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Abstract
Many macroscopic equations are proposed to describe the rarefied gas dynamics
beyond the Navier-Stokes level, either from the mesoscopic Boltzmann equation or
some physical arguments, including (i) Burnett, Woods, super-Burnett, augmented
Burnett equations derived from the Chapman-Enskog expansion of the Boltzmann
equation, (ii) Grad 13, regularized 13/26 moment equations, rational extended
thermodynamics equations, and generalized hydrodynamic equations, where the
velocity distribution function is expressed in terms of low-order moments and Hermite
polynomials, and (iii) bi-velocity equations and “thermo-mechanically consistent"
Burnett equations based on the argument of “volume diffusion”. This paper is dedicated
to assess the accuracy of these macroscopic equations. We first consider the Rayleigh-
Brillouin scattering, where light is scattered by the density fluctuation in gas. In this
specific problem macroscopic equations can be linearized and solutions can always be
obtained, no matter whether they are stable or not. Moreover, the accuracy assessment
is not contaminated by the gas-wall boundary condition in this periodic problem.
Rayleigh-Brillouin spectra of the scattered light are calculated by solving the linearized
macroscopic equations and compared to those from the linearized Boltzmann
equation. We find that (i) the accuracy of Chapman-Enskog expansion does not always
increase with the order of expansion, (ii) for the moment method, the more moments
are included, the more accurate the results are, and (iii) macroscopic equations based
on “volume diffusion" do not work well even when the Knudsen number is very small.
Therefore, among about a dozen tested equations, the regularized 26 moment
equations are the most accurate. However, for moderate and highly rarefied gas flows,
huge number of moments should be included, as the convergence to true solutions is
rather slow. The same conclusion is drawn from the problem of sound propagation
between the transducer and receiver. This slow convergence of moment equations is
due to the incapability of Hermite polynomials in the capturing of large discontinuities
and rapid variations of the velocity distribution function. This study sheds some light on
how to choose/develop macroscopic equations for rarefied gas dynamics.

Keywords: Rarefied gas dynamics, Rayleigh-Brillouin scattering, Sound wave
propagation, Linearized Boltzmann equation, Macroscopic equations

1 Introduction
A macroscopic volume of gas is a system of a very large number of molecules moving
constantly in a rather irregular way. This huge number of degrees of freedom makes
the trace of motion of each molecule (i.e. the microscopic description) impossible. The
fundamental and practical task in the study of gas dynamics is therefore to obtain the
evolution of macroscopic quantities such as the density ρ, flow velocity u, temperature
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T, shear stress pij, and heat flux q. The evolution of these macroscopic quantities may
be modeled either at the mesoscopic or macroscopic level. The Boltzmann equation
adopts a statistical description of dilute gas at the mesoscopic level, and its accuracy
has been verified in many experiments [6]. However, due to its complicated structure,
many efforts have been made to derive macroscopic equations from it to describe the
rarefied gas dynamics, where the conventional Navier-Stokes (NS) equations are not
valid. And it seems that the effort and desire of deriving new macroscopic equations
has never stopped. In this paper we try to analyze the accuracy of major macroscopic
equations proposed in the history, which may shed some light on how to choose/develop
macroscopic equations. We begin with a brief introduction of the development of these
equations.
Historically, according to the continuum assumption and basic conservation laws for

mass, momentum and energy, macroscopic equations for ρ, u and T are established in
the following form:

∂ρ

∂t
+ ∂(ρuj)

∂xj
= 0,

∂(ρui)
∂t

+ ∂(ρuiuj + pij)
∂xj

= ρai,

∂ (ρE)

∂t
+ ∂

(
ρEuj + uipij + qj

)

∂xj
= ρajuj, (1)

where t is the time, x = (x1, x2, x3) is the spatial Cartesian coordinate, a is the external
acceleration, and E = e+u2i /2 with e being the specific internal energy that is a function of
the temperature T. Note that the subscripts i, j, ı = 1, 2, 3 represent the three orthogonal
spatial directions, and Einstein’s summation rule is used throughout this paper.
Eq. (1) is not closed because expressions for the pressure tensor and heat flux are

not known. The following phenomenological and empirical constitutive relations, i.e.
Newton’s law of viscosity and Fourier’s law of heat conduction:

pij = ρkBT
m

δij − μ

(
∂ui
∂xj

+ ∂uj
∂xi

)
−

(
ζ − 2

3
μ

)
∂uı
∂xı

δij,

qi = −κ
∂T
∂xi

, (2)

are usually used to close Eq. (1), where kB is the Boltzmann constant, m is the molec-
ular mass, δij is Kronecker delta, μ is the shear viscosity, ζ is the bulk viscosity, and κ

is the thermal conductivity. Together with the non-velocity-slip and non-temperature-
jump boundary conditions, the closed NS Eqs. (1) and (2) that are established in the early
19th century have found a wide range of applications even in most of today’s engineering
problems.
However, the NS equations with the zero velocity-slip boundary condition cannot

describe the motion of the radiometer invented by Sir William Crookes in the late 19th
century. The Crookes radiometer is an airtight glass bulb, inside which there is a set of
thin vanesmounted on a spindle. Each vane has a blackened side and a silvered side, which
rotates when exposed to light1. The reason for this rotation was much debated following
the invention of the device [39], but the currently accepted explanation for the rotation
was attributed to the thermal transpiration of rarefied gas by Reynolds [53]. Specifically,

1A vivid illustration can be found: www.youtube.com/watch?v=r7NEI_C9Yh0.
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based on the gas kinetic theory [6, 42], Maxwell showed that an unbalanced force would
be created near the edge of the heated side of the vane when inequalities of temperature
exist in a gas [43].
Unlike macroscopic equations, the Boltzmann equation describes the statistical behav-

ior of a thermodynamic system that is not in a state of equilibrium, by using the
one-particle velocity distribution function (VDF) f (t, x, v), where the three-dimensional
variable v = (v1, v2, v3) is the molecular velocity, rather than the macroscopic
flow velocity. In Boltzmann’s description for dilute gases (i.e. when the mean free
path of gas molecules is much larger than the molecular dimension), all molecules
move in straight lines with fixed velocities until they encounter elastic collisions with
other molecules. The collision is modeled by a nonlinear operator Q(f , f∗) under the
molecular chaos hypothesis, where the effect of intermolecular potential is incorpo-
rated into the collision kernel B. The Boltzmann equation for the time evolution of
f (t, x, v) reads:

∂f
∂t

+ v · ∂f
∂x

+ a · ∂f
∂v

= Q(f , f∗)
Kn

≡
∫ ∫

B(f ′∗f ′ − f∗f )d�dv∗, (3)

where the subscript ∗ represents the second molecule in the binary collision, the prime ′

stands for quantities after the collision, and � is the solid angle. The Knudsen number Kn
is defined as the ratio between the mean free path λ of the gas molecules to the repre-
sentative physical length scale L. Since for some gases ab initio intermolecular potentials
have already been obtained, the Boltzmann equation contains no free parameter and is
fundamental for dilute gas dynamics [59, 85].
When the VDF is known, macroscopic quantities can be calculated as its velocity

moments, say, quantities that have clear physical meaning and are measurable are ρ =
m

∫
fdv, u = (m/ρ)

∫
vfdv, pij = m

∫
cicjfdv, T = mpii/3kBρ, and qi = (m/2)

∫
ci|c|2fdv,

where c = v − u is the peculiar velocity. What’s more, Eq. (1) can be obtained by mul-
tiplying Eq. (3) with the collision invariants 1, v, |v|2 and integrating with respect to the
molecular velocity v. However, the obtained moment system is not closed because, again,
expressions for the pressure tensor and heat flux are not known. The derivation of macro-
scopic equations in closed forms from the Boltzmann equation is of both fundamental and
practical importance, since the structure of the collision operator is complicated and hard
to handle both theoretically and numerically. Yet there are huge demand of macroscopic
equations that allow efficient and accurate calculation of rarefied gas dynamics with appli-
cations from aerodynamics to microfludics, and from classical to quantum/relativistic
physics, e.g. in high-altitude aerothermodynamics of space vehicles [34], microelectrome-
chanical systems [38], shale gas extractions, granular gases, radiative transfer, phonon
transport, electron transport in semi-conductors, and thermal motion of Bose and Fermi
gases [81]. It has also been considered as an important part in the sixth Hilbert problem:
“Thus Boltzmann’s work on the principles of mechanics suggests the problem of develop-
ing mathematically the limiting processes, which lead from the atomistic view to the laws
of motion of continua” [32].
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1.1 Hilbert expansion and Chapman-Enskog expansion

Hilbert proposed to solve the Boltzmann equation (3) via a formal asymptotic expansion
of the VDF as [33]:

f (t, x, v) =
∞∑

n=0
Knnf (n)(t, x, v), (4)

where macroscopic variables such as the density, flow velocity and temperature are also
expressed into the power series of Kn; for instance, the density is ρ = ∑∞

n=0 Knnρ(n) with
ρ(n) = m

∫
f (n)dv. Substituting Eq. (4) into Eq. (3) and collecting powers of Kn yields an

infinite system of integro-differential equations for f (n). The zeroth-order approximation
yields the Euler equations. However, NS equations never emerge according to this Hilbert
expansion.
To remedy this, Chapman and Enskog proposed the famous Chapman-Enskog expan-

sion [10, 17]. They kept the form of Eq. (4) and the power series expansion in Kn for the
shear stress and heat flux, i.e.

σij =
∞∑

n=0
Knnσ (n)

ij , qi =
∞∑

n=0
Knnq(n)

i , (5)

but calculated ρ, u, and T only according to the zeroth-order expansion:

ρ = m
∫

f (0)dv, ρu = m
∫

vf (0)dv, T = m2
∫

|c|2f (0)dv/3kBρ. (6)

With the compatibility condition
∫
f (n)dv = ∫

vf (n)dv = ∫ |c|2f (n)dv = 0 for n ≥ 1, the
Chapman-Enskog expansion leads to the Euler, NS, Burnett, and super-Burnett equations
at the zeroth-, first, second, and third-order approximations [11], respectively.
However, the Chapman-Enskog expansion received criticisms because (i) the Burnett

and super-Burnett equations are not stable to perturbation with small wavelength [5, 20],
and (ii) one does not know “what is the status of the series of macroscopic variables
obtained from the successively derived set of equations nor what step of the approxima-
tion is required or sufficient to obtain a solution that is correct up to order Knn” [9, 63],
probably due to the disparity in the calculations of Eqs. (5) and (6), that is, why the den-
sity, flow velocity, and temperature are only determined by f (0)? Although the augmented
Burnett equations [84] solves the instability problem, the second criticism remains. Later
we will show that super-Burnett equations are not necessarily more accurate than Bur-
nett equations in the problem of dynamic light scattering, which confirms the unfavorable
behavior of the successive Chapman-Enskog expansion.

1.2 Moment methods

Grad found an alternative way to derive macroscopic equations from the Boltzmann
equation [23]. In addition to Eq. (1), he obtained macroscopic equations for the evolution
of the shear stress and heat flux by respectively multiplying Eq. (3) with cicj and ci|c|2 and
integrating over v. He then closed the moment equations by expanding the VDF into Her-
mite polynomials of the peculiar velocity, with the coefficients related to the considered
low-order moments:

f (t, x, v) = fM

[

1 + σij

2ρRT
cicj − |c|2δij/3

RT
+ 2

5
qi

ρ(RT)2
ci

( |c|2
2RT

− 5
2

)]

, (7)
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where R = kB/m, fM = (ρ/m)(2RT)−3/2 exp(−|c|2/2RT) is the Maxwellian distribu-
tion function, and σij is the trace-free part of the symmetrical tensor pij. Grad 13 (G13)
equations are accurate to Kn2 [64]. Similarly, higher-order equations such as Grad 26
moments equations are constructed by adding more moments to the VDF.
The Gradmoment equations are closely related to the rational extended thermodynam-

ics equations [45], where the VDF is obtained by the maximum entropy principle, that is,
the “ansatz” distribution function is an exponential function of Hermite polynomials. If
13 moments are considered, however, the exponential function becomes divergent when
the peculiar velocity approaches infinity. Therefore, Taylor expansion to the first order
for terms related to the heat flux is needed, and if the system deviates slightly from equi-
librium, the distribution function in rational extended thermodynamics is the same as
Eq. (7). When the non-equilibrium effect is strong, the polynomial in the exponent with
the highest power must be even and its coefficient must be negative, see more details in
Section 6.6 in the book [64] and references therein. Using the exponent ansatz for the VDF
with the fourth-order Hermite polynomial, Eu developed the generalized hydrodynamic
equations based on the same 13 moments used in G13 equations [1, 18]. The complicated
constitutive relations in Eu’s equations are later simplified into the nonlinear coupled con-
stitutive relations [46, 47]. Since the number ofmoments is much less than the coefficients
before Hermite polynomials, some special relations between these coefficients have to be
assumed. It should also be noted that, although many numerical solutions of rarefied gas
flows have been obtained by using the nonlinear coupled constitutive relations, the VDF
has never been re-constructed from macroscopic quantities [35, 46, 47, 82].
With these hindsights, one may derive more new macroscopic equations in conjec-

ture with any physical meaningful ansatz distribution functions, for example, Mott-Smith
obtained normal shock wave structures by “assuming the distribution function to consist
of a sum of two Maxwellian terms with temperatures and mean velocities corresponding
to the subsonic and supersonic streams” [44]. In other words, the accuracy of macroscopic
equations depend on how accurate the ansatz distribution functions are. This aspect will
be explored in the future, but one sure thing is that macroscopic equations derived in this
waymay only work for certain kinds of flows, thus losing generality for describing rarefied
gas flows.
Now we come back to moment equations. Although Grad moment systems are lin-

early stable, they are hyperbolic, which yield discontinuities in the simulation of shock
waves with large Mach numbers. To remove the problem of hyperbolicity, Struchtrup and
Torrihon derived the regularized 13 (R13) moment equations by combining Grad’s
momentmethod andChapman-Enskog expansion [67]. Later, Gu and Emerson developed
the regularized 26 (R26) moment equations [27]. R13 and R26 are both linearly stable,
and are accurate to the order of Kn3 and Kn5, respectively.

1.3 Macroscopic equations based on the argument of “volume diffusion”

In all the above-mentionedmacroscopic equations derived from the Boltzmann equation,
the flow velocity u is the usual convective velocity um. Brenner, however, proposed a bi-
velocity fluid model based on the argument that a deformable fluid element consisting
of a large set of molecules may behave differently from a rigid body, and the motion of
macroscopic fluid can occur purely diffusively by the movement of volume without a con-
vective movement of mass [7, 8]. Consequently, he postulated that the velocity appearing
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in Newton’s viscosity law (2) should instead be the volume velocity uv. The two velocities
are connected through the diffusive volume flux jv as:

uv = um + jv, jv = αv∇ ln ρ, (8)

where αv is the volume diffusivity. The transport of energy is also modified correspond-
ingly through consideration of the diffusion of internal energy. That is,

qi = −κ
∂T
∂xi

− αv
kBT
m

∂ρ

∂xi
. (9)

Similar idea that the fluid velocity consists of the convective and diffusion velocities
has also been adopted to develop the extended NS equations [16, 55]. The deriva-
tion of closed macroscopic equations is solely based on the argument of “volume
diffusion”, instead of the celebrated Boltzmann equation. Inspired by Brenner’s work,
Dadzie et al. proposed a Boltzmann-like gas kinetic equation and later derived the
“thermo-mechanically consistent" Burnett equations [13, 15], which, unlike the Burnett
equation, are linearly stable. However, this equation contains a variable which does not
possess proper physical meaning. Moreover, there are some free parameters (like the vol-
ume diffusivity) which cannot be determined from low-level fundamental physical laws,
but are obtained by trial-and-error [13]; this stands in sharp contrast to the Boltzmann
equation where the gas dynamics can be fully determined as long as the intermolecular
potential is provided.

1.4 Method to test the accuracy of macroscopic equations

The accuracy of many macroscopic equations have been assessed in wall-bounded prob-
lems, including the Couette, Poiseuille, thermal creep, and lid-driven cavity flows, where
the rarefaction and boundary effects all play roles in the dynamics of rarefied gas. Note
that the boundary conditions are not easy to construct for macroscopic equations involv-
ing higher-order derivatives/moments. Therefore, they may be not imposed in a strict
manner, and whether these macroscopic equations capture the rarefaction effect or not is
unclear.
Therefore, to fully assess the accuracy ofmacroscopic equations, we need to find a prob-

lem without the influence of gas-wall interaction. The structure of normal shock wave
is one of the examples where gas-wall interaction is absent. However, due to the stabil-
ity issue some macroscopic equations may not be able to produce converged solutions.
Therefore, in this paper we first consider the dynamic light scattering, where light is scat-
tered by the density fluctuation of gas molecules. It provides a perfect test bed to assess
whether macroscopic equations can capture the rarefaction effect or not, since (i) this
problem does not involve any gas-wall interactions, (ii) the problem is effectively one-
dimensional and can be linearized, which makes the macroscopic equations simple and
some even allow analytical solutions, (iii) recent experimental advances have made the
measurement of spectrum of dynamic light scattering very accurate, and the accuracy of
linearized Boltzmann equation (LBE) has been validated; therefore the assessment will
not be limited to theoretical level but have experimental evidence.
We will then assess the accuracy of macroscopic equations in the sound wave propaga-

tion problem. In fact, somemacroscopic equations have already been used to calculate the
speed and attenuation of sound under the periodic boundary condition, which are com-
pared to experiments conducted between the transducer and receiver; since the gas-wall
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boundary condition (i.e. the energy accommodation coefficient) may strongly affect the
pressure tensor [36], this kind of comparison cannot be used to validate the accuracy of
macroscopic equations rigorously. Instead, we will compare directly with LBE solutions
under the gas-kinetic boundary condition and the corresponding slip and jump boundary
conditions for macroscopic equations.
The rest of the paper is organized as follows. In section 2, the spontaneous and coher-

ent dynamic light scattering (Rayleigh-Brillouin scattering, RBS) as well as the LBE is
introduced. Typical profiles of the RBS spectra in the hydrodynamic, kinetic, and free-
molecular regimes are presented. In section 3, various macroscopic equations for rarefied
gas flows are introduced in the linearized form and some analytical solutions for the RBS
spectra are derived. The accuracy of about a dozen of macroscopic equations are analyzed
by comparing the RBS spectra to those obtained from the LBE. In section 4, the sound
propagation through a rarefied gas confined between the transducer and receiver is used
to test the accuracy and convergence of moment equations. Finally, conclusions are given
in section 5.

2 Rayleigh-Brillouin scattering: solutions from the LBE
Light propagating through the gas is scattered by the motion of gas molecules. In
most general circumstances, the spectrum of the scattered light has several peaks cor-
responding to different scattering mechanisms. Especially, the RBS spectrum consists
of the Rayleigh part due to the Doppler shift by the thermal motion of individual gas
molecules and the Brillouin part related to the acoustic effect of gasmolecules. Nowadays,
RBS has become an invaluable non-destructive optical diagnostic technique for measur-
ing the properties of gases, such as the sound speed, temperature, and bulk viscosity
[21, 28, 29, 49, 50, 72] due to its large scattering cross section. One example is that the
RBS is used to measure daytime atmospheric temperature [75]. Another example is that
the satellite ADM-Aeolus, which has been launched in 2018 by European Space Agency to
measure global wind profile from the surface of the planet to the stratosphere 30 kilome-
ters high and hence provide much-needed information to improve weather forecasting, is
based on the spontaneous RBS of rarefied gases.

2.1 The spontaneous RBS

In the spontaneous RBS, the incident light with a wave vector ki is scattered due to the
spontaneous fluctuation of gas density, see Fig. 1a. Suppose the angle of scattering is θ ,
the scattering wave number is k = |ki − ks| = 2|ki| sin(θ/2), and the spectrum of the
scattered light is characterized by the Knudsen number, which is the ratio of the mean
free path λ of gas molecules to the scattering wavelength L = 2π/k:

Kn = λ

L
= μ(T0)

p0L

√
kBT0
m

, (10)

where μ(T0) is the shear viscosity at the gas temperature T0, and p0 is the average gas
pressure.
Since the wavelength and frequency of light are respectively comparable to the mean

free path and mean collision time of gas molecules, the spectrum of scattered light
should be calculated based on the LBE [70]; a very detailed discussion on the relation
of light spectrum and Boltzmann equation can be found in the Chapter 10 in Ref. [45].
For monatomic gases, suppose the scattering wave is propagating along the x1 direction
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Fig. 1 a Schematic of the spontaneous RBS, where the light is scattered by the spontaneous density
fluctuations in the gas. b Schematic of the coherent RBS, where the light is Bragg-diffracted on the gas density
fluctuations created by two pump beams. By phase matching, the signal beam follows, in reverse, the path of
pump beam 1. Reprinted figure with permission from [50]. Copyright (2002) by the American Physical Society

and the gas is in the equilibrium state with a zero macroscopic velocity, the distribution
function of gas molecules can be written as

f (t, x1, v) = feq(v) + h(t, x1, v) = exp(−|v|2)
π3/2 + h(t, x1, v), (11)

where feq(v) is the equilibrium distribution function and h(t, x1, v) is the VDF for small
perturbation, that is, |h/feq| � 1. The evolution of the perturbation is governed by the
following LBE:

∂h
∂t

+ v1
∂h
∂x1

= Lg(h) − νeq(v)h, (12)

where Lg(h) = ∫ ∫
B[ feq(v′)h(v′) + h(v′)feq(v′∗) − feq(v)h(v∗)] d�dv∗ is the gain part of

the linearized Boltzmann collision operator, and the equilibrium collision frequency is
νeq(v) = ∫ ∫

Bfeq(v∗)d�dv∗ [78]. The molecular velocity v, spatial coordinate x1, and
time t have been normalized by the most probable speed vm = √

2kBT0/m, the scattering
wavelength L, and L/vm, respectively. Here we only consider Maxwellian gases, based on
which most of the macroscopic equations are derived.
The initial perturbation in the spontaneous RBS is a density impulse h(t = 0, x1, v) ∝

δ(x1)feq(v). Applying the Laplace-Fourier transform to Eq. (12) in the temporal-spatial
directions, we obtain 2π i(fs − v1)ĥ = feq + Lg(ĥ) − νeqĥ, where fs is the frequency
shift in the scattering process normalized by the characteristic frequency vm/L, and a hat
denotes the Laplace-Fourier transform of the corresponding quantity. The spectrum of
the spontaneous RBS spectrum can be determined by [70]:

Ss(Kn, fs) = 

(∫

ĥdv
)
, (13)

where 
 is a real part of a variable, and ĥ can be solved in the following iterative manner:

ĥj+1(v) = feq(v) + Lg(ĥj)
2π i(fs − v1) + νeq(v)

, (14)

where j is the iteration step.
Note that the linearized Boltzmann collision operator can be solved by the fast spec-

tral method [80]. Given the Knudsen number Kn and frequency shift fs, the iteration in
Eq. (14) is terminated when the relative difference in the spectrum Ss between two consec-
utive iteration steps is less than 10−6. Our method can find the RBS spectrum accurately
and efficiently, which has been validated by comparing with the direct simulation Monte
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Carlo method and experimental data, while the widely used Tenti S6 model [71] only
works for Maxwellian molecules when the Knudsen number is small (so that the same NS
equations, which can be derived both from the Boltzmann equation and S6 kinetic model
by the Chapman-Enskog expansion, are valid) or very large (so that the collision operators
can be neglected, and hence the Boltzmann equation and S6 kinetic model are identical),
see Figure 2 in Ref. [79] and Figures 7 and 9 in Ref. [80].
It should be noted in addition to the Knudsen number defined in Eq. (10) based on

the wavelength, we have another Knudsen number based on the oscillation frequency,
which is defined as the ratio of the scattering frequency to the mean collision frequency
(ν̄ = vm/λ) of gas molecules:

Knt = fsvm/L
ν̄

= fsKn
vm
λν̄

= fsKn. (15)

Both Kn and Knt characterize the degree of non-equilibrium.
Typical spectra of the spontaneous RBS are shown in Fig. 2a. When Kn = 0.001, the

gas flow is in the hydrodynamic regime, so that NS equations are valid. The spectrum
consists of the central Rayleigh part near fs = 0 and two Brillouin side peaks located at
fs = ±√

γRT0/vm = ±√
γ /2, where γ is the heat capacity ratio. Since

√
γRT0 is the

sound speed, this spectrum gives a strong evidence that its Brillouin part is related to the
acoustic effect of gasmolecules.WhenKn is increased to 0.01, the position of the Brillouin
peak remains unchanged, but the widths of both Rayleigh and Brillouin parts broaden,
due to the increased dissipation in sound propagation.WhenKn further increases, contri-
butions of the central Rayleigh peak and the Brillouin side peaks to the shape of spectrum
become mixed, and eventually the Brillouin parts disappear and the whole spectrum is
nearly Gaussian, see the line shape when Kn = 0.5. This Gaussian line shape is predicted
theoretically and observed experimentally [26, 45], in the free-molecular regime where
the binary collision is negligible. We observe it here when Kn = 0.5 the gas dynamics is
in strong non-equilibrium (i.e. highly rarefied) due to large values of both Kn and Knt .
Finally, it should be noted that, if the gas has a macroscopic velocity ug , the RBS spec-

trum will be shifted horizontally by a factor of ug/vm in Fig. 2a. By measuring the received
signals with the negative and positive frequency shifts, respectively, i.e.

∫ 0
−∞ Ss(Kn, fs)dfs

and
∫ ∞
0 Ss(Kn, fs)dfs, one can determine the gas velocity as long as the Knudsen number

Fig. 2 Spectra of the (a) spontaneous and (b) coherent RBS from the LBE for Maxwellian gases. Note that in
this figure and following figures, each spectrum has been normalized by the maximum value, where the
frequency has been normalized by vm/L. Due to the symmetry S(Kn, fs) = S(Kn,−fs), only half of the
spectrum is shown
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is known. This is the basic principle which will be used in the satellite ADM-Aeolus to
map global wind profile. Last but not least, it has been reported that the spectrum of the
dynamic light scattering for gases out of equilibrium is different to that in equilibrium
[83], this may provide additional possibility to probe the VDF of gas molecules.

2.2 The coherent RBS

In the coherent RBS, the wavelike density perturbation is created by the moving optical
lattice induced by the interference of two pump laser beams [49], see Fig. 1b. Compared to
the spontaneous RBS where light is scattered everywhere, the coherent RBS has a much
high signal-to-noise ratio because the scattered light only propagates in a certain direc-
tion by the phase matching method. Experimentally, efficient coherent RBSmeasurement
on timescales of hundreds of nanoseconds has been reported by using rapidly chirped,
pulsed, optical lattices [21], which “allows gas dynamic measurements in transient envi-
ronments such as high-speed flows and combustion”. Recently, this technique has also
been used to detect in situ nanoparticles production by volumetric nanoparticle synthe-
sis methods, with characteristic particle sizes ranging from the atomic scale to tens of
nanometers [22, 61].
Suppose the wave vector k is propagating along the x1 direction, the acceleration a1

is proportional to cos[ 2π(x1 − fst)] [50]. The pump beam intensities are so low that the
spectrum of the scattered light can be obtained by solving the following LBE:

∂h
∂t

+ v1
∂h
∂x1

− cos[ 2π(x1 − fst)] v1feq(v) = Lg(h) − νeq(v)h. (16)

We take the Fourier transform of Eq. (16) in both the temporal-spatial domain, and
solve the resultant equation in an iterative manner. Given the frequency difference fs and
Knudsen number Kn, we can solve the distribution function in the following iterative
manner [80]:

ĥj+1(v) = v1feq(v) + Lg(ĥj)
2π i(fs − v1) + νeq(v)

, (17)

where ĥ is the spatial-temporal Fourier transform of h.
Since in coherent RBS the spectrum is proportional to the square of density variations,

the corresponding RBS spectrum is

Sc(Kn, fs) =
∣
∣
∣
∣

∫
ĥdv

∣
∣
∣
∣

2
. (18)

Figure 2b depicts typical spectra of the coherent RBS. When Kn = 0.001, the spectrum
consists of the Brillouin peaks only, indicating the sound waves are resonantly pumped by
the optical dipole force field. As Kn increases, the relative intensity of the Rayleigh peak to
the Brillouin side peaks increases, and eventually the whole spectrum is Gaussian, which
means that the spectrum is solely due to the random thermal motion of gas molecules,
see Fig. 2b when Kn = 0.5. Note that normally the gas is in the free molecular flow
regime where the binary collision is negligible when Kn � 10, here again we observe
the Gaussian spectrum (a signature of free molecular flow) when Kn = 0.5 because both
the large values of the spatial and temporal Knudsen numbers are contributing to the
non-equilibrium dynamics.
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3 Rayleigh-Brillouin Scattering: accuracy of macroscopic equations
In this section, macroscopic equations introduced in section 1 are assessed in the dynamic
light scattering problem. For simplicity, dimensionless variables are introduced as follows
[66]:

x̃ = x1
L0

, ũ = u1
v0

, t̃ = t
L/v0

, ã = a1
v20/L

,

ρ̃ = ρ

ρ0
− 1, T̃ = T

T0
− 1, σ̃ = σ11

p0
, q̃ = q1

p0v0
, (19)

where v0 = √
RT0.

Eq. (1) is linearized into the following forms (tildes are omitted for clarity):

∂ρ

∂t
+ ∂u

∂x
= 0,

∂u
∂t

+ ∂ρ

∂x
+ ∂T

∂x
+ ∂σ

∂x
= a,

3
2

∂T
∂t

+ ∂u
∂x

+ ∂q
∂x

= 0, (20)

which, as stated before, are not closed since expressions for the shear stress σ and the heat
flux q are not known.

3.1 Macroscopic equations from the Chapman-Enskog expansion

According to the Chapman-Enskog expansion, the NS equations are derived from the
Boltzmann equation to the first order of Kn. In dynamic light scattering, the shear stress
and heat flux in Eq. (20) are given by

σ (NS) = −4
3
Kn

∂u
∂x

, q(NS) = −15
4
Kn

∂T
∂x

. (21)

Applying the Laplace transform for the temporal variable t and the Fourier transform
for the spatial variable x in the spontaneous RBS, or the Fourier transform in both tem-
poral and spatial directions in the coherent RBS, Eqs. (20) and (21) are turned into the
following matrix form [41]:

⎡

⎢
⎢
⎢
⎣

−i� 2iπ 0

2iπ −i� + 16
3 π2Kn 2 iπ

0 2 iπ − 3
2 i� + 15π2Kn

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎣

ρ̂

û
T̂

⎤

⎥
⎦ =

⎡

⎢
⎣

N1
N2
0

⎤

⎥
⎦ , (22)

where ρ̂, û, and T̂ are the spectra of the perturbation density, velocity, and temperature,
respectively, i is the imaginary unit, and � = 2

√
2π fs is the normalized angular fre-

quency. In the spontaneous RBS we have N1 = 1 due to the Laplace transform of the
initial density perturbation and N2 = 0, while in the coherent RBS we have N1 = 0 but
N2 = 1 due to the presence of external acceleration from the interference of two pump
beams, see Fig. 2b and Eq. (16). Spectra of the spontaneous and coherent RBS are given
by Ss = 
(ρ̂) and Sc = |ρ̂|2, respectively.
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Solving Eq. (22) for the spectrum of the density disturbance ρ̂, we find that the spectra
for the spontaneous and coherent RBS can be described by:

SNS
s = 


(
160 iKn2π4 + 46Kn� π2 − 3 i� 2 + 8 iπ2

160Kn2� π4 − 46 iKn� 2π2 + 120 iKnπ4 − 3� 3 + 20� π2

)

,

SNS
c =

∣
∣
∣
∣
∣

6π
(
10Knπ2 − i�

)

160Kn2� π4 − 46 iKn� 2π2 + 120 iKnπ4 − 3� 3 + 20� π2

∣
∣
∣
∣
∣

2

. (23)

If the Chapman-Enskog expansion is applied to the second-order of Kn, Burnett
equations can be derived. For Maxwellian molecules, the linearized constitutive relations
for the shear stress and heat flux become

σ (B) = σ (NS) − Kn2
(
4
3

∂2ρ

∂x2
− 2

3
∂2T
∂x2

)
, q(B) = q(NS) − 7

4
Kn2

∂2u
∂x2

. (24)

which leads to the following spontaneous and coherent RBS spectra:

S(B)
s = 


(
i
(
9� 2 + 138 i� Knπ2 − 584Kn2π4 − 24π2 + 448Kn4π6)

D(B)

)

, (25)

S(B)
c =

∣
∣
∣
∣
π(10π2Kn − i�)

D(B)

∣
∣
∣
∣

2
, (26)

withD(B) = −60π2�−360 iπ4Kn−776� Kn2π4−1920 iKn3π6+9� 3+138 i� 2Knπ2+
448π6� Kn4.
Figure 3 shows the spectra of both spontaneous and coherent RBS. It is seen that the

NS equations perform well up to Kn ≈ 0.02. Burnett equations, although accurate to the
second-order of Kn, does not seem to improve the accuracy in predicting the spectra of
spontaneous RBS. However, for the coherent RBS, Burnett equations perform well up to
Kn ≈ 0.05.
Super-Burnett equations can be derived if the Chapman-Enskog expansion is applied

to the third-order of Kn, where the shear stress and heat flux in this particular problem
are [60]:

σ (SB) = σ (B) + 2
9
Kn3

∂3u
∂x3

, q(SB) = q(B) + Kn3
(

θ7
∂3T
∂x3

− 5
8

∂3ρ

∂x3

)
, (27)

with θ7 = −157/16 for Maxwellian molecules.
Like Burnett equations, super-Burnett equations are unstable to disturbance with small

wavelength. Zhong et al. proposed the augmented Burnett equations [84], where they kept
the nonlinear expressions for the shear stress and heat flux from the Burnett equations
at the second order of Kn, while the third-order parts are chosen from the super-Burnett
equations as the corresponding linearized terms in one-dimensional problem. In this
dynamic light scattering problem, expressions for stress and heat flux in the augmented
Burnett equations are also given by Eq. (27). The coefficient θ7, however, is chosen as
θ7 = 11/16, due to the wrong calculation [73]; this erroneous parameter happens to make
the augmented Burnett equations stable.
Figure 4 illustrates the RBS spectra obtained from the super-Burnett equations with

various values of θ7. It is surprising that the original super-Burnett equations with θ7 =
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Fig. 3 Spectra of the spontaneous and coherent RBS, when (i) Kn = 0.02, (ii) Kn = 0.04, (iii) Kn = 0.05, and (iv)
Kn = 0.1. Solid and dashed lines are results from NS and Burnett equations, respectively. In this and
subsequent figures, squares represent results from the LBE for Maxwellian gases if without specification

−157/16 that are derived to the third-order of Kn in the Chapman-Enskog expansion,
perform much worse than the Burnett equations that are obtained from the Chapman-
Enskog expansion to the second-order ofKn, especially whenKn = 0.1. This conforms the
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Fig. 4 Spectra of the spontaneous (a,b) and coherent (c,d) RBS, when (a,c) Kn = 0.05 and (b,d) Kn = 0.1.
Solid, dashed, and dash-dotted lines are the results from super-Burnett equations with θ7 = −157/16, −15/4
and 11/16, respectively. Triangles are results from the Woods’ equations

criticism that one does not know what step of the approximation is required or sufficient
to obtain a solution that is correct up to order Knn [9, 63].
The augmented Burnett equations with θ7 = 11/16 do not do better. Interestingly, we

observe in Fig. 4a and c that when Kn = 0.05, the RBS spectra from the LBE lie between
those from the original and augmented Burnett equations. This inspires us to choose a
different value of θ7 between −157/16 and 11/16 to give a better agreement with the LBE
solutions; eventually we find θ7 = −15/4 works well in both spontaneous and coherent
RBS. However, our stability analysis reveals that the augmented Burnett equation with
θ7 = −15/4 is not stable.

3.2 Woods’ modification at the Burnett level

Woods argued that the Burnett equations are derived from an inappropriate frame-
dependent formulation due to the improperly distinguishing between convection
and diffusion [76]. A new approach to kinetic theory has been developed and the
shear stress and heat flux at the Burnett level in dynamic light scattering are given
by [52]:

σ (W ) = σ (NS) + 2Kn2
∂2T
∂x2

, q(W ) = q(NS) − 15
2
Kn2

∂2u
∂x2

, (28)

which leads to the following analytical expressions for the RBS spectra:
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S(W )
s = 


(
i
(
1920Kn4π6 − 336Kn2π4 + 46 iKn� π2 + 3� 2 − 8π2)

D(W )

)

,

S(W )
c =

∣
∣
∣
∣
6π(10π2Kn − i�)

D(W )

∣
∣
∣
∣

2
, (29)

withD(W ) = 1920Kn4� π6−336Kn2� π4+46 iKn� 2π2−120 iKnπ4+3� 3−20� π2.
Some typical profiles of the RBS spectra are shown in Fig. 4. Compared to solutions

of the Burnett equations in Fig. 3, we find that the performance of Burnett equations is
better than Woods’.
We also note that another form of Burnett equations has also been proposed recently,

based on Onsager’s reciprocity principle, where the VDF is expanded as the function of
thermodynamics forces and their corresponding fluxes [62]. However, in the linearized
case, they are reduced to the linearized NS equations, and hence cannot describe the RBS
spectra in the kinetic regime.

3.3 Bi-velocity hydrodynamic equations

The bi-velocity equations are derived based on the argument of “volume diffusion"
[7, 8]. In the study of normal shock wave structures, Greenshields and Reese found that
the bi-velocity equations deliver an excellent match in the case of the inverse density
thickness when compared to experimental data, by tuning the value of volume diffusivity
[24]. However, in the problem of sound propagation in gases, Marques Jr. pointed out that
Brenner’s modification of continuum theory is unable to describe the acoustic measure-
ments, not even in the low-frequency limit [40]. In the planar force-driven Poiseuille flow,
Guo and Xu found that the Brenner model can yield some improved predictions when
compared to the classical NS model, especially in the pressure field. However, it failed to
give a qualitatively correct temperature profile. They hence concluded that “the Brenner’s
hydrodynamic model is still not adequate for describing gaseous micro flows” [31]. In the
same problem, Dadzie and Brenner found that Brenner equations yield excellent agree-
ment with the experimental mass flow rate up to a Knudsen number of 5 [14]. However,
whether this good agreement comes from the boundary condition or the macroscopic
equations is not clear.
The spectrum of spontaneous RBS has also been calculated based on Brenner’s

equations [3], though the accuracy has not been validated. Here we assess the perfor-
mance of Brenner’s equations in the dynamic light scattering, where the linearized shear
stress and heat flux in Eq. (20) are given by

σ (BNS) = σ (NS) − 4α∗

3
Kn2

∂2ρ

∂x2
, q(BNS) = q(NS) − α∗Kn∂ρ

∂x
. (30)

Brenner chose the volume diffusivity αv in Eq. (8) to be the thermal diffusivity and hence
α∗ = 1/Pr, where Pr is the Prandtl number [7, 8]. However, Greenshields and Reese found
that this choice would produce some unphysical results in the structures of normal shock
waves. Instead, they suggested that αv should take the value of the kinematic viscosity,
that is, α∗ = 1 [24].
Similar idea that the fluid velocity is composed of convective and diffusion velocities

has been adopted to develop the extended NS equations [16, 55]. In this light scattering
problem, the shear stress in the linearized form remains unchanged, while the continuity
equation, i.e. the first equation in Eq. (20), becomes
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∂ρ

∂t
+ ∂u

∂x
= Kn

(
∂2ρ

∂x2
+ 1

2
∂2T
∂x2

)
, (31)

and the heat flux becomes

q = −15
4
Kn

∂T
∂x

− 3
2
Kn

(
∂ρ

∂x
+ 1

2
∂T
∂x

)
. (32)

Typical profiles of the RBS spectra are shown in Fig. 5. When the Knudsen number
is small, the gas dynamics falls in the continuum flow regime, it is surprising to find
that the Brenner’s and extended NS equations cannot even predict the RBS spectra, see
Fig. 5a where there exists huge difference around the Brillouin peak. This is expected, for
example, the effective heat conductivity is even changed in extended NS equations. In
Brenner’s model, the smaller value of α∗ gives better results, because as α∗ approaches
zero, the model reduces to NS equations, which at least give the correct RBS spectra in
the continuum flow regime.

3.4 “Thermo-mechanically consistent” Burnett equations

Probably inspired by Brenner’s concept of “volume diffusion", Dadzie et al. proposed a
Boltzmann-like gas kinetic equation and later derived the “thermo-mechanically consis-
tent" Burnett equations [15]. In addition to the five basic hydrodynamical variables in NS
equations, a scalar moment ρ′ that has the dimension of a mass density is introduced [13].

Fig. 5 Spectra of the spontaneous (a, b) and coherent (c, d) RBS, when (a, c) Kn = 0.02 and (b, d) Kn = 0.04.
Solid and dashed lines are the results from Brenner’s bi-velocity equations with a∗ in Eq. 30 being 3/2 and 1,
respectively, while the dotted lines are results from the extended NS equations [55]
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The equation in the dimensionless form for the dynamic light scattering reads:

∂ρ

∂t
+ ∂u

∂x
= 0,

∂ρ′

∂t
− ∂ρ

∂t
− Knκm

∂2ρ′

∂x2
= 0,

∂u
∂t

+ ∂ρ

∂x
+ ∂T

∂x
− 4Kn

3
∂2u
∂x2

− 4Kn2

3
κm

∂3ρ′

∂x3
= a,

3
2

∂T
∂t

− ∂ρ′

∂t
− Knκ

∂2T
∂x2

= 0, (33)

where κm = 1/Pr and κ = γ /(γ − 1)Pr.
Taking the Prandtl number Pr = 2/3 and heat capacity ratio γ = 5/3 for monatomic

gases, we obtain κ = 15/4. Hence Eq. (33) is reduced to the NS equations provided that
only the zeroth- and first order terms of Kn are retained. Furthermore, it is found that the
shear stress in Dadzie’s model is exactly the same as that in Brenner’s model. However, in
a recent paper the parameter κm is changed to Pr/3 [12].
Since ρ′ does not have a clear physical meaning, we do not know whether the initial

density impulse has an effect on the Laplace-Fourier transform of ρ′ or not: remember in
spontaneous RBS the Laplace-Fourier transform of the term ∂ρ/∂t is−i�ρ̂−1 due to the
initial density impulse; however, we do not know what is the Laplace-Fourier transform of
the term ∂ρ′/∂t is. Therefore, we only consider the coherent RBS, where the Fourier trans-
form of both ∂ρ/∂t and ∂ρ′/∂t are zero. The spectrum of coherent RBS can be obtained
by solving the following matrix:

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

−i� 2iπ 0 0

2iπ −i� + 16
3 π2Kn 2iπ 32

3 iπ
3Kn2κm

0 0 − 3
2 i� + 4π2Knκ i�

i� 0 0 −i� + 4π2Knκm

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

ρ̂

û
T̂
ρ̂′

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

0
1
0
0

⎤

⎥
⎥
⎥
⎦
,

(34)

with ρ̂′ being the spatial-temporal Fourier transform of ρ′.
Typical profiles of the coherent RBS spectra are depicted in Fig. 6. It is surprising to note

that, when κm = 1/Pr, Dadzie’s model cannot even predict the spectrum in the regime
where NS equations are valid, say, when Kn = 0.02: the position of the Rayleigh peak is
shifted away from zero frequency. This problem becomesmore severer when the Knudsen
number increases, where a strong deviation from the LBE solution is seen in Fig. 6b even
when Kn = 0.04. The drift of center of Rayleigh peak is induced by the second equation
in Eq. (33). When κm is changed to Pr/3, this problem is alleviated and good agreement
is achieved when Kn = 0.02, but for larger Knudsen numbers, Dadzie’s model is still not
good enough to yield reasonable spectrum of the coherent RBS. One may conjecture that
a further reduction of κm may lead to excellent agreement with the LBE solution at, say
Kn = 0.04, but our numerical results show that although the spectrum near the Rayleigh
peak agrees better, the spectrum near the Brillouin peak shifts leftwards, hence the overall
line shape is even worse.
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Fig. 6 Spectra of the coherent RBS, when (a) Kn = 0.02, (b) Kn = 0.04, (c) Kn = 0.05, and (d) Kn = 0.1. Solid
and dashed lines are results from Dadzie’s equations (33) with κm = 3/2 and κm = 2/9, respectively

3.5 Moment equations

Moment equations are derived through the method of ansatz, that is, the VDF f (t, x, v)
in the Boltzmann equation (3) is assumed to be the product of Gaussian function and
the sum of several low-order Hermite polynomials with the coefficients related to the
moments of VDF. The first set of moment equations are obtained by Grad consisting of
13 macroscopic quantities [23], where the VDF is given by Eq. (7). In this dynamic light
scattering problem the shear stress and heat flux in the G13 equations satisfy the following
equations:

∂σ

∂t
+ 4

3
∂u
∂x

+ 8
15

∂q
∂x

= − σ

Kn
,

∂q
∂t

+ ∂σ

∂x
+ 5

2
∂T
∂x

= −2
3

q
Kn

. (35)

The spectra of spontaneous and coherent RBS can be obtained by solving the following
matrix:

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−i� 2iπ 0 0 0

2iπ −i� 2iπ 2iπ 0

0 2 iπ − 3
2 i� 0 2iπ

0 8
3 iπ 0 −i� + 1

Kn
16
15 iπ

0 0 5i� 2i� −i� + 2
3Kn

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρ̂

û
T̂
σ̂

q̂

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

N1
N2
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (36)

where in the coherent RBS σ̂ and q̂ are respectively the spatial-temporal Fourier trans-
form of σ and q, while in spontaneous RBS σ̂ and q̂ are respectively the Laplace-Fourier
transform of σ and q in the temporal-spatial directions.
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Note that G13 equations are accurate to the second-order of Kn, which have been
extended to R13 equations that are accurate to the third-order of Kn [37, 64]. The gov-
erning equations for the shear stress and heat flux, as according to Struchtrup [64], are

∂σ

∂t
+ 4

3
∂u
∂x

+ 8
15

∂q
∂x

− 6
5
Kn

∂2σ

∂x2
= − σ

Kn
,

∂q
∂t

+ ∂σ

∂x
+ 5

2
∂T
∂x

− 18
5
Kn

∂2q
∂x2

= −2
3

q
Kn

. (37)

Similarly, the evolution of the shear stress and heat flux in the linearized R26 equations,
which are accurate up to the fifth-order of Kn, are given by Gu and Emerson as [27]:

∂σ

∂t
+ 4

3
∂u
∂x

+ 8
15

∂q
∂x

+ ∂m̄
∂x

= − σ

Kn
,

∂q
∂t

+ 5
2

∂T
∂x

+ ∂σ

∂x
+ 1

6
∂�̄

∂x
+ 1

2
∂R̄
∂x

= −2
3

q
Kn

, (38)

where the higher-order moments m̄, �̄, and R̄ are governed by the following equations:

∂m̄
∂t

+ 9
5

∂σ

∂x
+ 9

35
∂R̄
∂x

− 16
7

Kn
Aφ1

∂2m̄
∂x2

= −Am
m̄
Kn

,

∂�̄

∂t
+ 8

∂q
∂x

− 7Kn
3

∂2�̄

∂x2
− 4Kn

A�1

∂2R̄
∂x2

= −A�1
�̄

Kn
,

∂R̄
∂t

+ 56
15

∂q
∂x

+ 2
∂m̄
∂x

− Kn
5

(
54

7Aψ1
+ 16

3A�1

)
∂2R̄
∂x2

− 28Kn
45A�1

∂2�̄

∂x2
= −AR1

R̄
Kn

, (39)

with for Maxwellian molecules we have Am = 1.5, A�1 = 2/3, A�1 = 1, Aφ1 = 2.097,
Aψ1 = 1.698, and AR1 = 7/6.
Figure 7 shows the spectra of both instantaneous and coherent RBS obtained from the

G13, R13, and R26 moment equations. When Kn = 0.02, all the moment equations pre-
dict the same spectrum as that from the LBE. However, even when Kn is increased to
Kn = 0.04, spectra from the G13 equations deviate significantly from those of the LBE.
The R13 equations are accurate up to Kn ≈ 0.04, while the R26 equations are accurate up
to Kn ≈ 0.06.
We have also derived the regularized 35 moment equations, where the distribu-

tion function is expanded to the fifth-order polynomials and all the relevant moments
are included. For the dynamic light scattering problem, only one extra equation for a
higher-order moment is added:

∂φ̄

∂t
+ 16

7
∂m̄
∂x

− 96Kn
245Aψ1

∂2R̄
∂x2

− 25Kn
9Aw1

∂2φ̄

∂x2
= −Aφ1

Kn
φ̄, (40)

with Aw1 = 2.743 for Maxwellian molecules, while the equation for m̄ in Eq. (39) is
replaced by

∂m̄
∂t

+ 9
5

∂σ

∂x
+ 9

35
∂R̄
∂x

+ ∂φ̄

∂x
= −3

2
m̄
Kn

. (41)

We have noted that from 1D shear flow R35 equations are better than R26 equations,
but not much. The same conclusion can be made in the dynamic light scattering problem,
where the spectra from R26 and R35 equations are nearly identical, since there are both
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Fig. 7 Spectra of the spontaneous (top row) and coherent (bottom row) RBS. The horizontal and vertical axis
are the normalized frequency and spectrum, respectively. Form the left to right, the Knudsen number in each
column are 0.04, 0.06, 0.08, and 0.1, respectively. Solid, dashed, and dotted lines are the results from G13, R13,
and R26 moment equations, respectively, while triangles are results from Eu’s generalized hydrodynamic
equations

accurate to O(Kn5). In 2D or 3D situations, the computational costs increase as more
equations are included in the system, but the accuracy is not gained proportionally.

3.6 Generalized hydrodynamic equations

Eu also developed a new set of macroscopic equations called the generalized hydrody-
namic equations, by constructing a non-equilibrium distribution function that ensures
the non-negativity property of entropy production [18]. Unlike the moment method
where the distribution function is the product of Gaussian function and Hermite poly-
nomials, the distribution function in Eu’s method is an exponential function of some
low-order Hermite polynomials. In the dynamic light scattering by rarefied gases, the
evolution of the shear stress and heat flux are governed by

∂σ

∂t
+ 4

3
∂u
∂x

= − σ

Kn
,

∂q
∂t

+ 5
2

∂T
∂x

= −2
3

q
Kn

, (42)

which, due to the decoupling between the shear stress and heat flux, are simpler than
those in G13 equations (35).
The RBS spectra are shown in Fig. 7 at several typical Knudsen numbers. It is seen that

the accuracy of Eu’s model lies between that of G13 and R13 moment equations, which is
worse than the Burnett and Brenner equations.
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Note that for nonlinear gas flows, the constitutive relations in Eu’s original equations
are coupled and cannot be solved easily. Based on the adiabatic assumption and sim-
plifications made by Myong [46, 47], nonlinear coupled constitutive relations have been
developed and applied to hypersonic flows. In some cases, very good agreement with
results from the direct simulation Monte Carlo method [4] is observed [82], even at rel-
ative large Knudsen numbers. However, in the linearized case, the nonlinear coupled
constitutive relations are reduced to those in the linearized NS equations. Therefore, in
the spontaneous and coherent RBS it works only in the hydrodynamic regime.
Very recently Rana et al. also proposed the coupled constitutive relations by combining

ideas of different approaches to irreversible thermodynamics, in particular the rational
(extended) thermodynamics [51]. In RBS, linearized expressions for the shear stress and
heat flux are

σ = σ (NS) − 8
15

Kn
∂q
∂x

,

q = q(NS) − 3
2
Kn

∂σ

∂x
. (43)

Numerical results for the spectra of both spontaneous and coherent RBS, however,
suggest that the coupled constitutive relations have similar accuracy as that of the G13
equations (not shown here).

3.7 Rational extended thermodynamics

Rational extended thermodynamic equations for rarefied gas dynamics are derived from
the gas kinetic equation in a manner similar to the derivation of moment equations, but
the distribution function is instead obtained by the maximum entropy principle. Recently,
it has been used to study the spontaneous RBS spectra in polyatomic gases by consider-
ing only 14 moments (i.e. in addition to the 13 moments in G13 equations, the dynamical
pressure that is related to the bulk viscosity is also considered); the corresponding macro-
scopic equations can be found in the Chapter 9 of the book [54], which degenerate to G13
equations for monatomic gases when the deviation from equilibrium is weak.
The spectrum of spontaneous RBS from the rational extended thermodynamics with

14 moments has been compared with the experiment [25], where the light with the effec-
tive wave vector k = 1.98 × 105 cm−1 is scattered by CO2 at a temperature 298 K and
pressure 750 mm Hg. In the numerical calculation of the spectrum of spontaneous RBS
based on the LBE for polyatomic gas, we use the fast spectral method developed in Ref.
[80], with the ratio of the bulk viscosity to the shear viscosity of CO2 being 0.39 [30].
From Fig. 8 we can find the huge difference between the results of rational extended ther-
modynamics and experiment, while our LBE solution gives a good prediction of the RBS
spectrum. We conclude that the accuracy of the rational extended thermodynamics is
roughly at the same order with G13 equations based on the essence in the derivation of
these macroscopic equations.

3.8 Discussions

Based on benchmarking solutions from the LBE for the RBS spectra, we have assessed
the accuracy of more than ten macroscopic equations. The results are summarized and
visualized more clearly in Fig. 9, where the relative difference in the RBS spectra between
solutions from macroscopic equations and LBE is shown as a function of the Knudsen
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Fig. 8 Comparisons in the spectra of spontaneous RBS between the experimental data (the solid line) from
Ref. [25], the LBE (the dashed line) for polyatomic gas [80], and the rational extended thermodynamics with
14 moments (the dash-dotted line) by Ruggeri and Sugiyama [54]. The light is scattered from CO2 when
Kn = 0.1114. Note that the frequency is normalized by 1.06 GHz, and the shown spectra are the convolution
of Ss(Kn, fs) and the Lorentzian function Lor(fs) with the Full Width at Half Maximum being 210 MHz, i.e.,
Lor(fs) ∝ 1/(f 2s + 9.8 × 10−3)

number. The solution may be viewed being accurate when the relative difference is less
than 0.05. It should be noted that in dynamic light scattering both the spatial and temporal
Knudsen numbers, as defined in Eqs. (10) and (15), play important roles. For steady-state
problems, the range of applicability of these macroscopic equations may be expanded to
larger values of Kn.
Interestingly, as the order of Chapman-Enskog expansion increases, the accuracy

of the obtained macroscopic equations does not necessarily increase (say, when
Kn � 0.03, super-Burnett equations are less accurate than Burnett equations),
which confirms the criticism that “one does not know what step of the approx-
imation is required or sufficient to obtain a solution that is correct up to order
Knn”. For the (regularized) moment equations, however, the accuracy in the predic-
tion of RBS spectra is consistent with the accuracy in deriving these equations, that
is, increases monotonically from G13, R13, to R26 moment equations. Eu’s gener-
alized hydrodynamic equations, where the VDF contains the fourth-order Hermite
polynomial, has the same level accuracy as G13 equations, where the distribution
function is expanded only up to the third-order Hermite polynomial, and it is less
accurate than R13 equations. Brenner’s bi-velocity fluid model and Dadzie’s “thermo-
mechanically consistent" Burnett equations, which contain free parameters that can not
be determined from fundamental physical laws, both involve the concept of “volume
diffusion", do not perform well compared to R13 equations, even when the best param-
eters are selected. This is because there is a lack of solid argument from actual micro-
physics in these methods. For example, just because the Burnett equations derived from
the Boltzmann equation does not have good properties, the “thermo-mechanically con-
sistent" Burnett equation was proposed by adding non-physical “volume diffusion" term
to the Boltzmann equation [13, 15]. This logic is not correct because that the Burnett
equations are not good does not mean the Boltzmann equation is wrong. In fact since the
Boltzmann equation was proposed there is no single evidence that it fails to describe the
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Fig. 9 Difference
∫ ∞
∞ |SLBE − SMac|dfs in the spectrum of spontaneous (a) and coherent (b) RBS between

solutions of LBE and macroscopic equations. Note that before the comparison, areas of RBS spectra are
normalized to unity. The solution may be viewed to be accurate when the relative difference is less than 0.05.
Note that super-Burnett with θ7 = −15/4, Brenner’s, and Dadzie’s equations are purely phenomenological
models with arbitrary tuned parameters to give their best results, while other macroscopic equations in this
figure are derived without any parameter tuning

rarefied gas dynamics of dilute gases, while the “thermo-mechanically consistent" Burnett
equations are often changed in order to fit the theory of Boltzmann equation as well as
experimental data.

3.8.1 Convergence ofmoment systems

From these comparisons, it is concluded that the the moment method is a proper way
to derive higher-order macroscopic equations to describe the rarefied gas dynamics:
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the derivation is straightforward, and its accuracy is definitive and controllable, that
is, increases with the number of moments or order of Hermite polynomials used to
approximate the VDF. This is quite important in numerical simulations, where the error
may be analyzed in prior. To further illustrate this point, we study the performance of
higher-order moment systems, by solving the linearized Shakhov gas kinetic model [57]
numerically using the discrete velocity method based on the Gauss-Hermite quadrature,
which is equivalent to the Grad moment method at different order of approximations;
more detailed analysis is given in Ref. [58]. We also noted that a similar research has been
done to find the minimum number of moments in rational extended thermodynamics to
describe the light spectrum [74].
We choose the spontaneous RBS as an example. Under the same normalization as used

in section 2, the evolution of the VDF for perturbation h(t, x1, v) is governed by the
following linearized Shakhov equation:

∂h
∂t

+ vx
∂h
∂x1

= δ

[
ρ + 2u1v1 + T

(
|v|2 − 3

2

)
+ 4q1vx

15

(
|v|2 − 5

2

)
− h

]
, (44)

where ρ = ∫
hdv is the perturbed number density, u1 = ∫

v1hdv is the perturbed velocity,
T = 2

3
∫ |v|2hdv−ρ is the perturbed temperature, q1 = ∫ |v|2v1hdv− 5

2u1 is the perturbed
heat flux, and δ = 1/

√
2Kn. When the molecular velocity space v is discretized by Gauss-

Hermite quadrature, the spectrum can be obtained by using a similar iterative scheme as
in Eq. (14). If the N-th order Gauss-Hermite quadrature is considered, the moment up to
the order 
 2N−1

2 � = N − 1 can be captured accurately [58]. Consider the fact that G13
equations where the VDF is expanded up to third-order Hermite polynomials are accurate
to O(Kn2), the numerical solution of the Shakhov equation based on the Gauss-Hermite
quadrature of order N has an accuracy of O(KnN−2).
Using solutions of the Shakhov model approximated by the 60th-order Gauss-Hermite

quadrature as reference, we analyze the accuracy of various orders of moment equations
in Fig. 10. We also show the relative error in the spectrum from comparisons between
G13/R13/R26 equations and the LBE.WhenN = 4, the Gauss-Hermite quadrature yields
an equivalent moment system accurate to O(Kn2), therefore, the relative difference curve
almost overlaps that fromG13 equations. Similarly,N = 5 and 7 yield equivalent moment
systems accurate toO(Kn3) andO(Kn5), respectively. Therefore, relative difference curves
nearly overlap with those from R13 and R26 moment equations in a wide range of
Knudsen numbers. Obviously, as more moments (i.e. higher-order quadrature) are
included, the accuracy increases monotonically.
However, it is seen from Fig. 10 that at large values of Kn the convergence rate of

moment equations is slow. For example, when Kn = 0.3, when N is increased from 5
to 20, that is, when the accuracy of the equivalent moment systems is increased from
O(Kn3) to O(Kn18), the error is only reduced by about one order of magnitude. And the
solution of N = 20 can be marginally viewed as accurate when compared to the con-
verged solution; and it is still not accurate enough to predict the RBS spectrum. Accuracy
of moment systems may become worse in wall-bounded problems such as the Poiseuille
flow between two parallel plates [68], as Gauss-Hermite polynomials are not good at cap-
turing discontinuities in the VDF. The performance of moment systems of various orders
will be investigated in the wall-bounded sound propagation problem in the next section.
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Fig. 10 Difference in the spectrum of spontaneous RBS. Results for G13, R13, and R26 moment equations are
obtained from Fig. 9a, while others are

∫ ∞
∞ |SNGH − SN=60

GH |dfs with SNGH being the spectrum obtained by
solving the Shakhov kinetic model (44) with the Gauss-Hermite quadrature of order N; in three-dimensional
molecular velocity space v, the number of total discrete velocity points is N3, while the corresponding Grad
moment equations have (N + 1)(N + 2)(N + 3)/6 moments [19]. Note that before the comparison, areas of
RBS spectra are normalized to unity. The solution may be viewed to be accurate when the relative difference
is less than 0.05. Also note that the relative difference when N = 5, 7, 10 and 20 does not decrease with Kn
when Kn � 0.1 is probably because in spontaneous RBS the spectrum between the Rayleigh and Brillouin
peaks is nearly zero [see Fig. 2a] so any difference is magnified

4 Sound propagation between the transducer and receiver
We now test the accuracy of macroscopic equations in the problem of sound propagation
in gas confined between the transducer and receiver. As shown in Fig. 11, a monatomic
gas is enclosed between two walls with a distance of L, measured along the x-coordinate.
The left wall is the transducer which oscillates periodically with the velocity

u = u0 cos(� t), (45)

while the other wall is the resting receiver where the gas pressure is recorded. The veloc-
ity amplitude u0 is so small that the gas is only slightly disturbed, therefore it is sufficient

Fig. 11 Schematic of the sound propagation between transducer and receiver. The sound is generated by
the periodic oscillation of the transducer, while the receiver measures the pressure amplitude and the phase
shift. The dimensions perpendicular to the x-direction are much bigger than L, so that the problem is 1D



Wu and Gu Advances in Aerodynamics             (2020) 2:2 Page 26 of 32

to consider all transport equations in linearized form. The quantity of interest is the nor-
mal pressure exerted on resting receiver in the x-direction, which also oscillates with the
frequency � but with a phase shift φ. That is, its expression is given by

p(t) = ρ + T + σ ≡ pL cos(� t + φ). (46)

We use the gas kinetic equation (44) to describe the rarefied gas dynamics, as (i) the pre-
vious study showed that this model equation can provide accurate results when compared
to that of LBE, with relative error in pressure less than 4% [77], and (ii) the Gauss-
Hermite quadrature can be applied to this equation [58] tomimic the behavior of moment
equations at any order, to replace the complicated derivation and solving of high-order
moment equations beyond R26.We useMaxwell’s diffuse boundary condition to describe
the gas-wall interaction [43]; detailed form of which can be found in Ref. [77] and the
efficient numerical method to solve Eq. (44) is given in Ref. [69].
Macroscopic equations are the same as in the dynamic light scattering problem, except

for R26 equations we have Am = A�1 = A�1 = Aφ1 = Aψ1 = AR1 = 1 in
Eq. (39), as derived from the Shakhov kinetic model (44). The gas-surface interaction
adds additional difficulty. That is, boundary conditions for high-order equations like Bur-
nett, super-Burnett, Woods, “thermo-mechanically consistent" Burnett, and generalized
hydrodynamic equations are hard to construct; hence they will not be considered here.
Brenner’s and extended NS equations will not be considered either since they are not
accurate even in the near-continuum flow regime. Neither will we consider G13 and
rational extended thermodynamics equations, since they are equivalent in this problem,
and it has already been shown that they are not as accurate as R13 equations [66]. This
leaves us to only the NS, R13, and R26 equations. The boundary conditions for NS and
R13 equations corresponding to the diffuse boundary condition for gas kinetic model
equations can be found in Ref. [66], while that for R26 equations is given by Ref. [27].
We first compare solutions of the Shakhovmodel (44) with the experimental data of Ref.

[56]. Although his results suggested that “the accommodation at the transducer surfaces
must be incomplete”, comparisons in Fig. 12 show that the diffuse boundary condition
can predict the normal pressure at the receiver, except in the region where

√
π�L/vm is

small, see Fig. 12a and d. This is actually consistent with the discovery in Ref. [36] that
in some parameter regions the pressure is sensitive to gas-surface boundary condition
while in other regions it is not. Therefore, in the following, the accuracy of macroscopic
equations will be assessed only by comparing with solutions of the kinetic model (44)
using the equivalent diffuse boundary condition.
Note that the parameter �τc in Fig. 12 is proportional to the Knudsen number defined

in the time domain Knt as �τc = 2
√
2πKnt , see Eq. (15). Therefore, as �τc increases,

the rarefaction effects become more and more strong, so macroscopic equations gradu-
ally lose accuracy. The NS equations are accurate when �τc = 0.1 (not shown), but are
already very inaccurate when �τc = 0.3, see Fig. 12a. R13 equations, which are accurate
to the order of Kn3, give reasonable good results up to �τc = 0.3, see Fig. 12b. While
R26 equations, which are accurate to the order of Kn5, predict the normal pressure at
the receiver fairly well up to �τc = 0.67. This finding is in agreement with that in the
dynamic light scattering problem, i.e., the accuracy of moment equations increases when
more moments are included in macroscopic equations.
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Fig. 12 Sound amplitude pL at the receiver as function of the dimensionless length
√

π� L/vm , where pL is
normalized by p0u0/vm . Solid lines represent the accurate results from the Shakhov model (44) solved by the
discrete velocity method [69], that is, doubling the number of spatial and discrete velocity points gives the
same results. Solid squares (experimental data) are collected from Ref. [56] when the gas medium is helium.
τc = μ/p0 is the average collision time of gas molecules

4.1 Reason of slow convergence of moment systems for highly rarefied flows

When the boundary condition is involved, it has been shown that the Chapman-Enskog
expansion is no longer valid in the boundary layer [65]. Therefore, the order of accu-
racy in Kn may not make too much sense when the gas-surface interaction is important.
Nevertheless, it is important to investigate the convergence of moment systems for mod-
erate and highly rarefied gas flows, that is, howmany moments should be included to give
reasonable prediction of sound pressure? Since the derivation and solving of higher-order
moment system is extremely difficult, we solve the Shakhov model (44) using the Gauss-
Hermite quadrature of order N instead; this is equivalent to the Grad moment equations
where the VDF is expanded by Hermite polynomials up to N-th order.
Typical results are depicted in Fig. 13. Formoderate value of�τc in Fig. 13a, the result of

using Gauss-Hermite quadrature of order 8 is more accurate than that of R26 equations.
This is because N = 8 corresponding to Grad moment equations of accuracy O(Kn6),
one order more accurate than R26 equations. In order to obtain accurate results, how-
ever, the VDF has to be expanded into Hermite polynomials to the 20-th order.We say the
convergence is rather slow as increasingN from 10 to 20 only results inmarginal improve-
ment of accuracy. This situation becomes more severe when �τc increases to 2.72. From
Fig. 13b we see that R13 and R26 moments equations are quite inaccurate; in order to
have accurate results, Gauss-Hermite quadrature of order higher than 50 is needed.
The slow convergence of moment systems in describing rarefied gas flows may be

explained at the mesoscopic level. To this end we plot the marginal VDF
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Fig. 13 Convergence test of moment equations: sound amplitude at the receiver as function of the
dimensionless length

√
π� L/vm . Solid lines represent the accurate results from the Shakhov model (44)

solved by the discrete velocity method [69]. Symbols are approximate solutions of the Shakhov model when
the molecular velocity space v is discretized according to Gauss-Hermite quadrature of order N; these
solutions are equivalent to those of Grad moment equations (having (N + 1)(N + 2)(N + 3)/6 moments)
that are accurate up to the order of KnN−2

hm =
∫ ∫

h′dv2v3, where h(v, t) = 
[ h′(v) exp(i� t)] , (47)

at the resting receiver when
√

π�L/vm = 20, and when �τc = 1.09 and 2.72, respec-
tively. Accurate and approximate numerical results of the Shakhov kinetic model by the
Gauss-Hermite quadrature are compared in Fig. 14. When �τc = 1.09, the two Knudsen
numbers are Kn = 0.069 and Knt = 0.123, we see from Fig. 14a,b that the VDF is smooth,
except it has a huge jump at v1 = 0. This kind of jump (discontinuities) is typical in wall-
bounded rarefied gas flows. The VDF when v1 < 0 is described by the Gaussian function
as per Maxwell’s diffuse boundary condition, while that at v1 > 0 deviates from the equi-
librium distribution because of the relative large value of Knt so that the system does not
have enough time to equilibrate. The Gauss-Hermite quadrature of order N = 8 cannot
predict the gas pressure in Fig. 13a because the VDF in Fig. 14a,b, when v1 > 0, can be well
fitted by the Hermite polynomials up to the 8th order. Only the Gauss-Hermite quadra-
ture of order higher than N = 20 can give reasonable good prediction of macroscopic
gas pressure at the receiver. However, from the comparison in VDF we see that this is not
enough in capturing accurately the physics at the mesoscopic level. When �τc = 2.72,
the two Knudsen numbers are Kn = 0.171 and Knt = 0.306, the rarefaction effects are
even stronger, and the VDF becomes more and more irregular, that is, it not only has
jump at v1 = 0, but has rapid variations. To capture this rapid variations, the order of
Gauss-Hermite quadrature needs to be very high. From the comparisons in Fig. 13b and
Fig. 14c,d we see that although Gauss-Hermite quadrature of order N = 50 can predict
the gas pressure at the receiver, it still produces some discrepancy in the mesoscopic VDF.
Thus, we believe that the large discontinuities and rapid variations in the VDF are the

underlying reasons for the slow convergence of Grad moment systems, since the smooth
Hermite polynomials are not good at resolving these irregular structures in the VDF. In
the framework of Gauss-Hermite quadrature, adding more discrete velocity grids is not
economic, as these grids will be distributed in the region |v1| > 3 where the VDF is zero!
In the discrete velocity method, it has already shown that designing numerical quadra-
ture that is more suitable for wall-bounded problems [2, 48, 68] will greatly increase the
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Fig. 14 Marginal VDF (47) at the receiver. a, b �τc = 1.09 and (c,d) �τc = 2.72. In both cases,√
π� L/vm = 20. Solid lines represent the accurate results from the Shakhov model (44) solved by the

discrete velocity method [69], while symbols are approximate solutions of the Shakhov model when the
molecular velocity space v is discretized according to the Gauss-Hermite quadrature of order N

accuracy while reduce the computational cost. This may hint that to derive more accu-
rate moment equations with limited number of moments, more suitable basis functions
rather than the Hermite polynomials should be used.

5 Conclusions
In summary, by considering the problems of dynamic light scattering and sound wave
propagation, we have assessed the accuracy of more than ten macroscopic equations pro-
posed in the history to describe the rarefied gas dynamics. These equations are derived
mainly from one of the three categories: Chapman-Enskog expansion, Grad moment and
regularised moment methods, and the argument of “volume diffusion". While the first
two categories are based on the Boltzmann equation where the gas dynamics is known
as long as the intermolecular potential is determined, the latter has some free parameters
which seems cannot be determined from the first-principle physics. In the dynamic light
scattering, we found that, (i) higher-order Chapman-Enskog expansion does not neces-
sarily lead to more accurate prediction of rarefied gas dynamics, and since Burnett and
super-Burnett equations are not stable, they shall not be used, (ii) macroscopic equations
proposed based on the concept of “volume diffusion" do not work well even in the near
continuum flow regimes, due to the lack of solid argument from actual micro-physics in
these methods, (iii) the moment method can provide reasonable results, and its accuracy
always increases when more moments are included. However, for moderate and highly
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rarefied gas flows, a huge number of moments should be included in the moment sys-
tem as the convergence to true solutions is rather slow. We hope this research could shed
some light on how to choose/develop macroscopic equations for rarefied gas dynamics.
For example, in the sound propagation problem we have found that the slow convergence
of Grad moment systems is due to the ineffectiveness of Hermite polynomials in captur-
ing the large discontinuities and/or large variations in the velocity distribution function.
If the basis functions used in the expansion of velocity distribution function are chosen
properly, we may be able to construct small-size moment systems to describe the rarefied
gas dynamics up to larger values of Knudsen number.
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G13/26: Grad 13/26; LBE: Linearized Boltzmann Equation; NS: Navier-Stokes; R13/26/35: Regularized 13/26/35; RBS:
Rayleigh-Brillouin Scattering; VDF: velocity distribution function
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