and effective
parallelization. The DG has a second-order scheme stencil, but achieves high accuracy
by using high-order piecewise polynomials within elements and evolving the multiple
degrees of freedom (DOFs). Each element in DG only interacts with its neighboring ele-
ments and the scheme becomes very efficient for parallel computation [9]. Both compact
and DG methods work successfully for smooth flows, and problems are still remained
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for flow simulation with shock discontinuity. Theoretically, compact scheme is physi-
cally sounded because under the CFL condition, the domain of dependence is indeed
only related to the neighboring cells. All non-compact schemes must be associated with
dynamical weakness because they seek for help from the cells far away which may not
have any physical connection in terms of the wave propagating speed.
Nonlinear schemes have been designed for the flows with discontinuous shocks. The

successful nonlinear schemes include total variation diminishing (TVD) [10], essentially
non-oscillation (ENO) [11], and weighted ENO (WENO) [12, 13]. In past twenty years,
the WENO-based methods have received the most attention among nonlinear schemes.
The central ingredients in WENO scheme is to construct several low order polynomi-
als and to design smoothness indicators to adaptively assemble them to get a higher one.
Most current effort is about the selection of optimal stencil and the design of weighting
functions. WENO scheme can achieve very high-order accuracy in the smooth region
and maintain non-oscillatory property across shock waves [14]. But, their numerical dis-
sipation is still very higher than the linear schemes [15, 16], and the modified WENO
schemes, such as WENO-M and WENO-Z [17, 18], have been proposed recently. The
hybrid linear and nonlinear schemes have been investigated as well [19–21].
In the existing DG and WENO methods, the first-order Riemann flux plays a key role

for the flow evolution of compressible flow. Recently, beyond the first-order Riemann
solver, many schemes based on the time-dependent high-order (more than first-order)
flux functions have been developed, such as the Lax-Wendroff method [22], the gener-
alized Riemann problem (GRP) [23–25], and ADER framework [26, 27]. An outstanding
method is the two-stage fourth-order scheme for the Euler equations [28, 29], where both
the flux and its time derivative are used in the construction of high-order scheme. Similar
to the GRP method, the gas-kinetic scheme (GKS) is also based on the time accurate flux
function at a cell interface [30–32]. The flux evaluation in GKS is based on a time evo-
lution solution of the kinetic model equation, which provides a physical process for the
gas evolution from the initial non-equilibrium state to an equilibrium one. The compar-
ison between GRP and GKS has been presented in [33]. Under the same the multi-stage
multi-derivative (MSMD) framework, based on the WENO reconstruction a two-stage
fourth-order (S2O4) GKS has been successfully developed for the Euler andNavier-Stokes
equations [34, 35]. The robustness of the S2O4 GKS is as good as the second-order
shock capturing scheme [36]. Due to the use of only two reconstructions in the 4th-order
scheme, the GKS becomes very efficient in comparison with schemes based on the Runge-
Kutta time stepping technique. Actually, the two-stage fourth-order method belongs to
the MSMD framework in ODE region [37]. And it has been applied to the finite differ-
ence method and the DG method [38, 39] through the direct Lax-Wendroff procedure.
By combining the second-order or third-order GKS fluxes and MSMD technique again, a
family of higher-order gas-kinetic methods has been constructed [40].
The time dependent gas-distribution function in GKS at the cell interface provides not

only the flux and its time derivative, but also time accurate flow variables at the cell inter-
face. The design of compact GKS based on the cell averaged and cell interface values
has been conducted [41–44]. In this paper, we are going to develop a 6th-order and a
8th-order compact GKS in rectangular mesh for compressible flow simulations. The con-
struction of the compact high-order schemes is based on the following ingredients. Firstly,
the high-order gas evolution model at cell interface is used for the flux and flow variable
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evaluation. Consequently, the cell averaged flow variables and cell averaged slopes can
be updated. Secondly, based on the time-dependent flux and its time derivative, the two-
stage fourth-orderMSMD technique is used for the 4th-order temporal accuracy. Thirdly,
based on the flow variables and their slopes within each cell, compact nonlinear and linear
6th-order and 8th-order spatial reconstructions will be designed for the determination
of the initial non-equilibrium state and the evolved equilibrium one. Based on the GKS
evolution model, in the smooth flow region the linear reconstruction will be achieved
quickly in the determination of interface gas distribution function, and the spectral-like
resolution can be obtained. At the same time, in the discontinuous region the nonlinear
reconstruction will persist in the determination of gas evolution due to the persistence
of the non-equilibrium state, and the scheme becomes robust in capturing shock and
discontinuous solutions. Since the gas evolution model in GKS is based on the physical
process from the initial non-equilibrium state to the final equilibrium one, the nonlinear
and linear reconstructions are naturally unified in a time evolution process with automat-
ically identified non-equilibrium and equilibrium regions. As a result, both discontinuous
shocks and smooth aeroacoustic waves can be accurately captured by the current com-
pact 6th-order and 8th-order GKS in a single computation. The compact GKS provides
the Navier-Stokes solutions directly. Even for the 6th-order and 8th-order accuracy, the
current compact scheme can use a time step determined by the CFL condition with a
large CFL number (≥ 0.5) in all test cases in this paper. The current 6th-order and 8th-
order compact GKS take advantages of both nonlinear WENO-Z reconstruction for the
introduction of numerical dissipation in discontinuous region and linear reconstruction
with much reduced dissipation in resolving small amplitude waves. The current compact
GKS are ideal schemes for the study of multiscale and complex flow interactions, such as
the flow transition and turbulence.
The idea of using flow variables and their gradients has been investigated in finite vol-

ume or finite difference methods. The finite volumeHermiteWENO (HWENO) schemes
update both flow variables and their first derivative [45–47]. The HWENO approach is
also used in the hybrid schemes [48], and a monotonicity preserving strategy for detect-
ing troubled zones is proposed. The HWENO schemes on unstructured grids have been
extensively investigated [49–51]. The HWENO approach needs additional limiters, same
as the DG and reconstructed DG methods. The major advantage of these HWENO
approaches is the compactness of stencils in the reconstructions. The current compact
GKS is different from theHWENOapproach ismainly on the update of gradients. In GKS,
there is no explicit evolution equation for the gradients and the gradients are obtained
rigorously from the evolution solutions at cell interfaces. Therefore, the gradients in GKS
are not introduced as additional degrees of freedom with their own evolution equations.
The cell-averaged gradients in GKS, similar to the cell averaged conservative variables,
are obtained from the same gas distribution functions at cell interfaces. The robustness
and improved resolution in GKS is due to the physically reliable gradients from the strong
evolution solution of the original governing equation. In other words, the updated gradi-
ents in GKS are not coming from the “equations” by taking additional derivatives to the
original ones, such as the HWENO and multi-layer compact (MLC) schemes [1]. In the
HWENO andMLC, the gradients have their own evolution equations which are only reli-
able for the smooth flow, where new governing equations can be continuously created by
taking spatial derivatives to the original equations.
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This paper is organized as follows. The GKS and MSMD method will be introduced in
Section 2. In Section 3, the compact linear and nonlinear 6th-order and 8th-order recon-
structions will be presented. The dissipation and dispersion will be analyzed as well. In
Section 4, the compact GKS will be tested in a wide range of flow problems from the
strong shock interaction to the linear acoustic wave propagation. The last section is the
conclusion.

2 Gas-kinetic scheme andmulti-stagemulti-derivativemethod
In the past years, the gas-kinetic scheme (GKS) has been developed systematically
[30, 31]. The gas evolutionmodel used in this paper for the flux and interface flow variable
evaluation is almost identical to that of the fourth-order compact scheme [44]. Therefore,
only a brief introduction about GKS will be presented in this section.

2.1 Gas-kinetic scheme

The gas kinetic evolution model in GKS is based on the BGK equation [52],

ft + u · ∇f = g − f
τ

, (1)

where f is the gas distribution function, g is the corresponding equilibrium state that
f approaches, and τ is defined as the collision time. In two-dimensional case, the
equilibrium state is the Maxwellian distribution

g = ρ

(
λ

π

) K+2
2

eλ((u−U)2+(v−V )2+ξ2),

where λ = m/2kT , and m, k,T represent the molecular mass, the Boltzmann constant,
and temperature,K is the number of internal degrees of freedom, i.e.K = (4−2γ )/(γ −1)
for two-dimensional flow, and γ is the specific heat ratio. ξ is the internal variable with
ξ2 = ξ21 + ξ22 + ... + ξ2K . The collision term satisfies the following compatibility condition∫ g − f

τ
ψψψd	 = 0, (2)

whereψψψ = (ψ1,ψ2,ψ3,ψ4)T = (1,u, v, 12 (u2 + v2 + ξ2
))
, d	 = dudvdξ1...dξK .

The macroscopic mass ρ, momentum (ρU , ρV ), and energy ρE at a cell interface can
be evaluated from the gas distribution function,

W =

⎛
⎜⎜⎜⎝

ρ

ρU
ρV
ρE

⎞
⎟⎟⎟⎠ =

∫
ψψψ fd	, (3)

and the flux in the x direction can be evaluated as well,

F =
∫

ufψψψd	. (4)

Therefore, the central point in GKS is to evaluate the time-dependent gas distribution
function f at a cell interface.
By direct modeling on the mesh size scale [30], the conservations of mass, momentum

and energy in a control volume become
dWij

dt
= − 1


x
(Fi+1/2,j(t) − Fi−1/2,j(t)) − 1


y
(Gi,j+1/2(t) − Gi,j−1/2(t)), (5)
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where Wij is the cell averaged conservative variables, Fi±1/2,j(t) and Gi,j±1/2(t) are the
time dependent fluxes at cell interfaces in x and y directions. Like the traditional high-
order finite volume scheme, the Gaussian quadrature points are used to get a high
accuracy in the discretization of line integration of the flux. In this paper, three-points
Gaussian quadrature will be used on each cell interface in the 2D case.
To model the interface gas distribution function, the integral solution of BGK Eq. 1 is

used

f (xi+1/2, yj� , t,u, v, ξ) =1
τ

∫ t

0
g(x′, y′, t′,u, v, ξ)e−(t−t′)/τdt′

+ e−t/τ f0(−ut,−vt,u, v, ξ),
(6)

where (xi+1/2, yj� ) = (0, 0) is the location at cell interface for flux evaluation, and xi+1/2 =
x′ +u(t− t′) and yj� = y′ + v(t− t′) are the trajectory of particles. Here f0 is the initial gas
distribution function and g is the equilibrium state in space and time. The integral solu-
tion basically states a physical process from the particle free transport in f0 in the kinetic
scale to the hydrodynamic flow evolution in the integral term of g. The contributions from
f0 and g in the determination of f at the cell interface depend on the ratio of time step to
the local particle collision time, i.e., exp(−t/τ), and the modeling of f0 and g in space and
time is needed to evaluate the solution f from Eq. (6). For the continuum flow simulation,
such as the NS solutions, the determination of f0 and g depend only on the macroscopic
flow variables and their initial reconstructions. In this paper, theWENO-Zmethod will be
used as a nonlinear reconstruction in the determination of f0, and the linear reconstruc-
tion is adopted in the determination of g. Therefore, the above integral solution not only
incorporates a physical evolution process from non-equilibrium to an equilibrium state,
but alo from a nonlinear reconstruction to a linear one. This fact is crucially important for
the current scheme to capture both nonlinear shock and linear acoustic wave accurately
in a single computation.
Based on the integral solution, a simplified third-order gas distribution function can be

obtained as [53]

f (xi+1/2, yj� , t,u, v, ξ) = g0 + Ag0t + 1
2
attg0t2

− τ [ (a1u + a2v + A)g0 + (axtu + aytv + att)g0t]

− e−t/τ g0[ 1 − (a1u + a2v)t]

+ e−t/τ gl[ 1 − (a1lu + a2lv)t]H(u)

+ e−t/τ gr[ 1 − (a1ru + a2rv)t] (1 − H(u)), (7)

where the terms related to g0 are from the integral of the equilibrium state and the
terms related to gl and gr are from the initial term f0 in the Eq.(6). All other terms, such
as A, att , a, ..., are coming from the derivatives of a Maxwellian distribution. All these
coefficient in the above equation can be determined from the initially reconstructed
macroscopic flow variables.

2.2 Multi-stage multi-derivative time stepping method

We choose the two-stage fourth-order method [28, 38] in the current work to achieve a
fourth-order temporal accuracy. The scheme is both efficient and robust. Since the above
time accurate gas distribution function at a cell interface is a complicated function of
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time in the non-smooth region, the treatment proposed in [28, 34] is used to extract the
linearized flux function in time. The same idea could be used to obtain the numerical
time derivative of the interface value [44] and is again used here. Theoretically, the higher-
order MSMD methods could be chosen to achieve higher-order temporal accuracy [54],
while the fourth-order method in time seems accurate enough in the present study.
For conservation laws, the semi-discrete finite volume scheme Eq.(5) is rewritten as

dWij

dt
:= L(Wij),

where L(Wij) is the numerical operator for spatial derivative of flux.
A fourth-order temporal accurate solution forW(t) at t = tn + 
t can be obtained by

W∗ = Wn + 1
2

tL(Wn) + 1

8

t2

∂

∂t
L(Wn),

Wn+1 = Wn + 
tL(Wn) + 1
6

t2

(
∂

∂t
L(Wn) + 2

∂

∂t
L(W∗)

)
,

(8)

where L and ∂
∂tL are related to the fluxes and the time derivatives of the fluxes evaluated

from the time-dependent gas distribution function f (t) at cell interfaces. And the middle
stateW∗ is obtained at time t∗ = tn+
t/2. Again, with the time accurate gas distribution
function f (t), along the same line with MSMD technique the gas distribution function f
at a cell interface at tn+1 becomes

f n+1 =f n + 
tf nt + 1
6

t2

(
f ntt + 2f ∗

tt
)
,

where f ∗ is for the middle state at time t∗ = tn + 
t/2,

f ∗ = f n + 1
2

tf nt + 1

8
(
t)2f ntt .

Therefore, based on the cell interface f n+1
i+1/2, the flow variablesWn+1

i+1/2 can be explicitly
obtained, i.e.,Wn+1

i+1/2 = ∫ ψψψ f n+1
i+1/2d	, from which the slope inside each cell, such as in the

1D case, can be updated as

(Wx)
n+1
i =

(
Wn+1

i+1/2 − Wn+1
i−1/2

)
/(xi+1/2 − xi−1/2).

More detailed formulation for the above GKS part can be found in [44].

3 Compact WENO reconstruction
In the classical high-order finite volume method [11, 12], the pointwise value is recon-
structed based on cell averages, and the Riemann solver is used for the flux evaluation
at the interface. However, for the gas kinetic scheme, as presented in the Section 2 the
cell-averaged conservative flow variables and cell-averaged slopes inside each cell can be
updated. Based on these updated data, a 6th-order and a 8th-order compact linear and
nonlinear reconstruction will be designed consistently in this section, which can be sub-
sequently used in the determination of equilibrium state and initial non-equilibrium one
in the gas kinetic scheme.

3.1 Compact linear reconstruction

In the Section 2, the conservative variablesWi+1/2 is provided by taking moments of the
gas distribution function at the cell interface. The averaged slope in the cell Ii can be
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obtained by the Gaussian formula

W′
i = 1


x

∫
Ii

∂W
∂x

dx = 1

x

(Wi+1/2 − Wi−1/2), (9)

whereW′
i is the cell averaged slope in the cell Ii.

By taking advantage of the cell averaged variables and their slopes, the compact stencil
Si+1/2 = {Ii−1, Ii, Ii+1, Ii+2} shown in Fig. 1 will be used for the reconstruction of the value
at the cell interface xi+1/2. On each cell Ii, the components (i.e. components of conserva-
tive or characteristic variables) of cell averages and their slopes are denoted as Qi and Q′

i .
Based on the large stencil Si+1/2, a series of high-order polynomials can be constructed as

Pn(x) ≡
n∑

k=0
ckxk , (10)

where n is the order of the polynomial and n = 5, 7 correspond to the 6th-order and
8th-order schemes, respectively.
The polynomial P7(x) can be uniquely determined with the condition

1

x

∫
Ik
P7(x)dx = Qk ,

1

x

∫
Ik

(
dP7(x)/dx

)
dx = Q

′
k , Ik ∈ Si+1/2, k = i − 1, · · · , i + 2.

(11)

In order to determine the P5(x), the above condition has to be modified. For the cells Ii
and Ii+1, the following equations are strictly enforced

1

x

∫
Ik
P5(x)dx = Qk ,

1

x

∫
Ik
(dP5(x)/dx)dx = Q′

k , Ik ∈ Si+1/2, k = i, i + 1,
(12)

and for the cells Ii−1 and Ii+2 the following conditions are satisfied in the sense of the least
square

1

x

∫
Ik
P5(x)dx = Qk ,

1

x

∫
Ik
(dP5(x)/dx)dx = Q′

k , Ik ∈ Si+1/2, k = i − 1, i + 2.
(13)

Thus the linear reconstruction Pn(xi+1/2) at the cell interface x = xi+1/2 can be written as

P5(xi+1/2) = 1
600

(Qi−1 + 299Qi + 299Qi+1 + Qi+2−
3
xQ′

i−1 + 111
xQ′
i − 111
xQ′

i+1 + 3
xQ′
i+2),

(14)

Fig. 1 The large stencil for compact reconstruction of the value at the interface xi+1/2. The circles represent
cell averages, and the gradients represent averaged slopes
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P7(xi+1/2) = 1
420

(25Qi−1 + 185Qi + 185Qi+1 + 25Qi+2+
6
xQ′

i−1 + 102
xQ′
i − 102
xQ′

i+1 − 6
xQ′
i+2),

(15)

where Pn(xi+1/2) has the truncation error of O(
xn+1). The first-order and second-order
derivatives of the linear reconstruction at the cell interface can be obtained from Pn(x),

P5x(xi+1/2) = 1
1560
x

( − 3Qi−1 − 3411Qi + 3411Qi+1 + 3Qi+2+
11
xQ′

i−1 − 941
xQ′
i − 941
xQ′

i+1 + 11
xQ′
i+2),

P5xx(xi+1/2) = 1
40
x2

( − Qi−1 + Qi + Qi+1 − Qi+2+
3
xQ′

i−1 − 51
xQ′
i + 51
xQ′

i+1 − 3
xQ′
i+2),

(16)

P7x(xi+1/2) = 1
108
x

( − 14Qi−1 − 270Qi + 270Qi+1 + 14Qi+2−
3
xQ′

i−1 − 99
xQ′
i − 99
xQ′

i+1 − 3
xQ′
i+2),

P7xx(xi+1/2) = 1
4
x2

( − 4Qi−1 + 4Qi + 4Qi+1 − 4Qi+2−

xQ′

i−1 − 9
xQ′
i + 9
xQ′

i+1 + 
xQ′
i+2).

(17)

In order to eliminate the spurious oscillation and improve the stability, the above recon-
struction is based on the characteristic variables. The dimension-by-dimension strategy
is applied for the reconstruction in the two-dimensional case. The above compact recon-
struction is mainly used to determine the equilibrium state in the normal direction in
the gas kinetic scheme. Due to multi-dimensionality in the GKS evolution model, in the
tangential direction a linear 5th-order reconstruction is used in both 6th-order and 8th-
order schemes. The above linear reconstruction is used to determine the equilibrium
state in GKS. In the reconstruction of the initial non-equilibrium state, theWENO-based
compact nonlinear reconstruction will be designed in later subsection.

3.2 Resolution analysis

In this section, the resolution analysis of the above compact spatial reconstruction will be
presented. The linear scalar advection equation is used for the resolution analysis,

Qt = −CQx, (18)

where C is a constant. The integral form on the cell Ii becomes

(Qi)t = −C(Qi)x, (19)

where Qi is the cell averaged Q(x) in the cell Ii.

Remark 1 In order to make Fourier expansion for the cell averages Qi, a continuous
function Q(x) is introduced [11] as follows.

Q(x) = 1

x

∫ x+
x/2

x−
x/2
Q(x + y)dy. (20)

Thus the cell average Qi becomes the value of the continuous function Q(x) at cell center xi.

In order to analyse the resolution of spatial discretization in the current compact
schemes, we can compare the Fourier coefficients of the derivative given by the spatial
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discretization with the Fourier coefficients of exact derivative. Using the reconstructed
value at the cell interface, the spatial discretization of (Qi)x in Eq. (19) becomes

(Qi)
6th
x = 1

600
x
(298(Qi+1 − Qi−1) + (Qi+2 − Qi−2)−
114
x

(
Q′
i+1 + Q′

i−1
)+ 3
x

(
Q′
i+2 + Q′

i−2
)+ 222
xQ′

i),
(21)

(Qi)
8th
x = 1

420
x
(160(Qi+1 − Qi−1) + 25(Qi+2 − Qi−2)−
96
x

(
Q′
i+1 + Q′

i−1
)− 6
x

(
Q′
i+2 + Q′

i−2
)+ 204
xQ′

i).
(22)

For the purpose of Fourier analysis, the function Q(x) is assumed to be periodic over
the domain[ 0, L], and Q(x) can be decomposed into its Fourier coefficients

Q(x) =
k=N/2∑
k=0

cke
(
2π ikx
L

)
.

It is convenient to introduce new variables ω = 2πk
x/L = 2πk/N and s = x/
x [2].
Then the Fourier expansion can be written as

Q(x) =
k=N/2∑
k=0

ckeiω(k)s, (23)

and the first-order derivative of Q(x) is

Q′
(x) =

k=N/2∑
k=0

ck
iω

x

eiw(k)s =
k=N/2∑
k=0

c′ke
iω(k)s, (24)

where c′k = ck iω

x . Here we have two further remarks for Eq. (24). Firstly, Q′

i is the value of
the function Q′

(x) at cell center xi. Secondly, in the compact GKS, the derivative Q′
i in the

RHS of Eqs. (21) and (22) is the independent variables explicitly evaluated from the time-
accurate gas distribution function, which is essentially different from some other compact
schemes, such as the compact schemes in [2, 4, 55]. Thus the Fourier expansion of Q′

(x)
can be given theoretically if Eq. (23) is defined for the analytical solution. Suppose the
numerical solution given by the compact schemes can be written as

Qh(x) =
k=N/2∑
k=0

ĉkeiω(k)s, Q′
h(x) =

k=N/2∑
k=0

ĉ′ke
iω(k)s.

Substituting the average value in Eqs. (21) and (22) with the form of Fourier expansion,
we get ĉ′k = iω′,rthck , and the ω

′,rth is

ω
′,6th(ω) = 1

300
(298 sin(ω) + sin(2ω) − 114ω cos(ω) + 3ω cos(2ω) + 111ω), (25)

ω
′,8th(ω) = 1

210
(160 sin(ω) + 25 sin(2ω) − 96ω cos(ω) − 6ω cos(2ω) + 102ω), (26)

where ω
′,rth is the modified wavenumber corresponding to the rth-order spatial dis-

cretization. In addition to the modified wavenumber, the error in the phase speed can be
alternatively used to evaluate the dispersive error. For the linear advection equation, the
phase speed for a wavenumber ω is given by the current spatial discretization (exact time
advancement is assumed) as

(cp)h = ω
′
(ω)/ω. (27)
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The comparison of the dispersion characteristics of the current compact GKS with the
compact schemes by Lele [2] is shown in Fig. 2. The traditional compact schemes use
only the node values [2] or cell averages [55] as independent values in spatial discretiza-
tion, and the curves of modified wavenumber and phase speed in the range ω ∈ (π/2,π)

deviate greatly from the curves corresponding to the analytical solution. Therefore, these
schemes have poor resolution for the wave with ω ∈ (π/2,π), because the wavenumber
range (π > ω > π/2) corresponds to the wavelength (2
x, 4
x), and such wave can-
not be well determined by the cell averages (or point values) alone with less than four
points in a wavelength. However, the compact GKS can retain a good resolution because
of the use of slopes in each cell, and these slopes are evaluated from the gas evolution
solutions at the cell interfaces which are independent from the cell averaged values. In
the traditional compact schemes by Lele, the node values and derivatives are not fully
independent. The coupling increases the error since the node values cannot resolve high
wavenumber solution at all. As an example, we test the schemes for the initial condition
(ρ,U , p) = (1 + 0.2 sin(2πx), 1, 1) in a computational domain [ 0, 2]. The results of linear
density wave at t = 1 with meshes 
x = 1/2 and 
x = 1/4 are shown in Fig. 3. These
results demonstrate that the current compact schemes have favorable resolution in com-
parison with the non-compact WENO-7th-order scheme with linear reconstruction and
GKS flux.

3.3 WENO reconstruction

In gas dynamics, shock and contact discontinuities can appear. To deal with discontinu-
ities, WENO reconstruction [12, 13] can be used. In Section 3.1, the linear reconstruction
gives a unique reconstructed value and its slope at the cell interface. However, in order to
capture the possible discontinuity at a cell interface, the values at the left and right sides of
the cell interface have to be valuated separately. Therefore, for the nonlinear reconstruc-
tion the sub-stencils have to be defined first. For simplicity, the WENO reconstruction
procedure is given in detail for the construction of the left side value of the cell interface
x = xi+1/2. The procedure for the right side value can be obtained similarly according
to the symmetric property, which will be omitted here. The left side value by WENO

Fig. 2 Plots of modified wavenumber and phase speed vs wavenumber for different schemes. cs-6th is the
compact 6th-order tridiagonal scheme studied by Lele [2], and the scheme has the best resolution in the
series of 6th-order scheme; cs-8th is the compact 8th-order pentadiagonal scheme [2], and the cs-8th uses
the same formula Eq. (22) in spatial discretization as the compact 8th-order GKS
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Fig. 3 Limit resolution for linear wave: Results of WENO-7th scheme with linear reconstruction and GKS flux,
linear compact 6th-order and 8th-order schemes on the meshes with 
x = 1/2 and 
x = 1/4 at t = 1.
Since there are only two points for each wavelength on the left figure, the real "exact" solution should be
averaged over half wave length as well

reconstruction is given by the candidate polynomials as follows

Qn
i+1/2 =

ln∑
k=0

δnk q
n
k,i+1/2, n = 6, 8, (28)

whereQn
i+1/2 is the nth−orderWENO reconstruction for the left value of the cell interface

xi+1/2, ln is the number of candidate polynomials, δnk is the WENO weight, and qnk,i+1/2 is
the point value of the candidate polynomial qnk (x) at xi+1/2. In the later presentation, the
sets of candidate polynomials qnk (x) are the same for different nth−order scheme, such as
n = 6 and 8, so the superscript is omitted for simplicity.
In the current compact WENO reconstruction, three principles are considered. Firstly,

if a discontinuity is located at one of the cell interfaces, theoretically the point-wise value
at the interface cannot be reliable to determine the cell averaged slope on the left and right
side cells. Secondly, because the smooth sub-stencils can play a dominant role in dealing
with discontinuities appearing in the large stencil, the averaged slope used in the sub-
stencil should be possibly away from the interface for the data reconstruction in order to
make the sub-stencil sufficiently smooth. Thirdly, the order of the candidate polynomial
can be higher without increasing the spatial size of sub-stencils in the compact schemes,
and such higher-order candidate polynomials can achieve better resolution to solve dis-
continuities without spurious oscillation. Based on the above principles, the following
sub-stencils are designed (Fig. 4), where the 6th-order and 8th-order reconstructions are
based on the same sub-stencils,

S0 = {Qi−1,Qi,Q′
i−1
}↔ q0(x),

S1 = {Qi−1,Qi,Qi+1} ↔ q1(x),

S2 = {Qi,Qi+1,Qi+2,Q′
i+2
}↔ q2(x),

S3 = {Qi−1,Qi,Qi+1} ↔ q3(x),

S4 = {Qi,Qi+1,Qi+2} ↔ q4(x),

S5 = {Qi−1,Qi,Qi+1,Q′
i−1,Q′

i
}↔ q5(x),

S6 = {Qi,Qi+1,Qi+2,Q′
i+1,Q′

i+2
}↔ q6(x).
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Fig. 4 Sub-stencils in the reconstruction for left side value of the cell interface xi+1/2 in the compact
6th-order and 8th-order reconstruction: the circles represent cell averages, and the gradients represent cell
averaged slopes

q2(x) is a cubic polynomial, q5(x) and q6(x) are fourth-order polynomials, and others are
quadratic polynomials. According to the similar reconstruction conditions in Eq. (11),
qk,i+1/2 can be obtained as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q0,i+1/2 = 1
6
(−7Qi−1 + 13Qi − 4hQ′

i−1
)
,

q1,i+1/2 = 1
6

(−Qi−1 + 5Qi + 2Qi+1) ,

q2,i+1/2 = 1
24
(
5Qi + 32Qi+1 − 13Qi+2 + 6hQ′

i+2
)
,

q3,i+1/2 = 1
6

(−Qi−1 + 5Qi + 2Qi+1) ,

q4,i+1/2 = 1
6

(2Qi + 5Qi+1 − Qi+2) ,

q5,i+1/2 = 1
30
(
10Qi−1 + 19Qi + Qi+1 + 3hQ′

i−1 + 21hQ′
i
)
,

q6,i+1/2 = 1
30
(
Qi + 19Qi+1 + 10Qi+2 − 21hQ′

i+1 − 3hQ′
i+2
)
.

(29)

In the smooth region, the convex combination with δnk = dnk recovers the reconstruction
in Eqs. (14) and (15), which can be the condition to get the linear weights [13]. The linear
weight d6k of the 6th-order reconstruction can be obtained as

d60 = 33
700

, d61 = 11
140

, d62 = 22
175

, d63 = 11
100

, d64 = 11
100

, d65 = 37
140

, d66 = 37
140

,

and the d8k of 8th-order reconstruction are

d80 = 3
98

, d81 = 5
98

, d82 = 4
49

, d83 = 7
98

d84 = 7
98

, d85 = 17
49

, d86 = 17
49

.
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TheWENO-Z nonlinear weights are used in the current compact schemes and they are
defined as [18]

δnk = αn
k∑ln

m=0 αn
m
, αn

k = dnk

[
1 +

(
Zn
ref

βk + ε

)]
, k = 0, ..., ln, (30)

where Zn
ref is the local higher-order reference value, which is related to the accuracy of the

scheme and is given in detail later. Here βk is the smooth indicator and defined as [13]

βk =
rk∑
r=1


x2r−1
∫ xi+1/2

xi−1/2

(
dr

dxr
qk(x)

)2
dx, (31)

where rk is the order of qk(x).
In smooth region, the first two candidate polynomial q0(x) and q1(x) can be com-

bined into a cubic polynomial which is symmetric counterpart of q2(x). Then, current
sub-stencils can become basically symmetric for interface xi+1/2. In order to maintain
the symmetry for the nonlinear schemes, the smooth indicator β1 of q1(x) corre-
sponding to S1 is replaced by the indicator of the cubic polynomial q̃1(x) on S̃1 =
{Qi−1,Qi,Qi+1,Q′

i−1}. Even without showing in this paper, some tests demonstrate that
the current choice β1 can present a better resolution in the numerical results with
excellent robustness. The detailed formulae for all βk , k = 0, ..., ln are given in Appendix.

3.4 Accuracy of the compact reconstruction

In this subsection, the accuracy of the compact reconstruction is analysed. The nonlinear
reconstruction in Eq. (28) can be rewritten as

Qn
i+1/2 =

ln∑
k=0

dnkqk,i+1/2 +
ln∑

k=0

(
δnk − dnk

)
qk,i+1/2. (32)

The reconstruction can be split into two terms [17], i.e., the linear term and nonlinear
term. For the linear part Qn,opt

i+1/2 ≡∑ln
k=0 d

n
kqk,i+1/2, the error can be given as

Qn,opt
i+1/2 − Q(xi+1/2) = Bn(xi+1/2)
xn + O

(

xn+1) ,

where Q(xi+1/2) is the exact value at x = xi+1/2. In the second term in Eq. (32), the point
value qk,i+1/2 approximates Q(xi+1/2) as follows

qk,i+1/2 = Q(xi+1/2) + Bk(xi+1/2)
xrk + O
(

xrk+1) .

Substituting qk,i+1/2 into Eq. (32) and taking
∑ln

k=0 δnk =∑ln
k=0 d

n
k = 1 into account, we

have

Qn
i+1/2 = Qn,opt

i+1/2 +
ln∑

k=0

(
δnk − dnk

) (
Q(xi+1/2) + Bk(xi+1/2)
xrk + O

(

xrk+1))

= Qn,opt
i+1/2 +

ln∑
k=0

Bk(xi+1/2)
(
δnk − dnk

)

xrk +

ln∑
k=0

(
δnk − dnk

)
O
(

xrk+1) .

To achieve the formal order of accuracy for the 6th-order and 8th-order reconstruc-
tions, the following sufficient condition is proposed.

δnk − dnk = O
(

xn−3+n′) , n′ ≥ 0. (33)

For the current nonlinear weights with WENO-Z weighting functions, with the follow-
ing formulation of the local higher-order reference value Zn

ref , the sufficient condition
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Eq. (33) can be satisfied when

Zn
ref = |3(β0 − β4) + (β4 − β3)| . (34)

In order to prove that the sufficient condition can be met, according to the Taylor series
of βk , k = 0, 3, 4,

β0 =
((

Q(1)
i

)2 + 13
12

(
Q(2)
i 
x

)2)

x2 − 1

3
Q(1)
i Q(3)

i 
x4 + J0
(
Q(l)
i ,
x

)

x5,

β3 =
((

Q(1)
i

)2 + 13
12

(
Q(2)
i 
x

)2)

x2 + 1

3
Q(1)
i Q(3)

i 
x4 + J3
(
Q(l)
i ,
x

)

x5,

β4 =
((

Q(1)
i

)2 + 13
12

(
Q(2)
i 
x

)2)

x2 − 2

3
Q(1)
i Q(3)

i 
x4 + J4
(
Q(l)
i ,
x

)

x5, l = 1, 2, · · ·

we have

Zn
ref = |3J0 − J3 − 2J4| 
x5,

where J0, J3 and J4 are the functions of the Taylor expanded terms ofQ(x) asQ(x) is always
continuous. Suppose O(Jk) ∼ O(1), the sufficient condition Eq. (33) is satisfied by

αn
k =dnk

[
1 +

(
Zn
ref

βk + ε

)]
= dnk

[
C + O

(

x5

)]
, k = 0, ..., ln,

δnk = αn
k∑ln

m=0 αr
m

= dnk + O
(

x5

)
,

where C ≥ 1 is a positive constant.

4 Numerical tests
In this section, we are going to test the 6th-order and 8th-order compact gas kinetic
schemes. The cases include linear acoustic waves, blast wave, shock-shock interactions,
shock acoustic wave interaction, as well as viscous flow computations. The mesh used in
this paper is rectangular one and the time step is determined by the CFL condition with
a CFL number (≥ 0.3) in all test cases. In all tests, the same linear reconstruction is used
for the equilibrium state and the nonlinear reconstruction for the non-equilibrium state.
There is no any additional "trouble cell" detection or any additional limiter designed for
specific test. The gas kinetic evolution model basically presents a dynamical process from
the nonlinear to linear one, and the convergence rate exp(−
t/τ) depends on the flow
condition. The collision time τ for inviscid flow at a cell interface is defined by

τ = ε
t + C|pl − pr
pl + pr

|
t,

where ε = 0.01, C = 1, and pl and pr are the pressures at the left and right sides of a cell
interface. For the viscous flow, the collision time is related to the viscosity coefficient,

τ = μ

p
+ C|pl − pr

pl + pr
|
t,

where μ is the dynamic viscosity coefficient and p is the pressure at the cell interface.
In smooth flow regions, it will reduce to τ = μ/p. The reason for including pressure
jump term in the particle collision time is to add artificial dissipation in the discontinuous
region to keep the non-equilibrium dynamics in the shock layer.
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4.1 Accuracy tests

The one-dimensional advection of density perturbation is tested first, and the initial
conditions are given as follows

ρ(x) = 1 + 0.2 sin(πx), U(x) = 1, p(x) = 1, x ∈[ 0, 2] .
The periodic boundary condition is adopted, and the analytic solutions are

ρ(x, t) = 1 + 0.2 sin(π(x − t)), U(x, t) = 1, p(x, t) = 1.

With the rth-order spatial reconstruction and 2-stage 4th-order temporal discretiza-
tion, the leading term of the truncation error is O(
xr + 
t4). To keep the rth-order
accuracy in the test, 
t = C
xr/4 needs to be used for the rth-order scheme. In the com-
putation, the uniformmeshes withN mesh points are used. The L1, L2 and L∞ errors and
convergence orders at t = 2 for the 6th-order and 8th-order compact GKS are presented
in Tables 1, 2, 3 and 4, respectively. For the 8th-order scheme, the errors reduce quickly,
and the order of accuracy does not attain 8 with N = 80 due to the limited round-off
error.

4.2 One-dimensional Riemann problems

To test the performance of the schemes for capturing high frequency waves, the Shu-
Osher problem for density-wave shock interaction is tested [56]. The initial condition is
given by

(ρ,U , p) =
{

(3.857134, 2.629369, 10.33333), x ≤ 1,
(1 + 0.2 sin(5x), 0, 1), 1 < x ≤ 10.

The computational domain is [ 0, 10] and 200 uniform mesh points are used. The non-
reflecting boundary condition is used at both ends. The computed density profile and
local enlargement at t = 1.8 from different schemes are shown in Fig. 5. Current com-
pact 6th-order and 8th-order schemes perform well with such a coarse mesh. Due to
the improvement of order of accuracy, the 8th-order scheme performs better then the
6th-order one.
As an extension of the Shu-Osher problem, the Titarev-Toro problem is tested as well

[57], and the initial condition in this case is the following

(ρ,U , p) =
{

(1.515695, 0.523346, 1.805), −5 < x ≤ −4.5,
(1 + 0.1 sin(20πx), 0, 1), −4.5 < x < 5.

The computational domain is [−5, 5]. The non-reflecting boundary condition is
imposed on left end, and the fixed wave profile is given on the right end. Both compact
6th-order and 8th-order schemes are tested for this case. The computed density profile

Table 1 1-D accuracy test: errors and convergence orders of 6th-order compact linear scheme with

t = 0.3
x3/2

Mesh length L1 error Order L2 error Order L∞ error Order

1/5 1.761e-003 1.976e-003 2.721e-003

1/10 3.171e-005 5.80 3.527e-005 5.81 4.899e-005 5.80

1/20 5.017e-007 5.98 5.554e-007 5.99 7.803e-007 5.97

1/40 7.818e-009 6.00 8.676e-009 6.00 1.224e-008 5.99

1/80 1.220e-010 6.00 1.355e-010 6.00 1.915e-010 6.00
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Table 2 1-D accuracy test: errors and convergence orders of 8th-order compact linear scheme with

t = 0.3
x2

Mesh length L1 error Order L2 error Order L∞ error Order

1/5 1.196e-004 1.344e-004 1.849e-004

1/10 4.715e-007 7.99 5.301e-007 7.99 7.286e-007 7.99

1/20 1.806e-009 8.03 1.998e-009 8.05 2.798e-009 8.02

1/40 6.979e-012 8.02 7.744e-012 8.01 1.092e-011 8.00

1/80 5.588e-014 6.96 6.207e-014 6.96 9.614e-014 6.83

with 1000 mesh points at t = 5, local enlargement, and the exact solution for the Titarev-
Toro problem are shown in Fig. 6. In order to show the importance and accuracy of the
6th-order and 8th-order compact reconstructions, the results from the non-compact 7th-
order WENO-JS reconstruction based GKS, which uses the cell-averaged flow variables
only, are included as well. As shown in Fig. 6, even with 7th-order WENO reconstruc-
tion the dissipation and dispersion errors are much larger than those from the current
6th-order compact GKS. Based on this observation, it clearly indicates that the use of
high-order evolutionmodel for the update of slope is favorable in the design of high-order
schemes. The compactness of the scheme is also physically sounded because the CFL
condition constrains the signal propagation locally to the neighboring cells only within a
time step. To design a reliable compact scheme depends on the high-order gas evolution
model at the cell interface. Any scheme based on the first order Riemann solver cannot
achieve such a goal for a scheme with the properties of compactness, large CFL number,
robustness, and high efficiency.
The third test is the Woodward-Colella blast wave problem [58], and the initial

conditions are given as follows

(ρ,U , p) =

⎧⎪⎨
⎪⎩

(1, 0, 1000), 0 ≤ x < 10,
(1, 0, 0.01), 10 ≤ x < 90,
(1, 0, 100), 90 ≤ x ≤ 100.

The computational domain is [ 0, 100]. The reflecting boundary conditions are imposed
on both ends. The density distributions and local enlargement from the 6th-order and
8th-order compact GKS are presented in Fig. 7 at t = 3.8 with 200 and 400 mesh points.

4.3 One-dimensional acoustic wave

The one-dimensional acoustic wave propagation in x-direction was proposed by Bai
et al. in [1]. The test demonstrates the high order and high resolution of the compact GKS
to compute acoustic wave propagating through a long-distance. The initial conditions are

Table 3 1-D accuracy test: errors and convergence orders of 6th-order compact nonlinear schemes
with 
t = 0.3
x3/2

mesh length L1 error Order L2 error Order L∞ error Order

1/5 7.495e-003 8.448e-003 1.248e-002

1/10 3.624e-004 4.37 4.307e-004 4.29 7.357e-004 4.08

1/20 7.877e-006 5.52 8.677e-006 5.63 1.461e-005 5.65

1/40 4.216e-008 7.55 5.440e-008 7.32 1.235e-007 6.89

1/80 2.119e-010 7.64 2.647e-010 7.68 7.407e-010 7.38

1/160 2.100e-012 6.66 2.279e-012 6.86 3.540e-012 7.71
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Table 4 1-D accuracy test: errors and convergence orders of 8th-order compact nonlinear scheme
with 
t = 0.3
x2

Mesh length L1 error Order L2 error Order L∞ error Order

1/5 5.154e-003 5.969e-003 8.959e-003

1/10 3.825e-004 3.75 4.392e-004 3.76 6.522e-004 3.78

1/20 7.963e-006 5.59 9.252e-006 5.57 1.588e-005 5.36

1/40 4.250e-008 7.55 6.042e-008 7.26 1.503e-007 6.72

1/80 1.339e-010 8.31 2.201e-010 8.10 7.984e-010 7.56

1/160 2.827e-013 8.89 3.801e-013 9.18 1.206e-012 9.37

given as follows

U = U∞ + δU , δU = εa∞ cos(ωx),U∞ = 0

ρ = ρ∞ + δρ, δρ = ερ∞ cos(2ωx), ρ∞ = 1.1771
p
p∞

=
(

ρ

ρ∞

)r
, p∞ = 101325.0

a∞ =
√

γ
p∞
ρ∞

,

where ε = 10−5 is the magnitude of initial perturbation, and ω = 6π is the wavenumber
of initial perturbations in velocity. The specific heat ratio is γ = 1.4. The acoustic wave
given above is approximately linear because of the very small ε, and an analytical solution
[1] is given from the approximate acoustic wave equation,

ρ(x, t) =ρ∞ + 1
2
ερ∞[ cos(2ω(x − a∞t)) + cos(2ω(x + a∞t))+

cos(ω(x − a∞t)) − cos(ω(x + a∞t))] ,

U(x, t) =1
2
εa∞[ cos(2ω(x − a∞t)) − cos(2ω(x + a∞t))+

cos(ω(x − a∞t)) + cos(ω(x + a∞t))] , (35)

p(x, t) =p∞ + 1
2
γ εp∞[ cos(2ω(x − a∞t)) + cos(2ω(x + a∞t))+

cos(ω(x − a∞t)) − cos(ω(x + a∞t))] .

Fig. 5 Shu-Osher problem: the density distribution and local enlargement by 6th-order and 8th-order
compact GKS at t = 1.8 with 200 mesh points
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Fig. 6 Titarev-Toro problem: the density distribution and local enlargement by 6th-order and 8th-order
compact GKS at t = 5 with 1000 mesh points

The computational domain is [ 0, 1/3]. Periodic boundary conditions on both sides are
adopted.
When giving the initial conditions in the computation, we first obtain the cell average

of the primitive variables, i.e.Qpr
i = ∫ i+1/2

i−1/2 Qpr(x)dx exactly, whereQpr = (ρ,U , p). Then
convert them to the conservative variables. Similarly, we could obtain the cell average of
the derivatives, i.e. Qpr

x,i = ∫ i+1/2
i−1/2 Qpr

x (x)dx exactly, from which the derivatives of conser-
vative variables can be obtained by the chain rules. Theoretically, this has a 2nd-order
accuracy in space. However, it is enough for the comparison since the analytical solution
in Eq. (35) is also an approximate solution. Besides the 6th-order and 8th-order com-
pact GKS, a compact linear GKS, where the initial reconstruction for f0 is from the linear
reconstruction and has no shock capturing property, will be tested as well.
Figures 8 and 9 show the density distributions at t = 0.01 (left) and t = 1.0 (right)

with 20 and 40 uniform mesh points. The computational time is greatly larger than
λρ0/a∞ = 4.8 × 10−4, where λρ0 is the initial wavelength of density perturbation. Thus
the distance of acoustic wave propagation is greatly larger than the initial wavelength of
density perturbation. The results from GKS with linear and nonlinear reconstructions
are in good agreement. The results with 40 mesh points agree well with the analytical
solution, where the small deviation near the extreme point is caused by the approxi-
mate analytical solution [1]. This case also shows that the 6th-order GKS cannot give the
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Fig. 7 Blast wave problem: the density distributions from 6th-order and 8th-order compact GKS at t = 3.8
with 200 (up) and 400 (down) mesh points

accurate solution with 20 mesh points after a long time wave propagation (100 periods)
due to the relative large numerical error in comparison with the 8th-order scheme. The
results indicate that the current GKS, even with shock capturing property, has no much
difference in performance in comparison with the purely linear scheme in the acoustic
wave case.

Fig. 8 One-dimensional acoustic problem: the distributions of density perturbation obtained by compact
GKS at t = 0.01 (left, 1 period) and t = 1.0 (right, 100 periods) with 20 mesh points. The ratio of
non-dimensional initial density wavelength to sound speed is λρ0/a∞ = 4.8 × 10−4
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Fig. 9 One-dimensional acoustic problem: the distributions of density perturbation obtained by compact
GKS at t = 0.01 (left, 1 period) and t = 1.0 (right, 100 periods) with 40 mesh points

4.4 One-dimensional shock-velocity variation interaction

The interaction between strong shock wave and turbulence is an important flow problem
in gas dynamics, where the shock passes across a local wave packet with a large variation
of flow velocity. To validate the current schemes for this kind of problems, we propose
a test of shock with a Mach number Ma = 10 crossing a velocity variation. The initial
condition is given as follows

(ρ,U , p) =
{

(8, 8.25, 116.5), x ≤ 1,
(1.4, 0.2 sin(2π(x − 1)), 1), 1 < x ≤ 10.

The computational domain is [ 0, 10]. In order to compare the resolution for capturing
the multi-scale structure from different schemes, a relative coarse mesh with 400 points
is used in the computation. The non-reflecting boundary condition is used at both ends.
The computed density profiles and the local enlargement from different schemes at t =
0.8 are shown in Fig. 10, and the distributions of velocity and its local enlargement are
shown in Fig. 11. The current compact 6th-order and 8th-order schemes perform well for

Fig. 10 One-dimensional shock crossing velocity perturbation: the density distribution and local enlargement
from WENO-7JS non-compact GKS, 6th-order and 8th-order compact GKS at t = 0.8 with 400 mesh points
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Fig. 11 One-dimensional shock crossing velocity perturbation: the velocity distribution and local
enlargement from WENO-7JS non-compact GKS, 6th-order and 8th-order compact GKS at t = 0.8 with 400
mesh points

resolving the multi-scale flow structures, where the non-compact WENO-7JS GKS has a
relative large error. The compactness seems a preferred choice for a scheme with a better
wave resolving power under strong shock condition.

4.5 Double Mach reflection problem

In this subsection, the double Mach reflection problem is tested. The test was extensively
studied by Woodward and Colella [58] for the inviscid flow. The computational domain
is [ 0, 4]×[ 0, 1], and a solid wall lies at the bottom of the computational domain starting
from x = 1/6. Initially a right-moving Mach 10 shock is positioned at (x, y) = (1/6, 0),
which has a 60◦ angle with the x-axis. The initial pre-shock and post-shock conditions are

(ρ,U ,V , p) =
(
8, 4.125

√
3,−4.125, 116.5

)
,

(ρ,U ,V , p) = (1.4, 0, 0, 1).

The reflecting boundary condition is used at the wall, and the exact post-shock con-
dition is imposed for the rest of bottom boundary. At the top boundary, the flow
variables are set to describe the exact motion of the Mach 10 shock. In this case,
the compact 6th-order and 8th-order compact GKS are tested. The density distribu-
tions with 960 × 240 and 1920 × 480 uniform mesh points at t = 0.2 are shown in
Figs. 12 and 13, and the corresponding local density enlargements are shown in Fig. 14.
The 6th-order and 8th-order schemes resolve the flow structure under the triple Mach
stem very well.

4.6 Two-dimensional Riemann problems

In the following, the two-dimensional Riemann problems are considered. The first one is
the interaction of four shocks ←−

S21
←−
S32

←−
S41

←−
S34 [59, 60], where the backward shock waves

connecting the areas �l and �r are denoted by ←−
Slr . The initial conditions are given as

follows
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Fig. 12 Double Mach reflection: the density contours of 6th-order and 8th-order compact GKS with
960 × 240 mesh points

Fig. 13 Double Mach reflection: the density contours of 6th-order and 8th-order compact GKS with
1920 × 480 mesh points
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Fig. 14 Double Mach reflection: the local enlarged density distributions around the triple point of the
6th-order (up) and 8th-order (down) compact GKS with 960 × 240 (left) and 1920 × 480 (right) mesh points

(ρ,U ,V , p) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1.5, 0, 0, 1.5), �1 : x > 0.7, y > 0.7,

(0.5323, 1.206, 0, 0.3), �2 : x < 0.7, y > 0.7,

(0.138, 1.206, 1.206, 0.029), �3 : x < 0.7, y < 0.7,

(0.5323, 0, 1.206, 0.3), �4 : x > 0.7, y < 0.7.

This case is just the mathematical formation of the double Mach problem [58] and the
symmetric line x = y can be regarded as the rigid wall. The computational domain is
[ 0, 1]×[ 0, 1], and the non-reflecting boundary conditions are used in all boundaries. The
6th-order and 8th-order compact GKS are used, and the numerical results are given in
Fig. 15 at t = 0.4 with 
x = 
y = 1/500.
In the second case, the two-dimensional Riemann problem with four contact dis-

continuities J−21J
−
32J

−
41J

−
34 is tested [59, 60], where the backward contact discontinuities

connecting the areas �l and �r are denoted as J−lr . The initial conditions are given as
follows

(ρ,U ,V , p) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1, 0.75,−0.5, 1), �1 : x > 0.5, y > 0.5,

(2, 0.75, 0.5, 1), �2 : x < 0.5, y > 0.5,

(1,−0.75, 0.5, 1), �3 : x < 0.5, y < 0.5,

(3,−0.75,−0.5, 1), �4 : x > 0.5, y < 0.5.

The computational domain is [ 0, 1]×[ 0, 1], and the non-reflecting boundary con-
ditions are also used in all boundaries. The instantaneous interaction of the contact
discontinuities results in entropy wave and vortex sheets. To obtain the detailed flow
structure, the uniform mesh with 
x = 
y = 1/500 are used. The numerical results
from compact GKS are given in Fig. 16 at t = 0.5.
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Fig. 15 2D Riemann problem: the density distributions by 6th-order and 8th-order compact GKS for the
interaction of four shock waves at t = 0.4 with 500 × 500 mesh points

Fig. 16 2D Riemann problem: the density distributions from 6th-order and 8th-order compact GKS for the
interactions of four contact discontinuities at t = 0.5 with 500 × 500 mesh points
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4.7 Lid-driven cavity flow

Here we test the performance of the compact GKS for the capturing of viscous flow
solutions. The lid-driven cavity problem is one of the most important benchmarks for
validating incompressible Navier-Stokes flow solvers. The fluid is bounded by a unit
square and is driven by a uniform translation of the top boundary. In this case, the
flow is simulated with Mach number Ma = 0.15 and all boundaries are isother-
mal and nonslip. The computational domain [ 0, 1]×[ 0, 1] is covered with 65 × 65
mesh points. Numerical simulations are conducted for two different Reynolds num-
bers, i.e., Re = 1000 and Re = 3200. The streamlines corresponding to Re =
1000 are shown in Fig. 17. The U-velocities along the center vertical line and V -
velocities along the center horizontal line are shown in Fig. 18. The benchmark data
[61] for Re = 1000 and Re = 3200 are also presented, and the simulation results
match well with these benchmark data. The results from 8th-order compact GKS are
almost identical to the reference solutions even for Re = 3200 case. The cavity case fully
validates the higher-order accuracy of compact GKS for viscous flow.

4.8 Two-dimensional acoustic wave

The case is an interaction of a shock wave with a single vortex as studied by Inoue andHat-
tori [62], where the fluid is viscous. The computational domain is [−20, 8]×[−12, 12].
The initial counterclockwise vortex (the case C in [62]) is set as follows

Uθ (r) = Mvre(1−r2)/2, Ur = 0,

and the distribution of pressure and density upstream of shock are

p(r) = 1
γ

[
1 − γ − 1

2
M2

ve(
1−r2)

]γ /(γ−1)
,

ρ(r) =
[
1 − γ − 1

2
M2

ve(
1−r2)

]1/(γ−1)
,

where Uθ and Ur are the tangential and radial velocity respectively. Mach number Mv
of the vortex is Mv = 0.25. The Mach number of shock wave is Ms = 1.2. The
Reynolds number is Re = 800 defined by Re = ρ∞a∞/μ∞, where the subscript

Fig. 17 Lid-driven cavity flow: streamlines with 65 × 65 uniform mesh points for Re = 1000 by 6th-order and
8th-order compact GKS
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Fig. 18 Lid-driven cavity flow: U-velocity along vertical centerline and V-velocity along horizontal center-line
with 65 × 65 uniform mesh points at Re = 1000 and 3200

∞ denotes the quantity downstream of the shock wave. The initial location of vor-
tex is (xv, yv) = (2, 0), and the stationary shock is at x = 0. In the computation, the
supersonic inflow boundary conditions at x = 8 as well as the periodic boundary con-
ditions at y = ±12 are imposed. The non-reflecting boundary conditions are adopted
at x = −20.
In the case, the compact 6th-order and 8th-order GKS are tested on the uniform

mesh with 700 × 600 cells. The sound pressure at t = 6 are shown in Fig. 19,
where the sound pressure is defined as �p = (p − p∞)/p∞. The pressure distribu-
tion in Fig. 19 clearly shows that the incident shock wave and two reflected shock
waves are connected at the triple point, and the reflected shock waves emanate from
the compression region of the incident shock wave. In addition, both the first and
second sound waves have the clear quadruple nature with opposite sign, which is
similar with the result in [62]. Both the 6th-order and 8th-order GKS perform well
to resolve the shock wave and density wave, and the solution is sufficiently smooth
to resolve small amplitude waves. The radial distribution of the sound pressure �p
obtained by 6th-order and 8th-order compact GKS at t = 6 with 700 × 600 mesh
points are shown in Fig. 20. The radial distribution of the sound pressure is
subtracted from the vortex center with the angle θ = 135 degree with the
positive x direction. The vortex center at t = 6 is approximately located at
(−3.9, 0.0). The results are concordant well with the results in [62], where the ref-
erence solution in [62] is obtained with 1044 × 1170 normal mesh points and
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Fig. 19 Two-dimensional acoustic problem: sound pressure contours obtained by 6th-order and 8th-order
compact GKS at t = 6 with 700 × 600 mesh points. Shock and vortex Mach numbers areMs = 1.2 and
Mv = 1. Here 150 equal-spaced sound pressure contours from − 0.5 to 0.05 are plotted. The dash line
represents rarefaction region, and the solid line represents the compression region

a local mesh refinement with approximate 1/10 of normal cell size at the shock
region.

4.9 Double shear flow

The double shear flow is a canonical test problem for a scheme’s accuracy and resolution
in incompressible flows. Brown and Minion [63] performed a systematic comparison in
this test using a number of flow parameters, focusing on the solution from the effect of
cell resolution. The initial flow is set as

U(x, y) =
{
tanh(k(y − 0.25)), y ≤ 0.5,
tanh(k(0.75 − y)), y > 0.5,

V (x, y) = δ sin(2πx)

and the distributions of pressure and density are

ρ(x, y) = 1, p(x, y) = ρU2

M2
aγ

,

Fig. 20 Two-dimensional acoustic problem: radial distribution of the sound pressure �p obtained by
6th-order and 8th-order compact GKS at t = 6 with 700 × 600 mesh points. The vortex center at t = 6 is
approximately located at (−3.9, 0.0)
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where k = 100 and δ = 0.05. Ma is the Mach number, and Ma = 0.15 is used in the
following tests. The kinetic viscosity is ν = 5.0 × 10−5. The computational domain is
[ 0, 1]×[ 0, 1], and the periodic boundary condition is adopted in both x and y directions.
The vorticity contours of linear and nonlinear compact GKS are shown in Figs. 21

and 22 respectively, where the linear and nonlinear WENO-5Z GKS is compared as
well. Because of the high-order accuracy and high resolution of the compact GKS, the
double shear layer can be exactly calculated on the coarse meshes used in [63]. In addi-
tion, the test with dynamic instability demonstrates the good stability of the compact
GKS. Compared with the nonlinear 6th-order and 8th-order compact GKS, the linear
compact GKS has better resolution. When refining the mesh, non-compact and com-
pact GKS can give the same results in Fig. 23. The vorticity distribution and local
enlargement at the line x = 0.5 are shown in Fig. 24. The results obtained by lin-
ear WENO-5Z and linear compact GKS with 256 × 256 mesh points are presented
in Fig. 24. The reference solution is obtained by linear 8th-order compact GKS with
512 × 512 mesh points. The linear compact GKS has better resolution than the lin-
ear non-compact WENO-5Z GKS. Besides, because of the compact reconstruction, the
numerical solution of compact GKS has almost no spurious oscillation near the loca-
tion with large variation of flow variable, such as at the location y = 0.13 and y = 0.16
in Fig. 24.

5 Conclusion
In this paper, a class of compact high-order gas-kinetic scheme with WENO recon-
struction has been proposed for the compressible Euler and Navier-Stokes solutions.
Based on the gas-kinetic theory, the current scheme depends solely on the time-accurate
solution of a gas distribution function at a cell interface for the flux and conserva-
tive flow variable evaluation. With the update of pointwise values at cell interfaces,
besides the cell-averaged conservative flow variables, their cell-averaged gradients can
be updated as well. Therefore, the compact linear and nonlinear reconstructions can
be obtained from the local cell averaged flow variables and their slopes. With sym-
metrical stencils, the 6th-order and 8th-order compact linear reconstructions are given
and used in the 1-D Fourier analysis. The analysis elucidates spectral resolution of the
current spatial discretization, even for very large wave number. The GKS flux makes
the scheme be stable even for the initial reconstruction from symmetrical stencils. In

Fig. 21 Double shear flow: vorticity contours at t = 0.8, obtained by non-compact linear reconstruction-based
WENO-5th (GKS flux), and the linear 6th-order and 8th-order compact GKS with 256 × 256 mesh points
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Fig. 22 Double shear flow: vorticity contours at t = 0.8, obtained by non-compact nonlinear
reconstruction-based WENO-5th(GKS flux), and the 6th-order and 8th-order compact GKS with 256 × 256
mesh points

order to capture shock and other discontinuities, the nonlinear compact WENO recon-
struction has been constructed as well. Compared with other compact schemes, the
current compact GKS is fully local and has explicit high-order discretization, with-
out using any formulation for the globally connected flow variable and their slopes.
Equipped with both linear and nonlinear compact reconstruction, the GKS gas evolution
model can make a smooth transition dynamically from the initial nonlinear reconstruc-
tion for the non-equilibrium state to the final linear reconstruction for the equilibrium
state. The transition rate depends on the local flow conditions. As a result, the cur-
rent compact high-order scheme can naturally capture both shock discontinuities and
small amplitude acoustic waves in a single computation without using any trouble cell
detection and additional limiters. Due to the existence of the time-derivative of the
flux function, the multi-stage and multi-derivative time stepping technique has been
applied here for achieving high-order temporal accuracy of the scheme. More specifi-
cally, the fourth-order time accuracy has been achieved through two stages. Both GKS
and DG methods have the same compact stencils. But, the GKS uses a much large CFL
number (≥ 0.3) for the 6th- and 8th-order schemes, and it is much more robust in
capturing shock discontinuity and is much more efficient in simulating NS equations
than the DG method. The extensive tests in this paper clearly demonstrate that the cur-
rent 6th-order and 8th-order compact schemes advance the development of high-order
CFD methods to a new level of maturity. The success of the current compact schemes

Fig. 23 Double shear flow: vorticity contours at t = 0.8, obtained by non-compact nonlinear
reconstruction-based WENO-5th(GKS flux), the 6th-order and 8th-order compact GKS with 384 × 384 mesh
points
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Fig. 24 Double shear flow: vorticity distribution and local enlargement at the line x = 0.5 obtained by
5th-order upwind scheme, linear 6th-order and 8th-order compact GKS at t = 0.8 with 256 × 256 mesh
points. The reference solution is obtained by linear 8th-order compact GKS with 512 × 512 mesh points

depends solely on the high-order gas evolution model at a cell interface, which keeps
and traces flow dynamics as close as possible to a real physical time evolution process.
Any scheme based on the first order Riemann solver, which gives a time-independent
gas evolution at a cell interface from two constant states whatever the high-order ini-
tial reconstruction is, may have difficulty to possess all these good properties of the
current high-order GKS, such as the compactness, large CFL number, Navier-Stokes solu-
tions, robustness, high efficiency, and the dynamic unification of linear and nonlinear
reconstructions.

Appendix
For the WENO reconstruction, with the definition of smooth indicator in Eq. (31), the
reconstructed polynomials from the sub-stencils for the determination of the left state
of the cell interface xi+1/2 are presented. Assume the candidate polynomial on a specific
sub-stencil as

wn(x) ≡
n∑

k=0
ankx

k/k! , (36)

where n is the order of the polynomial and takes the values n = 2, 3, 4 for
the current 6th-order and 8th-order reconstruction schemes. Substituting wn(x) into
the smooth indicator β in Eq. (31), the result can be expressed by the coefficient
ank as

β = (an1 · 
x
)2 + 13

12
(
an2 · 
x2

)2 + 1043
960

(
an3 · 
x3

)2 +
35045
32256

(
an4 · 
x4

)2 + 1
12
(
an1 · 
x

) · (an3 · 
x3
)+ 7

80
(
an2 · 
x2

) · (an4 · 
x4
)
.

For n = 2, an3 = an4 = 0, and for n = 3, an4 = 0. Therefore, once the candidate
polynomial is given, the smoothing indicator can be fully determined.
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The polynomials of the sub-stencils for the 6th-order and 8th-order schemes are listed
below,

w0(x) = 1
12
(
Wi−1 + 11Wi + 
xW ′

i−1
)+ 1


x
(−2Wi−1 + 2Wi − 
xW ′

i−1
) · x − 2


x2
(
Wi−1 − Wi + 
xW ′

i−1
) · x

2

2
,

w̃1(x) = 1
24

(−Wi−1 + 26Wi − Wi+1) + 1
16
x

(−23Wi−1 + 20Wi + 3Wi+1 − 10
xW ′
i−1
) · x+

1

x2

(Wi−1 − 2Wi + Wi+1) · x
2

2
+ 3

2
x3
(
3Wi−1 − 4Wi + Wi+1 + 2
xW ′

i−1
) · x

3

6
,

w2(x) = 1
48
(
43Wi + 16Wi+1 − 11Wi+2 + 6
xW ′

i+2
)+ 1

16
x
(−31Wi + 60Wi+1 − 29Wi+2 + 14
xW ′

i+2
) · x+

1
2
x2

(
5Wi − 16Wi+1 + 11Wi+2 − 6
xW ′

i+2
) · x

2

2
+ 3

2
x3
(−Wi + 4Wi+1 − 3Wi+2 + 2
xW ′

i+2
) · x

3

6
,

w3(x) = 1
24

(−Wi−1 + 26Wi − Wi+1) + 1
2
x

(−Wi−1 + Wi+1) · x + 1

x2

(Wi−1 − 2Wi + Wi+1) · x
2

2
,

w4(x) = 1
24

(23Wi + 2Wi+1 − Wi+2) + 1
2
x

(−3Wi + 4Wi+1 − Wi+2) · x + 1

x2

(Wi − 2Wi+1 + Wi+2) · x
2

2
,

w5(x) = 1
960

(−175Wi−1 + 1148Wi − 13Wi+1 − 54
xW ′
i−1 − 108
xW ′

i
)+ 1

8
x
(
Wi−1 − Wi+1 + 10
xW ′

i
) · x+

1
4
x2

(
19Wi−1 − 20Wi + Wi+1 + 6
xW ′

i−1 + 12
xW ′
i
) · x

2

2
− 3


x3
(
Wi−1 − Wi+1 + 2
xW ′

i
) · x

3

6
−

6

x4

(
5Wi−1 − 4Wi − Wi+1 + 2
xW ′

i−1 + 4
xW ′
i
) · x

4

24
,

w6(x) = 1
960

(
707Wi − 292Wi+1 + 545Wi+2 − 612
xW ′

i+1 − 186
xW ′
i+2
)+

1
8
x

(−21Wi + 8Wi+1 + 13Wi+2 − 22
xW ′
i+1 − 4
xW ′

i+2
) · x+

1
4
x2

(
25Wi + 28Wi+1 − 53Wi+2 + 60
xW ′

i+1 + 18
xW ′
i+2
) · x

2

2
−

3

x3

(
3Wi + 8Wi+1 − 11Wi+2 + 10
xW ′

i+1 + 4
xW ′
i+2
) · x

3

6
6


x4
(
Wi + 4Wi+1 − 5Wi+2 + 4
xW ′

i+1 + 2
xW ′
i+2
) · x

4

24
.
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