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Abstract

Cryogenic wind tunnel is a sophisticated aerodynamics ground test facility, which
operates in cryogenic temperature with injection of liquid nitrogen. The multi-
variable, nonlinear and coupled dynamics existing between the temperature,
pressure and Mach number in the tunnel, poses great challenges for the effective
control of the tunnel. L1 adaptive control is a new control methodology developed
in recent years with good robustness properties, which has good potentials to
address these challenges. But this control method does not provide full adaptive
feedforward control in its generic structure. In the paper, adaptive feedforward
control action is introduced into the standard L1 adaptive control architecture for
nonlinear systems in the presence of matched un-modeled dynamics. This new
control structure is applied to the stagnation pressure control in a cryogenic wind
tunnel, which could also be used for the control of temperature and Mach number
in the tunnel. This new method could effectively compensate known disturbances
with linear gain uncertainty, which occur in the nonlinear systems, while retaining
the closed-loop control performance of L1 adaptive control. After the proof and
discussions on the stability of this method, simulations of the stagnation pressure
control in the wind tunnel are presented. The results and analysis demonstrate the
effectiveness of the proposed control architecture.

Keywords: L1 adaptive control, Nonlinear system, Stagnation pressure, Cryogenic
wind tunnel

1 Introduction
Cryogenic wind tunnel is a sophisticated aerodynamics ground test facility which can

provide real flight Reynolds number by operating the wind tunnel in cryogenic

temperature with the injection of liquid nitrogen into tunnel circuit [1]. Reynolds

number is increased in cryogenic wind tunnel due to the increased gas density and

decreased viscosity of the gas at cryogenic temperatures [2]. In contrast with conven-

tional wind tunnels, cryogenic wind tunnel has three main flow parameters, pressure,

temperature and Mach number, which should be regulated accurately to obtain high

quality flow-field. Due to the interactions between the three variables and their re-

spective control inputs, there exists a multi-variable, nonlinear and coupled dynamics

for the three flow states [3]. Thus, a finely designed controller with reasonable robust-

ness and good performance should be deployed in the automatic control of cryogenic

wind tunnel to guarantee its smooth operations. At present, some cryogenic wind tun-

nels with high Reynolds number capabilities have been built in some well-known
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research institutes in the world, such as the DNW-Kryo-Kanal Köln cryogenic wind

tunnel in Köln Germany, 0.3-m Transonic Cryogenic Tunnel (TCT) and the National

Transonic Facility (NTF) at NASA in the US, the European Transonic Wind tunnel

(ETW) in Germany [4, 5] .

Because of the complex nature of cryogenic wind tunnel dynamics, some studies and re-

searches on the development of control methodology for the tunnel had been carried out

from the start of the concept of cryogenic wind tunnel decades ago, mainly concerning

the modeling and control of the cryogenic wind tunnel process [6, 7]. Most of the re-

search have been conducted at the TCT, NTF of NASA Langley and ETW in Europe. A

nonlinear gain scheduled PI controller with feedforward control was deployed in NTF in

its early stages of operation [2]. A control algorithm with self-learning capabilities was de-

signed and implemented in ETW [4]. Since then, some updates and re-innovation of the

control system have been reported in recent years [8], while without much details.

The purpose of this paper is to deploy a new adaptive control method with guaranteed

transient performance, L1 adaptive control [9], to implement the control of cryogenic

wind tunnel. Deploying adaptive control in cryogenic wind tunnel has many advantages

over using traditional control methods in the tunnel. The main advantage is that it could

equip the control system with some self-learning capabilities and would find proper con-

trol parameters automatically to achieve desired control performance under uncertainties

in the system or model inaccuracies of the tunnel. This would reduce a lot of tuning ef-

forts, time and resources consumptions when the tunnel is in commissioning phase. Ra-

ther than considering the control of all three parameters, this paper mainly considers the

stagnation pressure control in cryogenic wind tunnel.

Adaptive control was first proposed to address the problem of autopilots in flight con-

trol in the mid-1950s [10]. The early development of adaptive control was dominated by

experiments, advances made in stability theory later inspired development of the theory

for adaptive systems [11]. After that, the interest in adaptive flight control produced many

researches on adaptive control in industry and academia. More vibrant researches on

adaptive control for aerospace applications appeared at the turn of the century. The driv-

ing forces were requirements for reconfiguration and damage control and the desire to

simplify extensive and costly verification and validation procedures in flying vehicle

development [12, 13]. L1 adaptive control is one of these results in recent years, a newly

developed adaptive control methodology mainly contributed by Hovakimyan and Cao

[14–17]. This new adaptive control has some distinguishing features compared with con-

ventional adaptive controls, such as Model Reference Adaptive Control (MRAC). It can

be viewed as a modified model reference adaptive control scheme, in which the basic

architecture is based on internal model principle [9].

The key feature of L1 adaptive control architectures is the guaranteed robustness

in the presence of fast adaptation. In this adaptive architecture, the uncertainties in

feedback loop can be compensated only within the bandwidth of a filter in its

structure [9]. This leads to separation between adaptation and robustness in the

adaptive law, and then desired and guaranteed transient performance for the

closed-loop systems can be achieved. Details of the theory can be found in [9] and

related papers on this issue.

However, the standard L1 adaptive control doesn’t provide full adaptive feedforward

control capacity for known disturbances in systems due to the existence of low-pass
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filter in its control law. Because in normal cases, it is impossible for a control signal

coming out of low-pass filter to completely compensate the known disturbances in sys-

tem. The generic L1 adaptive control can compensate some un-modeled or unknown

disturbances under specific assumptions about the system [9].

This paper mainly introduces adaptive feedforward control into the standard L1 adaptive

control for nonlinear system to provide full compensation for known disturbances with

linear gain uncertainty. The adaptive feedforward control is based on conventional adaptive

scheme, while it is fully integrated into the L1 adaptive control structure. Then this new

control structure is applied in the stagnation pressure control of a cryogenic wind tunnel.

This paper is organized as follows. Section 2 gives a brief introduction to the facility and

the stagnation pressure dynamics of the tunnel. Section 3 presents problem formulation

for the L1 adaptive control with feedforward control action, and illustrates the controller

design and its stability discussion. Section 4 introduces controller design for the stagna-

tion pressure, simulation results and some experimental results, while Section 5 concludes

the paper.

2 Dynamic model of cryogenic wind tunnel
2.1 Facility description

The facility considered in this paper is a closed-circuit, pressurized, outer thermal-

insulated small cryogenic wind tunnel, mainly used for some researches related to aero-

dynamics in cryogenic temperature. The schematic diagram is shown in Fig. 1.

A compressor driven by an electrical motor moves nitrogen gas around the circuit. When

in operation, the liquid nitrogen (LN2) is injected into the tunnel at the upstream of the

compressor and mixed with the gas inside the tunnel. The mass volume of liquid nitrogen

injected into the wind tunnel is regulated by LN2 control valve. The gas nitrogen (GN2) in-

side the tunnel is extracted to the GN2 exhaust system by the pressure control valve, which

is located at upstream of the stilling chamber. The stagnation (total) pressure is measured at

the stilling chamber before test section. The main operation parameters, total pressure, total

temperature and Mach number in test section, need to be controlled precisely within the

whole operation envelop. The operation range is, 110 K to 300 K for total temperature, 1.15

to 4.5 atm for total pressure, and 0.15 to 1.2 for Mach number respectively.

Normally, the operation of cryogenic wind tunnel starts with a cooling down process

with decreasing rate constraint from ambient temperature. After the temperature set

Fig. 1 Schematic of the cryogenic wind tunnel
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point is reached, quick changes of test section states will be carried out for the test.

When the test is finished, a tunnel warming process with rising rate limitation will

occur before the end of entire operation.

2.2 Dynamic model of the cryogenic wind tunnel

The modeling of the tunnel dynamics in this paper mainly follows the study in reference

[2], and the dynamics will be briefed here.

The main state dynamics is given as

Pt
: ¼ Pt

Tt
˙Tt þ Pt

Wg
mL t−τ1ð Þ−mg t−τ2ð Þ� � ð1Þ

Tt
: ¼ mL t−τ3ð Þ

WgCV
hL−CVTtð Þ þ Pcompressor t−τ4ð Þ

WgCV
−
WmCm

WgCV

Tt−Tmð Þ
tm

ð2Þ

Ma
: ¼ N f

Pt
−0:035 ffiffiffiffiffiffi

Tt
p −k1

� �
= k2 tað Þ−Ma

ta
ð3Þ

where Pt, Tt, Ma are stagnation pressure, stagnation temperature and Mach number

respectively. In (1), Wg is gas mass in the tunnel, mL is the liquid nitrogen injection mass

flow rate, and mg is the gas nitrogen mass flow blown off from the tunnel. ˙Tt is the change

rate of temperature Tt. τ1, τ2, τ3 and τ4 are time delays corresponding to each input. (1) is

the governing dynamic equation for stagnation pressure in cryogenic wind tunnel. It shows

that the stagnation pressure changes are mainly dictated by the blown off mass flow mg and

liquid nitrogen injection mass flow mL. Equations (2) and (3) denote the stagnation

temperature and Mach number dynamics, where CV is specific heat at constant volume

(kJ/kg. K), Cm is specific heat of metal tunnel wall (kJ/kg. K), hL is heat of the vaporization

of liquid nitrogen (kJ/kg), Pcompressor is power consumed by the compressor, Wm is mass of

metal wind tunnel wall (kg), Tm is metal tunnel wall temperatures (K), Nf is compressor

speed (RPM), k1 and k2 are constants specific to the facility, and ta is plenum time constant

of the tunnel (s). The detailed meanings of (2) and (3) for stagnation temperature and Mach

number dynamics can be found in reference [2], and will be omitted here.

These equations of dynamics clearly show that there is obvious coupled and nonlinear

behavior of the cryogenic wind tunnel process.

3 Nonlinear L1 adaptive control with adaptive feedforward control
3.1 Problem formulation

Consider a nonlinear (and time-varying) dynamical system described by equations,

x: tð Þ ¼ Am tð Þx tð Þ þ b tð Þ μ tð Þ þ f t; x tð Þ; z tð Þð Þ þ uF tð Þð Þ
x 0ð Þ ¼ x0

y tð Þ ¼ cTx tð Þ
x:z tð Þ ¼ g t; xz tð Þ; x tð Þð Þ; xz 0ð Þ ¼ xz0

z tð Þ ¼ g0 t; xz tð Þð Þ; xz 0ð Þ ¼ xz0 ð4Þ

where x(t) ∈ Rn is the system state and measurable, Am(t) ∈ R
n × n and b(t) ∈ Rn are

known matrix and control gain vector respectively. (Note: A known Am(t) represents

the desired controlled closed-loop system behavior. This will not pose a problem in
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describing a real system where there may exist many uncertainties. Because for some

systems, these uncertainties could be counted by partially known or unknown terms

like f(t, x(t), z(t)), z(t) and xz(t) in (4).) c ∈ Rn is a known constant vector and y(t) ∈ R is

the system output. The f : R × Rn × Rl→ R is an unknown nonlinear map representing

the matched nonlinear uncertainties. xz(t) ∈ R
m and z(t) ∈ Rl are the state and output of

the un-modeled dynamics. g : R × Rm × Rn→ Rm, g0 : R × Rm→ Rl are unknown nonlinear

maps. uF(t) ∈ R is the known or measurable disturbance in the input channel. μ(t) ∈ R is

the output of system:

μ sð Þ ¼ F sð Þu sð Þ ð5Þ

where u(t) ∈ R (for u(s)) is the control signal, and F(s) is an unknown BIBO-stable and

proper transfer function with known sign of its DC gain. Normally the F(s) is used to

represent the actuator dynamics in system, which cannot be exactly known. The initial

condition x0 is assumed to be inside a known set, ‖x0‖∞ < ρ0 <∞, with known ρ0 > 0. In

addition, let’s define X ≜ [xT, zT]T.

Remark 1 The main difference between (4) and the standard form of (5.25) in section

5.2 of reference [9], lies in the extra known disturbance term uF(t) in (4). This is used

to represent known disturbance in the control input channel. An adaptive feedforward

control scheme is designed later to cancel this known disturbance. The L1 adaptive

controller acts as the feedback part of the whole control law to stabilize the system (4)

with desired closed-loop system response.

For the problem to be properly addressed, the following assumptions are imposed for

the system (4). Most of the assumptions follow that in [9].

Assumption 1 (Uniform Asymptotic Stability of Desired System) The matrix

Am(t) is continuously differentiable. For t ≥ 0, ‖Am(t)‖∞ ≤ μ1, k˙AmðtÞk∞≤dA , and

Re[λi(Am(t))] ≤ − μ2 ∀ i = 1, …, n, where μ1, μ2 and dA are positive constants, and

λi(Am(t)) is a pointwise eigenvalue of Am(t). Further, for all t ≥ 0, the equilibrium of the

state equation

x: tð Þ ¼ Am tð Þx tð Þ x t0ð Þ ¼ x0

is exponentially stable, and the solution of

Am
T tð ÞP tð Þ þ P tð ÞAm tð Þ ¼ I

satisfies k˙PðtÞk∞ < 1.

Assumption 2 (Uniform boundedness of b(t) and its derivative) There exist positive

constants μb, db > 0, such that ‖ b(t)‖ < μb, k˙bðtÞk < db.

Assumption 3 The pair (Am(t), b(t)) is strongly controllable.

Assumption 4 (Uniform boundedness of f(t, 0, 0)) There exists B > 0, such that

|f(t, 0, 0)| < B holds for all t ≥ 0.

Assumption 5 (Semi-global uniform boundedness of partial derivatives) For

arbitrary δ > 0, there exist positive constants dfx(δ) > 0 and dft(δ) > 0 independent of

time, such that for all ‖X‖∞ < δ, the partial derivatives of f(t, x, z) are piecewise-

continuous and bounded,
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∂ f t; x; zð Þ
∂ x; zð Þ

����
����
1

≤dfx δð Þ ∂ f t; x; zð Þ
∂t

����
����≤dft δð Þ

Assumption 6 (Stability of un-modeled dynamics) The xz dynamics are BIBO

stable with respect to both initial conditions xz0 and input x(t), there exist C1, C2 > 0

such that for all t ≥ 0

ztk kL∞ ≤C1 xtk kL∞ þ C2

Assumption 7 (Partial knowledge of actuator dynamics) There exists CF > 0 verifying

kFðsÞkL1 < CF . Also, it is assumed that there exist known constants ωl, ωu ∈ R

satisfying

0 < ωl≤ F 0ð Þ≤ωu

where, without loss of generality, it is assumed F(0) > 0.

Assumption 8 (Boundedness of u(t) and uF(t)) The control signal u(t) and

known disturbance uF(t) are continuous, and moreover, there exist positive

constants ρ, ρu, ρ˙u , ρu F
, ρ˙uF

, the following bounds hold

xτk kL∞ ≤ρ;

uτk kL∞ ≤ρu; u:τkL∞ ≤ρu:
��

uFτk kL∞ ≤ρu F
; u:FτkL∞ ≤ρu: F
�� ð6Þ

3.2 Nonlinear L1 adaptive control architecture with feedforward control action

Controller design The controller design for nonlinear system (4) follows the main L1
adaptive control structure presented in section 5.2 of reference [9]. However, because

of the existence of known disturbance uF(t) in (4), the control signal is expressed as

u tð Þ ¼ uff tð Þ þ ufd tð Þ ð7Þ

where uff(t) is the feedforward control signal to cancel the disturbance uF(t) in (4), and

ufd(t) is the feedback control signal provided by the L1 adaptive control loop. Although

the control signal uff(t) is different from the ufd(t), it is still derived from the framework

of L1 adaptive control, which will be introduced in the following. This new L1 adaptive

control structure with feedforward control loop is shown in Fig. 2, where the parts in

the dashed line box are the standard L1 adaptive control loop.

State predictor

The state predictor is given as

x̂
:
tð Þ ¼ Amx̂ tð Þ þ b tð Þ ω̂F tð ÞuF tð Þ þ uff tð Þ þ ω̂pv tð Þufd tð Þ þ θ̂ tð Þ xtk kL∞ þ σ̂ tð Þ

	 

x̂ 0ð Þ ¼ x0

ŷ tð Þ ¼ cT x̂ tð Þ ð8Þ

where x̂ðtÞ∈Rn is the predictor state, and ω̂pv is the estimate for control gain uncertainty,

which could cover the gain uncertainty in the control input channel and unknown actu-

ator dynamics. ω̂F is the estimate for feedforward control gain uncertainty. θ̂ðtÞ is the
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main parameter estimate for the nonlinearity in the system, and the estimate of σ̂ðtÞ
could represent some un-modeled dynamics and disturbance in the system.

Remark 2 The two terms ω̂FðtÞuFðtÞ and uff(t) in (8), which are absent in the standard

form of state predictor in [9], are used to form the adaptive law and control law for the

disturbance signal uF(t) in the system (4).

Adaptation Laws

The adaptation laws are given as

ω̂
:
pv tð Þ ¼ ΓProj ω̂pv tð Þ;−~xT tð ÞP tð Þb tð Þufd tð Þ� �

ω̂pv 0ð Þ ¼ ω̂pv0

ω̂
:
F tð Þ ¼ Γ FProj ω̂F tð Þ;−~xT tð ÞP tð Þb tð ÞuF tð Þ� �

ω̂F 0ð Þ ¼ ω̂F0

θ̂
:
tð Þ ¼ ΓProj θ̂ tð Þ;−~xT tð ÞP tð Þb tð Þ xtk kL∞

	 

θ̂ 0ð Þ¼θ̂0

σ̂
:
tð Þ ¼ ΓProj σ̂ tð Þ;−~xT tð ÞP tð Þb tð Þ� �

σ̂ 0ð Þ ¼ σ̂0 ð9Þ

where ~xðtÞ ¼ x̂ðtÞ−xðtÞ is the prediction error, Γ is the adaptation gain for the L1 adap-

tive control loop, and ΓF is the adaptation gain for the ω̂F . P(t) is defined in assumption

1. The projection operator Proj() ensures that all estimates of these parameters are

bounded.

Remark 3 The feedforward gain estimation ω̂F is used as the feedforward control gain

in uff(t) in (7) due to the control gain uncertainty of ωpv. For the system here, there should

be ωF =ωpv. But for the convenience of design, an over-parameterization strategy is used.

A separate different ωF is used to represent the gain uncertainty of the disturbance uF(t).

In addition, the adaptive law for ω̂FðtÞ is independent, and not a part of the standard L1
adaptive law, thus the adaptive gain ΓF is different from the Γ of L1 adaptive law.

Control Law

As stated in (7), the control law consists two components

u tð Þ ¼ uff tð Þ þ ufd tð Þ
uff tð Þ ¼ −ω̂F tð ÞuF tð Þ

ufd sð Þ ¼ −kD sð Þ η̂ sð Þ−rg sð Þ� � ð10Þ
where the rg(s) and η̂ðsÞ are the Laplace transforms of rg(t) = kg(t)r(t) and η̂ðtÞ ¼ ω̂pvðtÞufd

Fig. 2 Block diagram of the structure of L1 adaptive control with feedforward control loop
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ðtÞ þ θ̂ðtÞkxtkL∞ þ σ̂ðtÞ respectively, while kg(t) = − 1/(cTAm
−1(t)b(t)) is the feedforward

gain required for tracking the reference signal r(t). k > 0 in (10) is the positive feedback

gain in the filtering structure, and D(s) is a strictly proper stable transfer function, which

would lead to a strictly proper stable filter

C sð Þ ¼ kF sð ÞD sð Þ
1þ kF sð ÞD sð Þ

with DC gain C(0) = 1.

Remark 4 Because the uF(t) should be compensated by the feedforward control signal

uff(t) in real-time, thus, the control signal uff(t) can not pass through a filter like that in

the feedback control law ufd(t). Otherwise, the adaptive law for ω̂F in (9) cannot guar-

antee the stability of the control law in (10).

The feedback control law ufd(t) is realized by a recursive structure, which is

shown in Fig. 3.

Remark 5 The equations (8)~(10) constitute the nonlinear L1 adaptive controller with

feedforward control action for the system (4), subjected to a L1 norm condition defined in

the section 5.2.2 in [9]. The main difference of the controller from the standard L1 adap-

tive control law for nonlinear system lies in the extra adaptive feedforward part in (8) ~

(10). The stability analysis and some proof are introduced next.

3.3 Stability analysis of the control law

3.3.1 Equivalent linear time-varying system for nonlinear dynamics

According to the study in section 5.2 in reference [9], the original nonlinear system (4)

with un-modeled dynamics can be transformed into an equivalent (semi-) linear time-

varying system with unknown time-varying parameters and disturbances under the

assumptions on the signals of the system in part 3.1 of this section.

From the system (4) and the bounds in (6), it follows that k˙xτkL∞ is bounded

for all τ ∈ [0,∞).

According to the Lemma A.9.1 in [9], there exist continuous θ(t) and σ1(t) with

(piecewise)-continuous derivatives, defined over t ∈ [0, τ] such that

θ tð Þj j < Lρ; θ
:
tð Þj < dθ

��
σ1 tð Þj j < Δ1; σ1

:
tð Þj < dσ1

��
where Lρ;Δ1; dθ; dσ1 > 0 . Then the nonlinear function f(t, x(t), z(t)) in (1) can be

expressed as

Fig. 3 Structure of the recursive feedback control law
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f t; x tð Þ; z tð Þð Þ ¼ θ̂ tð Þ xtk kL∞ þ σ1 tð Þ:

Using the assumption 8 and the lemma A.10.1 in [9], the signal μ(t) in (4) can be

rewritten as

μ tð Þ ¼ ωpvu tð Þ þ σ2 tð Þ

where ωpv ∈ (ωl, ωu) is an unknown constant and σ2(t) is a continuous signal with

(piecewise)-continuous derivative, defined over t ∈ [0, τ], such that

σ2 tð Þj j < Δ2; σ2
:

tð Þj < dσ2

��
where Δ2; dσ2 > 0.

Then the system (4) can be rewritten over t ∈ [0, τ] as

x: tð Þ ¼ Am tð Þx tð Þ þ b tð Þ ω̂F tð ÞuF tð Þ þ uff tð Þ þ ωpvufd tð Þ þ θ tð Þ xtk kL∞ þ σ tð Þ
	 


x 0ð Þ ¼ x0

y tð Þ ¼ cTx tð Þ ð11Þ

where σ̂ðtÞ ¼ σ1ðtÞ þ σ2ðtÞ is the unknown signal subject to |σ(t)| < Δ, j˙σðtÞj < dσ ,

with Δ = Δ1 + Δ2 and dσ ¼ dσ1 þ dσ2 . Additionally, ωF ∈ΩF = (ωFl, ωFu), ωpv ∈Ωpv = (ωl,

ωu), θ(t) ∈Θ, where 0 < ωFl < ωFu, 0 < ωl < ωu are known upper and lower bounds, Θ is a

known convex compact set, and Δ ∈ R+ is a known (conservative) bound of σ(t).

Remark 6 ω̂FðtÞ in (11) is introduced by the feedforward gain uncertainty of uff(t) due

to the control gain uncertainty of the system. However, for convenience of the control law

derivation process, the feedforward gain uncertainty ω̂FðtÞ is placed with uF(t), instead of

uff(t) in (11). The equations in state predictor of (8) follow the form of the equivalent

equations (11) for the original system (4).

3.3.2 Transient and steady-state performance

With the system dynamics as (11), the error dynamics between the state predictor (8)

and the system is given by

~x
:
tð Þ ¼ Am~x tð Þ þ b tð Þ ~ωF tð ÞuF tð Þ þ ~ωpv tð Þufd tð Þ þ ~θ tð Þ Ptk kL∞ þ ~σ tð Þ

	 

~x 0ð Þ ¼ 0

ð12Þ

where ~xðtÞ ¼ x̂ðtÞ−xðtÞ , ~ωF ¼ ω̂F−ωF , ~ωpv ¼ ω̂pvðtÞ−ωpv , ~θðtÞ ¼ θ̂ðtÞ−θðtÞ , and ~σðtÞ
¼ σ̂ðtÞ−σðtÞ. Then, for the transient performance of the control law, we have a lemma

similar to the lemma 5.2.2 in [9], but with the additional bounded term related to

the signal uF(t).

Lemma 1 For the system (8) and the controller defined by equations (8) ~ (10), with

the assumptions 1 to 8 in part 3.1 of this section verified, then

~xτk kL∞ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θm ρ; ρu; ρ˙u; ρu F

; ρ˙u F

� �
λmin Pð ÞΓ

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
km ωFu−ωFlð Þ2
λmin Pð ÞΓF

s
ð13Þ

where θmðρ; ρu; ρ˙u; ρu F
; ρ˙uF

Þ ¼ ðωu−ωlÞ2 þ 4Lρ2 þ 4Δ2 þ 4 λmaxðPÞ
1−ϵP

ðLρdθ þ ΔdσÞ , and

0 ≤ ϵP < 1, λmin(P) and λmax(P) are the minimum and maximum eigenvalue of matrix

P(t) respectively. km is a specific positive constant.

Proof: Consider the following Lyapunov function candidate

Zhu et al. Advances in Aerodynamics             (2020) 2:1 Page 9 of 17



V ~x; ~ωF ; ~ωpv; ~θ; ~σ
	 


¼ ~xT tð ÞP tð Þ~x tð Þ þ 1
ΓF

~ωF
2 tð Þ þ 1

Γ
~ωpv

2 tð Þ þ ~θ
2
tð Þ þ ~σ2 tð Þ

	 


Using the adaptation laws in (9), the derivative of the Lyapunov function candidate V

along the trajectory of the system (12) is computed as

V
:
~x; ~ωF ; ~ωpv; ~θ; ~σ

	 

¼ ~xT tð Þ PAm þ Am

TP þ P
:
tð ÞÞ~x tð Þ þ 2~xT tð ÞP tð Þb tð Þ~ωF tð ÞuF tð Þ�

þ2~xT ðtÞPðtÞbðtÞ~ωpvufdðtÞ þ 2~xT ðtÞPðtÞbðtÞ~θðtÞkxtkL∞ þ 2~xT ðtÞPðtÞbðtÞ~σðtÞ

þ 2
ΓF

~ωF tð Þω̂:F tð Þ þ 2
Γ

~ωpv tð Þω̂:pv tð Þ þ ~θ tð Þθ̂
:
tð Þ þ ~σ tð Þσ̂: tð ÞÞ− 2

Γ
~θ tð Þθ: tð Þ þ ~σ tð Þσ: tð ÞÞ

	�

¼ −~xT tð Þ 1−P
:
tð ÞÞ~x tð Þ− 2

Γ
~θ tð Þθ: tð Þ þ ~σ tð Þσ: tð ÞÞ

	�

þ2~ωF tð Þ −~xT tð ÞP tð Þb tð ÞuF tð Þ þ 1
ΓF

ω̂
:
F tð ÞÞ

�

þ2~ωpv tð Þ ~xT tð ÞP tð Þb tð Þufd tð Þ þ 1
Γ
ω̂
:
pv tð ÞÞ

�

þ2~θðtÞð~xT ðtÞPðtÞbðtÞ‖xt‖L∞ þ 1
Γ
˙θ̂ðtÞÞ þ 2~σðtÞð~xT ðtÞPðtÞbðtÞ þ 1

Γ
˙σ̂ðtÞÞ

¼ −~xT tð Þ 1−P
:
tð ÞÞ~x tð Þ− 2

Γ
~θ tð Þθ: tð Þ þ ~σ tð Þσ: tð ÞÞ

	�

þ2~ωF tð Þ −~xT tð ÞP tð Þb tð ÞuF tð Þ þ Proj ω̂F tð Þ; ~xT tð ÞP tð Þb tð ÞuF tð Þ� �� �
þ2~ωpv tð Þ ~xT tð ÞP tð Þb tð Þufd tð Þ þ Proj ω̂pv tð Þ;−~xT tð ÞP tð Þb tð Þufd tð Þ� �� �
þ2~θ tð Þ ~xT tð ÞP tð Þb tð Þ xtk kL∞ þ Proj θ̂ tð Þ;−~xT tð ÞP tð Þb tð Þ xtk kL∞

	 
	 

þ2~σðtÞð~xT ðtÞPðtÞbðtÞ þ Projðσ̂ðtÞ;−~xT ðtÞPðtÞbðtÞÞÞ

Using the property of the operator Proj() [9, 18], there exist

~ωF tð Þ −~xT tð ÞP tð Þb tð ÞuF tð Þ þ Proj ω̂F tð Þ; ~xT tð ÞP tð Þb tð ÞuF tð Þ� �� �
≤0

~ωpv tð Þ ~xT tð ÞP tð Þb tð Þufd tð Þ þ Proj ω̂pv tð Þ;−~xT tð ÞP tð Þb tð Þufd tð Þ� �� �
≤0

~θ tð Þ ~xT tð ÞP tð Þb tð Þ xtk kL∞ þ Proj θ̂ tð Þ;−~xT tð ÞP tð Þb tð Þ xtk kL∞
	 
	 


≤0

~σ tð Þ ~xT tð ÞP tð Þb tð Þ þ Proj σ̂ tð Þ;−~xT tð ÞP tð Þb tð Þ� �� �
≤0

Then we have

V
:

~x; ~ωF ; ~ωpv; ~θ; ~σ
	 


≤−~xT tð Þ 1−P
:
tð ÞÞ~x tð Þ− 2

Γ
~θ tð Þθ: tð Þ þ ~σ tð Þσ: tð ÞÞ

	�

≤−~xT tð Þ 1−P
:
tð ÞÞ~x tð Þ þ 2

Γ
~θ tð Þ˙θ tð Þ þ ~σ tð Þ˙σ tð Þ�� ���

According to assumption 8,

2
Γ

~θ tð Þ˙θ tð Þ þ ~σ tð Þ˙σ tð Þ�� ��≤ 4
Γ

Lρdθ þ Δdσ
� �

Zhu et al. Advances in Aerodynamics             (2020) 2:1 Page 10 of 17



which is bounded. Then according to the theorem 4.18 in [19], the error dynamics (12)

is bounded as well, and the bound can be reduced by increasing the adaptive gain Γ

and ΓF.

Then follow the similar argument and proving process for lemma 5.2.2 in [9], the

bound in (13) is proved.

Remark 7 In contrast to the bound of (5.49) in [9], the bound of (13) is not only re-

lated to the term of θm( ), but also related to the uncertainty of ωF. Because the feed-

forward control signal uff(t) can’t pass through a low-pass filter like it does in the L1
adaptive control, the adaptive feedforward gain ΓF can not be increased to large value

due to the possible presence of noise or un-modeled high frequency dynamics in sys-

tem. Otherwise, the increased adaptation gain ΓF will cause parameter drift or instabil-

ity in system. Thus, the transient performance of the control law (8) ~ (10) will be

influenced obviously by the known disturbance and its feedforward gain uncertainty.

The lemma 1 guarantees the boundedness of system states under the control law. How-

ever, the analysis for the performance bounds of the control law is a little bit complicated.

If there is no disturbance uF(t) = 0, or the known disturbance uF(t) could be canceled

perfectly by the control signal uff(t) = −ωFuF(t), then the closed-loop error dynamics

would be the same as that without the disturbance uF(t) like the (5.48) in [9]. Thus the

closed-loop system under the control law would have the same performance bounds as

the theorem 5.2.1 in [9].

If the known disturbance uF(t) would not be canceled perfectly by the control signal

uff(t), there are another two cases. 1). If the un-canceled part of the known disturbance

uF(t) can be regarded as unknown disturbance, and become part of the σ(t) satisfying

the assumption on the σ(t) in (11), then the control performance bound as that in the-

orem 5.2.1 in [9] could still be retained. 2). If the un-canceled part of the known dis-

turbance uF(t) could not be treated as part of the unknown disturbance σ(t), but still

verify the assumption in (6), the control law would guarantee the bounded state

response as stated in lemma 1.

Of course, the steady performance could not be arbitrarily improved by the increased

adaptive gain ΓF as stated in theorem 5.2.1 in [9] due to the presence of disturbance uF(t).

This is natural for a control system in practice. However, in cases when the disturbance

uF(t) and its change rate ˙uFðtÞ are relatively small and can be regarded as part of the

unknown disturbance σ(t), the steady-state control performance can be still guaranteed by

the control law, even if the known disturbance uF(t) could not be canceled perfectly by

the adaptive feedforward control signal uff(t).

4 The stagnation pressure control in cryogenic wind tunnel
4.1 Stagnation pressure dynamics with actuator dynamics and mathematical treatment

For the design of control law for stagnation pressure, only stagnation pressure dynamics

(1) will be considered here. In order to make the controller design to be more realistic in

practice, the dynamics of actuator (pressure control valve) will be included here.

According to the studies in reference [2, 20, 21], the stagnation pressure dynamics is

expressed as,

˙Pt ¼ Pt

Tt
˙Tt þ Pt

Wg
mL t−τ1ð Þ−mg t−τ2ð Þ� �
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mg ¼ kpvffiffiffiffiffiffi
Tt

p Pt−P0

P0

� �
μ tð Þ

μ sð Þ ¼ F sð Þu sð Þ ð14Þ

where Pt is the stagnation pressure, Tt is the stagnation temperature, and Wg is the gas

mass inside of the wind tunnel, which can be computed from the states of the tunnel.

mL is the liquid nitrogen injection mass flow rate due to the temperature control, which

is measurable. mg is the gas nitrogen mass flow rate extracted by the pressure control

valve. kpv > 0 is a positive constant for the specific pressure control valve. P0 is the pres-

sure of atmosphere. μ(t) is the opening of the pressure control valve, u(t) is the control

signal and F(s) is the partially known actuator dynamics for the pressure control valve.

τ1 and τ2 are the input delays, which are quite small for pressure control in practice.

Thus, the delays can be disregarded in the pressure controller design.

For the convenience of controller design, the term mL in (14) can be transformed into

an equivalent negative gas mass extracted −mg, and can be further transformed into

equivalent negative pressure valve opening −μF(t) according to the relationship for mg

and μ(t) in (14).

However, the pressure valve constant kpv in (14) is hard to be obtained precisely in

practice. But it is not difficult to get the bound of kpv for a specific application. Thus,

an additional unknown constant or slow time-varying gain factor ωpv is considered in

the pressure dynamics to represent the gain uncertainty. Then, the stagnation pressure

dynamics with the uncertainty can be rewritten as,

˙Pt ¼ Pt

Wg
ωF

kpvffiffiffiffiffiffi
Tt

p Pt−P0

P0

� �
−μF tð Þð Þ−ωpv

kpvffiffiffiffiffiffi
Tt

p Pt−P0

P0

� �
μ tð Þ

� �
þ Pt

Tt
˙Tt

μ sð Þ ¼ F sð Þu sð Þ ð15Þ

where ωF is the gain uncertainty when transforming the mL into the equivalent negative

pressure valve opening −μF(t). Here, an over-parameterization strategy is used. A different

ωF from ωpv is used to represent the gain uncertainty of the transformation for mL.

Let define

b tð Þ ¼ Pt

Wg

kpvffiffiffiffiffiffi
Tt

p Pt−P0

P0

� �

and put the pressure control problem into the framework of L1 adaptive control like

that in (4), the stagnation pressure dynamics (14) can be written as

˙Pt ¼ AmPtðtÞ þ bðtÞðωFð−μFðtÞÞ þ ωpvμðtÞ þ f ðt; PtðtÞ; σðtÞÞÞ Ptð0Þ ¼ Pt0

μ sð Þ ¼ F sð Þu sð Þ ð16Þ

where Am is a constant representing the desired closed-loop response. Compared with

(14), the extra term AmPt(t) can be counted against by the term f(t, Pt(t), σ(t)). The
Pt
Tt
˙

Tt is regarded as an unknown disturbance in f(t, Pt(t), σ(t)). The σ(t) can account other

unknown disturbances in the system. Of course, the f(t, Pt(t), σ(t)) should satisfy the

assumptions in section 3.

It is assumed that the bandwidth of the actuator is much higher than the bandwidth

of disturbance, or considering F(s) = 1, then μF(t) = uF(t), and μ(t) = u(t). For this reason,

the control signal is expressed as
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u tð Þ ¼ uff tð Þ þ ufd tð Þ ¼ ω̂FuF tð Þ þ ufd tð Þ ð17Þ

where ω̂F is the estimate of ωF, uff(t) is the feedforward control signal to cancel the

known disturbance caused by mL, ufd(t) is the feedback control signal provided by the

L1 adaptive control loop.

4.2 Stagnation pressure controller design

The stagnation pressure controller can be designed according to the L1 adaptive controller

defined in (8)~(10) in section 3. The parameters for the controller are set as the following.

Am = − 0.2, cT = 1, and P = 2.5. For an operation points of the wind tunnel, Pt = 200kPa,

Tt = 150K, Ma = 0.5, kpv = 419.76, and b(t) = 1.12e5 × 2. DðsÞ ¼ 1
s ; and k ¼ 0:4. The kg(t)

can be computed according to kg(t) = − 1/(cTAm
−1(t)b(t)). For the adaptation law, the

following projection bounds are set. ΩF = [0.1,2], Ωpv = [0.1, 4], Θ = [−5, 5], and Δ = 10.

The initial values for the estimates can be chosen from the sets above. Choose Γ and ΓF to

verify ΓPb(t) = 1000, and ΓFPb(t) = 300.

For the actuator dynamics of the pressure control valve, it is expressed as

μ sð Þ ¼ F sð Þu sð Þ; F sð Þ ¼ 1
0:2sþ 1

e−0:1s

In the simulations, the actuator dynamics has additional output saturation and rate

limit. A Gaussian distributed measurement noise is added in the system output for all

cases.

4.3 Simulation results

First, a stagnation pressure set-point change from 200 kPa to 150 kPa at Tt = 150K, and

Ma = 0.5 of the wind tunnel is simulated. Figure 4 presents the results.

This figure shows the controller has good control performance in both transient and

steady state. The tracking performance is satisfactory, and the trajectory of the total

pressure can follow well the reference model associated with the state predictor (8). It is

seen that the control signal is well within the rate limit of the actuator, and the actuator

output can follow the control signal well.

The parameter estimates θ̂ðtÞ; σ̂ðtÞ; and ω̂pvðtÞ during the control process help achieve

the desired system output response, even though these parameter estimates may not be

close to their respective true values. Because there is no obvious presence of the disturb-

ance uF(t), the parameter estimates for ω̂FðtÞ do not have much significance and could be

switched off in this case.

Next, the adaptive feedforward control for the known disturbance −μF(t) caused by the

temperature control input mL is tested. Figure 5 shows the total pressure control when

the temperature undergoes several step changes from 150 K to 110 K. The pressure set-

point is 200 kPa.

This figure shows the pressure variation during the temperature step changes. With

the adaptive feedforward control, the feedforward control loop would compensate the

known disturbance induced by the liquid nitrogen mass injection during temperature

control more and more properly and promptly, and the pressure deviation from the

set-point are getting smaller. The controller signal shows the obvious feedforward con-

trol action. In the figure, the stagnation pressure Pt does not converge to its
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commanded value 200 kPa, and this is because that the disturbance is still presenting

and changing. When the disturbance vanishes or becomes constant, the stagnation

pressure Pt will settle down to its commanded value 200 kPa. Because the initial value

of feedforward control gain ω̂FðtÞ is set to zero from the start, thus, even there is an

obvious disturbance presenting at this moment, it is reasonable that there is no obvious

feedforward compensation action in the beginning. The control action at this time is

produced mainly by the L1 adaptive feedback control loop. But with the improvement

of the feedforward control gain ω̂FðtÞ estimation, the feedforward compensation action

will be more prompt as the disturbance emerges.

This figure also shows the temperature step changes and the corresponding liquid

nitrogen mass injection, which acts as the disturbance to the pressure control. The com-

puted equivalent disturbance for the liquid nitrogen injection is also showed in the figure.

The adaptation process will make the estimation of ω̂FðtÞ close to its true value starting

from 0. Thus, improved known-disturbance rejection could be achieved in the process.

Figure 6 gives simulation of pressure step change control from 200 kPa to 150 kPa

during temperature step change from 150 K to 140 K at Ma = 0.5 of the wind tunnel.

Fig. 4 Stagnation pressure control from 200 kPa to 150 kPa
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The temperature controller output corresponds to the liquid nitrogen mass flow injec-

tion, which acts as the known disturbance to the pressure control. In this simulation, it

is assumed that the feedforward control gain ω̂FðtÞ estimation has been improved after

proper adaptation process. The results show that the pressure controller could com-

pensate the disturbance caused by temperature control in the pressure control process,

and the controlled pressure response is similar to that in Fig. 4, which indicates the

pressure control alone without obvious temperature changes. The disturbance rejection

could be observed in the controller output in the figure. Thus, the stagnation pressure

controller canceled the coupled effect caused by other variable control through the

nonlinear L1 adaptive control with feedforward control action.

5 Conclusion
By introducing an adaptive feedforward control loop to the standard L1 adaptive con-

trol structure, a nonlinear L1 adaptive controller with adaptive feedforward control

action is proposed in this paper. After some stability analysis and discussion, it is

shown that this new control method could effectively compensate known bounded

Fig. 5 Adaptive feedforward pressure control
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disturbances with linear gain uncertainty, while retaining the basic feature of L1 adap-

tive control. The application in the stagnation pressure control in cryogenic wind tun-

nel and the simulation results have verified the effectiveness of this new control

architecture. The proposed control approach, with the ability of canceling coupled ef-

fects in Multi-input & Multi-output control process, could be also used in the control

for temperature and Mach number in cryogenic wind tunnel.
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