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Abstract

The numerical methods for computing the stability derivatives of the aircraft by
solving unsteady sensitivity equations which was proposed in our previous papers
was extended to solve three-dimensional problems in this paper. Both the static and
dynamic derivatives of the hypersonic blunt cone undergoing pitching oscillation
around a fixed point were computed using the new methods. The predicted static
derivative and dynamic derivative were found to be in reasonable agreement with
the experimental data. For the present method, it is possible to distinguish the
components of dynamic derivatives caused by different state parameters. It is found
that Cm _α

and Cmq are usually of opposite signs and tend to eliminate each other,
which makes Cm _α

þ Cmq being much smaller than its individual components.

Another feature of this method is that the moment of pressure derivatives proposed
in the present paper can be used to predict the contribution of each part of the
blunt cone to the overall stability quantitatively. It is found that the head region is
crucial for the static stability and the body region contributes most to the dynamic
stability.

Keywords: Stability derivatives, Unsteady sensitivity equations, Three dimensional
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1 Introduction
The determination of the stability characteristics of atmospheric flight vehicles is the

basis of the control system design, which is one of the most essential yet challenging

stages in the whole process of aircraft development. A poor understanding or predic-

tion of the stability characteristics may lead to a rise in costs and detrimental effects

on the performance of the aircraft [1, 2]. Therefore, it is necessary for designers to

have proper knowledge of the stability characteristics, of which the stability derivatives

are the key parameters.

The concept of stability derivatives was introduced by Byran [3] based on the assump-

tion of linear relations between the aerodynamic forces/moments and instantaneous

values of the disturbances of the kinematic variables. This model was very successful for

flight at small angles of attack and with small disturbances. However, under extreme

flight conditions involving high angle of attack, high pitch rate and/or gust responses, it
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is important to develop the aerodynamic models accounting for the nonlinear and un-

steady effects. Some extended aerodynamic models can be found in [4–10] and others.

No matter which aerodynamic model is adopted, accurate evaluations of the aero-

dynamic response are essential [11], which can be carried out by wind tunnel experi-

ments, flight tests, and computational fluid dynamics (CFD) simulations. The CFD

approaches have great potentials in simulating wide ranges of flight conditions, predict-

ing complete sets of data for the stability characteristics analysis and removing the

interference effects of the model support [12], and have been developed considerably in

recent years.

The CFD methods for computing the stability derivatives can be roughly divided into

two categories. The first one is computing the flow fields first and then evaluating the

stability derivatives using a certain parameter identification technique. These methods

are very close to the experimental methods for evaluating the stability derivatives, and

the only difference is that the aerodynamic forces and moments are computed instead

of measured. One example of this type is the forced-oscillation approach, in which the

stability derivatives can be computed by the integration of the periodic solutions of

force/moment coefficients [13]. Ronch et.al [14–16]. used this approach to systematic-

ally study the stability derivatives of several models of aircraft in terms of various CFD

solvers, such as RANS, harmonic balance, and linear frequency methods. There are sev-

eral limitations to this approach. Firstly, only combinations of the stability derivatives

such as Cmα−k
2Cm _q

and Cm _α
þ Cmq can be computed. To separate Cm _α

and Cmq , add-

itional plunging motion must be considered besides the pitching motion. This approach

is however not rigorous and will introduce additional errors. Secondly, the stability de-

rivatives are assumed to be constant and their dependence on the reduced frequency

is not known. More general approaches in terms of parameter identification techniques

have been studied in [17, 18]. Nevertheless, these approaches all require pre-assumed

aerodynamic models.

The second category of CFD methods is directly computing the stability derivatives by

solving the flow as well as the static sensitivity equations. This category of sensitivity equa-

tion based method was put forward by Godfrey and Cliff [19]. Limache [20] followed this

approach and computed the pitch-rate derivatives of the airfoil under the steady motion.

These methods are capable of computing various stability derivatives directly without

relying on the parameter identification technique. However, the application of these

sensitivity-based methods is confined to the study on static stability derivatives, since the

basis of these methods is the static sensitivity equations. Similar methods based on auto-

matic differentiation adjoint approach can be found in [3].

Ren [21] developed a sensitivity equation based method for computing the stability de-

rivatives that account for the unsteady effects. This method is based on an extension of

the conventional stability derivative model. Taking the relation between the pitching mo-

ment Cm(t) and motion time history of the angle of attack α(t) as an example, he demon-

strated that if α(t) can be expressed as a convergent Taylor series and the pitching

moment is the function of α(t) and its time derivatives of various order

Cm tð Þ ¼ Cm α tð Þ; _α tð Þ; €α tð Þ;⋯ð Þ;

the unsteady sensitivity equations can be derived. Then the stability derivatives can be
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computed directly from the solution of the sensitivity equations. This method does not

rely on the linear or linearized aerodynamic model and takes the unsteady effects into

consideration. Furthermore, this method is capable of predicting all stability derivatives

from a single maneuver because of the use of information obtained from the sensitivity

equations. In [22], this method was extended to compute the stability derivatives asso-

ciated with supersonic flow with shock waves. The behavior of the solution of the sensi-

tivity equations in the vicinity of shock waves was analyzed. In these papers, only

simple two-dimensional cases were studied. Further studies are needed to validate the

proposed method using more realistic three-dimensional test cases.

In this paper, the longitudinal stability derivatives of a blunt cone in supersonic flows

are studied by solving the three-dimensional unsteady sensitivity equations. The results

are compared with the experimental data to demonstrate the validity of this method.

Besides further validation of the unsteady sensitivity equation based method for com-

puting the stability derivatives, the main purpose of the present paper is to analyze the

behaviors of Cm _α
and Cmq which, instead of the combination Cm _α

þ Cmq , can be com-

puted individually using the present method. Based on the distributions of sensitivity

variables solved by the sensitivity equations, the contributions to the overall stability of

any part of the cone can be evaluated quantitatively.

2 Sensitivity equations and the numerical approaches
In the non-inertial frame of reference fixed on the aircraft, the three-dimensional Euler

equations in conservation form are show in Eq.(1) as follows

∂U
∂t

þ ∂F
∂x

þ ∂G
∂y

þ ∂H
∂z

¼ R ð1Þ

where U is the vector of conservation variables and F, and G and H are the inviscid

fluxes:

U ¼

ρ
ρu
ρv
ρw
ρE

2
66664

3
77775 F ¼

ρu
ρuuþ p
ρvu
ρwu

u ρE þ pð Þ

2
66664

3
77775 G ¼

ρv
ρuv

ρvvþ p
ρwv

v ρE þ pð Þ

2
66664

3
77775 H ¼

ρw
ρuw
ρvw

ρwwþ p
w ρE þ pð Þ

2
66664

3
77775

R is the source terms due to the motion of the aircraft in the following form

R ¼ Rρ;RVx;RVy;RVz;RE
� �T

where

Rρ ¼ 0
RE ¼ −ρVr � a0 þ _ω� rþ ω� ω� rð Þð Þ

and RVx, RVy and RVz are the components of

RV ¼ −ρ a0 þ _ω� rþ ω� ω� rð Þ þ 2ω� Vrð Þ:

In these equations and definitions, ρ is the density, p is the pressure, E is the energy,

u, v and w are the velocity components of Vr, a0 is the acceleration vector of the origin

of the moving frame, and p, q and r are the components of ω, which is the angular vel-

ocity of the moving frame.
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Here, the unsteady sensitivity equations for computing the stability derivatives are

briefly reviewed. According to Von Karman and Burgers [19], the unsteady aero-

dynamic forces and moments depend on the time histories of the motion of the air-

craft. In longitudinal motions, this relationship in terms of pitching moment is

Cm tð Þ ¼ Cm α τð Þ; q τð Þ;V τð Þð Þ τ∈ −∞; tð �: ð2Þ

If in Eq.(2) the moment coefficient depends on a short period of the past history [23],

it is sufficient to assume that

Cm tð Þ ¼ Cm α tð Þ; _α tð Þ; €α tð Þ;…; q tð Þ; _q tð Þ; €q tð Þ;…;V tð Þ; _V tð Þ; €V tð Þ;…� �
: ð3Þ

In [21], besides Eq.(3), it is further assumed that at a fixed point in the non-inertial

frame of reference, the conservative variables of the flow field can be also expressed by

U t; x; yð Þ ¼ U α tð Þ; _α tð Þ; €α tð Þ;…; q tð Þ; _q tð Þ; €q tð Þ;…;V tð Þ; _V tð Þ; €V tð Þ;…; x; y
� �

: ð4Þ

Eq. (4) is sufficient for deriving the unsteady sensitivity equations [21]

∂
∂t

Uγ
� �þ ∂

∂x
Fγ

� �þ ∂
∂y

Gγ
� �þ ∂

∂z
Hγ
� � ¼ Rγ

∂
∂t

U _γ
� �þ ∂

∂x
F _γ

� �þ ∂
∂y

G _γ
� �þ ∂

∂z
H _γ
� � ¼ R _γ−

∂U
∂γ

∂
∂t

U€γ
� �þ ∂

∂x
F€γ

� �þ ∂
∂y

G€γ
� �þ ∂

∂z
H€γ
� � ¼ R€γ−

∂U
∂ _γ

⋯

ð5Þ

where γ is any one of α, q and V, and Uγ ;U _γ and U€γ are called the sensitivity deriva-

tives. Eq.(5) can be solved together with Eq.(1) to predict the sensitivity derivatives.

The sensitivity equations are passive equations depending on the solution of the flow

governing equations. In Eq.(5), it is shown that the sensitivity derivatives with respect

to _γ and €γ depend on those with respect to γ and _γ respectively. Therefore, in practice,

we firstly solve the flow governing equations, secondly solve the sensitivity equations

with respect to γ to predict the static derivatives, and then solve the sensitivity equa-

tions with respect to _γ (and higher order terms when necessary) to compute the dy-

namic derivatives. The sequence of solution procedures for predicting the longitudinal

stability derivatives is shown in Fig. 1. The computational cost of the present methods

is closely related to the number of sensitivity equations being solved. As shown in Fig. 1,

if the sensitivity equations with respect to α, q,V and _α; _q; _V are solved, the total equa-

tions to be solved will be 7 times as many as the flow governing equations. Therefore,

the computational effort of the present approach is very large in general. In the present

paper, only the sensitivity equations corresponding to the inviscid Euler equations are

solved to save the computational cost.

The sensitivity equations and the flow governing equations are in a similar form and

can be solved using basically the same numerical schemes. In the present paper, a finite

volume solver in terms of the multi-block structured grids is used to solve both Eqs.

(1) and (5). A reconstruction procedure based on the minimized dispersion and con-

trollable dissipation [24, 25] is employed to compute the left and right states of conser-

vative variables at the cell interface. The HLL Riemann solver [26] is used to compute

the numerical flux of both the flow governing equations and the sensitivity equations.

The dual time stepping LU-SGS technique [27] is used for temporal discretization. The
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validation test cases for this numerical procedure can be found in [25]. The boundary

conditions of the sensitivity equations can be straightforwardly derived from the

boundary conditions for the flow governing equations. For example, the boundary con-

ditions for the inviscid wall is

Vr � n ¼ 0

in the non-inertial frame of reference. The corresponding wall boundary conditions for

the sensitivity equations with respect to γ and _γ are respectively

Vrð Þγ � n ¼ 0

and

Vrð Þ _γ � n ¼ 0:

The far-field boundary conditions are handled using characteristic approaches based

on the Riemann invariants in the boundary normal directions. The Riemann invariants

can be also differentiated with respect to γ and _γ to obtain the boundary conditions for

the corresponding sensitivity equations.

The predicted sensitivity derivatives can be used to compute the stability derivatives

with respect to γ; _γ;⋯ directly. For example, knowing the definition of the moment

coefficient

Cm ¼ ∯
Ω
r� pnds

� �
=

1
2
ρV 2

∞SL

� �
; ð6Þ

the stability derivative Cmγ is computed by

Cmð Þγ ¼ ∯
Ω
r� pγnds

� �
=

1
2
ρV 2

∞SL

� �
; ð7Þ

where the sensitivity derivative pγ can be deduced from Uγ. ðCmÞ _γ can be computed in

a similar way.

The present method for computing the stability derivatives by solving the sensitivity

equations is a entirely new approach. Although its theory has been presented in [21],

Fig. 1 The illustration of the solution sequence for the computation of the stability derivatives
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some features of this approach are not studied in detail. Therefore, it is necessary to

discuss further on these features especially for three-dimensional problems.

The first one is the aerodynamic model. In the present approach, we only need to know

the abstract relation between the aerodynamic force/moment and the motion variables

that is shown in Eq.(3). Most of other CFD based approach requires the prescription of an

explicit aerodynamic model. For example, in [14], a steady reference motion is firstly

given, and the increment of the aerodynamic force/moment is assumed to be the linear

function of the increments of the state variables of a perturbative motion. On the other

hand, the present approach does not require a steady reference motion. And the stability

derivatives can be computed for any maneuver motion of the aircraft.

The second one is the dependency of the stability derivatives on the motion variables.

In traditional approach for computing the pitching stability derivatives [14], the stability

derivatives are only related to the steady reference motion and the reduced frequency.

As a result, the static stability derivatives are assumed to be constant. However, in the

present approach, it is easy to derive from Eq.(3) that

Cmð Þα ¼
∂Cm

∂α
α tð Þ; _α tð Þ; €α tð Þ;…; q tð Þ; _q tð Þ; €q tð Þ;…;V tð Þ; _V tð Þ; €V tð Þ;…� �

:

Therefore, for a general maneuver motion of the aircraft, the static derivative (Cm)α is

also time-varying. This relation reveals that the stability derivatives are not only affected

by the reference motion, but also by the perturbative motion. For other stability deriva-

tives including the dynamic stability derivatives, the same conclusion can be also drawn.

The third one is that the present approach is capable of computing all of the static

and dynamic derivatives in a single maneuver motion as long as the corresponding sen-

sitivity equations are solved. In the case of the forced sinusoidal motion around the air-

craft’s center of gravity, instead of computing Cm _α
þ Cmq , Cm _α

and Cmq can be

computed individually. According to Eq.(7), they are computed respectively by

Cmð Þ _α ¼ ∯
Ω
r� p _αnds

� �
=

1
2
ρV 2

∞SL

� �

and

Cmð Þq ¼ ∯
Ω
r� pqnds

� �
=

1
2
ρV 2

∞SL

� �
:

In these formulations, p _α and pq are computed by the solutions of Eq.(5). The present

method gives the time histories of Cm _α
and Cmq so that their dependency on the re-

duced frequency can be shown. For traditional methods, the pitching oscillations can

be used only to compute Cm _α
þ Cmq . In order to compute both Cm _α

and Cmq , besides

the pitching oscillation, additional plunging oscillation should also be considered [28].

This approach is feasible only when the assumption is valid that the stability derivatives

are solely related to the steady reference motion. However, according to the analysis

presented above in the second feature of the present method, the stability derivatives

are not only affected by the reference motion, but also by the perturbative motion.

Therefore, using two different perturbative motions to separate Cm _α
and Cmq from

Cm _α
þ Cmq will introduce additional errors. It is reported in [29] that the approach
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using pitching and plunging oscillations to compute Cm _α
and Cmq showed great fre-

quency dependency. To reduce this dependency, it is proposed in [29] that Cm _α
and

Cmq are computed using the looping and heaving motions. In the present approach,

any single maneuver motion can be used to Cm _α
and Cmq directly, which totally

removes the ambiguity in computing these stability derivatives.

The last feature is that the present method gives not only the stability derivatives dir-

ectly by solving the sensitivity equations, but also the distribution of the sensitivity deriva-

tives such as pγ and p _γ . The distribution of the sensitivity derivatives such as pγ and p _γ

appeared in Eq. (7) gives additional information which is not available for the traditional

methods. In the present paper, we propose to use this information to evaluate the local

contribution of a particular element of an aircraft to the stability derivatives of the whole

aircraft. To this end, the surface of an aircraft is divided in to N parts with

Ω ¼
XN
i

Ωi:

On each part, the contribution to the moment derivatives can be computed by

my
� �

γ;i ¼ ∯
Ωi

r� pγnds: ð8Þ

The moment stability derivative of the aircraft (my)γ is computed as

my
� �

γ ¼
XN
i

my
� �

γ;i

which is nondimensionalized to obtain Cmγ . The term (my)γ, i is called the Moment of

Pressure Derivatives (MPD) in this paper. This value indicates the amount of contribu-

tion of any particular body surface to the overall stability derivatives. The importance

of MPD is to identify the crucial locations that affect the stability of an aircraft so that

local measurement can be introduced to effectively stabilize or destabilize the aircraft.

In conventional methods based on the CFD technique, since pγ is not known, it is im-

possible to calculate the local contribution to the stability derivatives although it is pos-

sible to calculate the local contribution to the moment coefficient.

a b

Fig. 2 The geometry and the computational domain of the blunt cone. a The configuration of the cone,
dN/dB = 0.4. b The computational domain of the blunt cone without bottom region
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3 Results and discussions
3.1 The test case

The stability derivatives of blunt cones undergoing the forced oscillations was studied

using the wind-tunnel experiments in [30, 31]. The configuration and geometry parame-

ters of the cones are shown in Fig. 2a. The ratio between the nose diameter and the base

diameter dN/dB is 0.4.

In this section, we will study this test case numerically. For the forced pitching oscil-

lation around a fixed point, the pitch angle equals to the angle of attack

α ¼ θ;

and the forced oscillation is in the following form [32]

α ¼ θ ¼ α0 þ α1 sin
2V∞kt

L

� 	
;

where α0 and α1 are the mean value and amplitude of the oscillation, L is the character-

istic length of the cone, V∞ is the velocity of the freestream, and k is the reduced fre-

quency. The model was tested according to different rotating centers (Xcg = 0.70L and

Xcg = 0.75L). The two sets of experimental conditions are named as Xcg70 and Xcg75

in this paper. The computational domain is shown in Fig. 2b with about 1.6 million cells.

The stability derivatives of the moment coefficient with respect to α; _α and q(q ¼ _θ)

are presented in this paper. It should be noted that the stability derivatives under any

a b c

Fig. 3 Cm and its derivatives at α0 = 0∘, Xcg/L = 0.70. a Cm. b Cmα . c Cm _α
þ Cmq

a b c

Fig. 4 Cm and its derivatives at α0 = 3∘, Xcg/L = 0.70. a Cm. b Cmα . c Cm _α
þ Cmq
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maneuver can be computed, while in this paper only the derivatives of the pitch damp-

ing motion are computed.

3.2 The stability derivatives

The results of Xcg70 are discussed here to show the stability derivatives during the

pitch damping motions. The amplitude of the angle of attack is 1°, and the Mach num-

ber is 6.85. The range of reduced frequency k of the experiments is from 0.0018 to

0.0092. In order to observe and analyze the influences of the pitching frequency, more

frequencies are used in this test case.

Figure 3 and Fig. 4 show the variation of the pitching moment coefficient and its de-

rivatives versus the angle of attack, where α0 = 0∘ and 3∘ . It can be observed that the

stability derivatives are not constant, and they are changing with the angle of attack.

This is in contradiction with some linear aerodynamic models in which the stability de-

rivatives are functions of the mean angle of attack only.

It is also clear that there is the time-lagged effect in both the momentum coefficient

and its stability derivatives. Further study reveals an interesting phenomenon. The hys-

teresis effects of the moment coefficients become stronger as the reduced frequency

a b
Fig. 5 The components of the dynamic derivatives at α0 = 3∘ for Xcg/L = 0.70. a Cm _α

. b Cmq

a b c

Fig. 6 The time-average values of Cmα , Cm _α
and Cmq versus different numbers of cells. a Cmα . b Cm _α

. c Cmq
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increases. However, the hysteresis effects of the stability derivatives are not very sensi-

tive to the reduced frequency. Another feature of the stability derivatives is that the

static derivative Cmα is smoothly changed with the angle of attack, while there are oscil-

lations in the dynamic damping derivative Cm _α
þ Cmq . This result indicates that the

higher order sensitivity derivatives are more sensitive to the flow field prediction.

A distinctive feature of the present method is that the dynamic stability derivatives Cm _α
and Cmq can be predicted separately. The results of Cm _α

and Cmq are shown in Fig. 5. It is

found that the Cm _α
is negative and thus stabilizes the motion, and on the other hand the

Cmq is positive and tends to make the motion unstable. Using conventional methods, only

Cm _α
þ Cmq can be predicted, and as the result, the destabilization effect of Cmq cannot be

revealed.

3.3 Grid convergence

The grid convergence is important to ensure that the numerical solutions of the stabil-

ity derivatives are accurate on given grids. In this subsection, the grid convergence of

the numerical methods for solving the sensitivity equations is verified by increasing the

number of grids gradually from 0.17 million to 1.60 million. The mean angle of attack

α0 is set to 3°, and the amplitude of oscillation α1 is 1°. The position of the rotating cen-

ter Xcg = 0.70 L.

Figure 6 shows the results of the mean value of moment coefficient derivatives with re-

spect to α, _α and q under different grid numbers. When the grid is refined, the tendency of

convergence is observed in the numerical solutions. The differences for Cmα , Cm _α
and Cmq

are 0.47%, 0.58% and 0.77% between the two most refined grids with 1.02M and 1.6M

grids. In what follows, only the numerical results on the finest grid are shown.

3.4 The comparison with experimental data

In the experimental study [30, 31], only the mean values of the stability derivatives are

measured. In the present study, the mean values of the stability derivatives are

a b
Fig. 7 Comparison of the static of theoretical, experimental and numerical methods for Xcg/L = 0.70 and
Xcg/L = 0.75. a Static derivatives of Xcg/L = 0.70. b Static derivatives of Xcg/L = 0.75
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computed by the time-average of the instantaneous solutions of the stability derivatives

on one period of the forced oscillation. Figure 7 shows the results of mean static deriva-

tives at different mean angles of attack (≤6°) for both Xcg70 and Xcg75. The results are

in reasonable agreement with the experimental data and are more accurate than the

theoretical results of the embedded Newtonian theory [30, 31].

When the mean angle of attack increases further, the errors between the numerical and

experimental results will become larger (not shown here). To explain this phenomenon, we

notice that the computational domain which is shown in Fig. 2 does not include the bottom

region of the blunt cone. When the angle of attack is large enough, the asymmetry of the

flow field may have a large influence on the stability derivatives. Therefore, this test case is

recomputed using the computational domain and corresponding grids shown in Fig. 8.

After considering the bottom effect, the static derivatives of Xcg75 at α0 ∈ [4°, 10°] are
shown in Fig. 9. In this results, the predicted static stability derivatives are in good agree-

ment with the experimental results. When the angle of attack increases to an even large

value, the inviscid nature of Euler equations may prevent an accurate prediction of the sta-

bility derivatives since the flow separations at the bottom region are dominated by the vis-

cous effect. The use of the Navier-Stokes equations for predicting the sensitivity derivatives

is very expensive, which will be studied in the future work.

Figure 10 shows the mean dynamic derivatives Cm _α
þ Cmq after considering the bottom

effect. It is shown that when the angle of attack is smaller than 10°, the agreement be-

tween the numerical results and the experimental results are reasonable although the er-

rors are considerably larger than the static derivatives. When the angle of attack is larger

than 10°, the errors become even larger. This is also an indication that the Euler equations

may not be appropriate when the angle of attack is large. However, the tendency of the dy-

namic stability derivatives with respect to the angle of attack is better predicted by the

present method when compared with the embedded Newtonian theory.

We note further that in the experiment, only Cm _α
þ Cmq can be predicted directly.

On the other hand, the present method can compute Cm _α
and Cmq separately. The

mean values of these derivatives are shown in Fig. 11. It is found that Cm _α
and Cmq are

usually of opposite signs and tend to eliminate each other, which makes the variation of

a b
Fig. 8 The refined grid considering the bottom regions. a Topology of blocks. b Near view of the grid
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Fig. 9 Comparison of the static moment derivative between theoretical, experimental and numerical results
after considering the bottom effect

Fig. 10 Comparison of the dynamic moment derivatives between the theoretical, experimental and
numerical results after considering the bottom effect
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Cm _α
þ Cmq being much smaller than its individual components. This phenomenon

shows the importance of predicting Cm _α
and Cmq separately.

3.5 Evaluation of the local contribution of the blunt cone to the stability derivatives

using the sensitivity derivatives

The MPD defined in Eq.(8) is used to evaluate the contribution of local surfaces of the

blunt cone to the moment stability derivatives. For the present case, the surface of the

cone is divided into three parts, namely the head, body and bottom parts which are

shown in Fig. 12. Their contributions to the stability derivatives are given in Table 1

when the mean angles of attack is 8°. In Table 1, the positive percentage means the

stabilization effect while the negative percentage means destabilization effect. For static

stability derivative Cmα , the stabilization effect is achieved by the head of the blunt

cone, and the body and bottom parts both destabilize the cone. And the head region

plays the most important role in the static stability. For the dynamic stability derivative

Cm _α
þ Cmq , all three parts have the stabilization effect, and the body part provides

about 80% of the overall stability. The bottom effect can be also quantitatively identified

using the MPD. It can be deduced from Table 1 that in terms of the absolute value of

MPD, the bottom region contributes 6.4% of the total static stability, and contributes

4.9% of the total dynamic stability.

4 Conclusion
In this paper, the numerical method for evaluating the stability derivatives based on the

unsteady sensitivity equations is extended to 3D cases. This method takes the unsteady

effects into consideration and can be used to predict any stability derivative by solving

Fig. 11 Components of Dynamic derivatives
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the unsteady flow and the corresponding sensitivity equations. There are two remark-

able features of this method. One of them is the possibility to distinguish the compo-

nents of dynamic derivatives caused by different state parameters. The other feature is

that the MPD can be used to predict the contribution of each part of the aircraft to the

overall stability quantitatively. The supersonic blunt cone is tested to validate this

method.

For the stability derivatives of the blunt cone in hypersonic flow with Mach number

6.85, the numerical results show that when the angle of attack is not very large, both static

and dynamic stability derivatives can be predicted in reasonable accuracy which is usually

higher than the embedded Newtonian theory. For the static stability, the stabilization ef-

fect is achieved by the head of the blunt cone, and the body and bottom parts both

destabilize the cone. For the dynamic stability, Cm _α
and Cmq are usually of opposite signs

and tend to eliminate each other, which makes the variation of Cm _α
þ Cmq being much

smaller than its individual components. The body part provides about 80% of the overall

dynamic stability.

5 Nomenclature
α angle of attack, shown in Fig. 2a

Fig. 12 The sketch diagram of components of the blunt cone, red-head, blue-body, green-bottom

Table 1 Contribution of head, body and bottom part to the overall stability

Components Static derivatives Contribution % Dynamic derivatives Contribution %

Head -6.976E-01 728.77% -1.338E-02 14.88%

Body 5.187E-01 − 541.89% −7.215E-02 80.26%

Bottom 8.315E-02 −86.88% −4.370E-03 4.86%

Sum −9.572E-02 100% −8.990E-02 100%
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θ pitching angle, shown in Fig. 2a

q pitching angular velocity

V magnitude of velocity

γ any one of α, q and V

Cm moment coefficient, defined in Eq.(6)

(Cm)γ Stability derivatives of Cm with respected to γ
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