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With the coupling of free transport and scattering processes in the reconstruction of
the flux at cell interfaces, the present DUGKS has the nice unified preserving properties
such that the cell size is not limited by the photon mean free path even in the optical
thick regime. Several one- and two-dimensional numerical tests are conducted to
validate the performance of the present DUGKS, and the numerical results demonstrate
that the scheme is a reliable method for anisotropic radiative heat transfer problems.
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1 Introduction

Radiative heat transfer appears in many engineering applications, such as short-pulsed
laser in turbid media [2], radiative base heating from rocket exhaust plums [3], radiation in
liquid rocket engines [4], nonequilibrium radiative hypersonic flows [5], and some other
processes [6-9]. In practical applications, the scattering media are usually anisotropic
[10], and some studies have been reported in the literature. For instance, it is found that
radiative heat transfer can be greatly influenced in aerosol media due to the anisotropy
properties [11]. The physically realistic approach for the scattering behaviour of coal com-
bustion particles is the anisotropic, strongly forward scattering [12]. The liquid aluminum
oxide particles produced from combustion of solid propellant exhibit a strong forward
scattering characteristic [13].

Radiative heat transfer in anisotropic media can be described by the radiative transfer
equation (RTE) for radiation intensity of the photon, which is a high dimensional integral-
differential equation. As the scattering effect of the media is strong (optical thick), i.e.,
the photon mean free path (MFP) A is much smaller than the characteristic macroscopic
length L, the radiation behaves diffusively. On the other hand, the radiation can transport
freely with the light speed when the scattering effect is weak (optical thin). Many prac-
tical media contain both strong and weak scattering regimes, such that it is necessary to
design numerical schemes which can capture the radiation transport accurately in both
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cases uniformly. The widely used stochastic Monte Carlo method (MCM) [14-16], which
simulates the RTE by tracking the transport process of simulated photons with a mesh
size smaller than the MFP, is inefficient in optical thick media. The classical determinis-
tic discrete ordinates method (DOM) [17-19] and finite volume method (FVM) [10, 20—
22] also suffer similar challenges. Therefore, it is necessary to develop multiscale schemes
which are suitable for problems with arbitrary optical thickness without the limitation of
the mesh size by the MFP.

The asymptotic preserving (AP) scheme for the linear kinetic equation is one of the
idealized multiscale schemes. AP schemes are first studied in steady neutron transport
problems [23-26]. For unsteady problems, some AP schemes have also been proposed
[27, 28]. Recently, an AP method, the unified gas kinetic scheme (UGKS) was success-
fully developed for radiative transfer problems [29-31]. Another asymptotic preserving
multiscale method, the discrete unified gas kinetic scheme, which was initially designed
for gas flows [32, 33], was also extended to solve the radiative heat transfer problems in
isotropic scattering media [1]. As the distribution function at a cell interface in DUGKS is
constructed from the characteristic numerical solution rather than the local integral one
in the UGKS, the DUGKS has a simpler structure and is more computational efficient.
Furthermore, it can be shown that the DUGKS has the unified preserving properties such
that it can serve as an efficient multiscale method [34]. However, both the UGKS and
DUGKS have not considered the effects of the anisotropic scattering properties.

In present work, we will extend the DUGKS for isotropic radiative transfer to problems
with anisotropic scattering effects. With the considering of the anisotropy, the radiative
transfer features of the forward scattering media and the backward scattering media can
be described clearly. The major difficulty of simulating the anisotropic problem stems
from the change of the anisotropic scattering phase function in the RTE. In the present
study, the anisotropic phase function will be calculated from the Legendre polynomial
expansions [35, 36].

The remainder of this paper is organized as follows. Section 2 introduces the anisotropic
scattering radiative transfer equation, and the DUGKS for RTE is described in Section 3.
Some numerical tests are performed in Section 4. Finally, a brief summary is given in

Section 5.

2 Gray radiative transfer equation
The gray radiative transfer equation with anisotropic scattering reads [37, 38]

%w 45V, t) = —Bl@x,s,t) + BS (x,5,1), )
S5, 1) = (1 — )y, 1) + — / I(x,s, ) D (s, $)d<, 2)
41 Jan

where (%, s, £) is the distribution function of radiation intensity of photons, related to the
spatial position %, the direction of photon propagation s and time ¢. ¢ is the light speed,
B is the extinction coefficient which is the inverse of the local photon MFP, i.e., § = 1/A.
S (x, s, 2) is the source term of the RTE, and w is the scattering albedo. The function I (x, £)
is the blackbody intensity. For equilibrium radiative problems, the blackbody intensity can
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be calculated according to energy conservation,

I, (x,t) = ﬁ[} I(x,s,t)dQ, (3)

where Q is the solid angle domain of s. For radiative nonequilibrium problems, when the
temperature field of the medium is given, the blackbody intensity can be calculated by the
Stefan-Boltzmann law [37], i.e.,

oT* (x,t)

Ip (x,0) = (4)

where o is the Stefan-Boltzmann constant and T is the local temperature of the medium,
and @ (s, s) is the scattering phase function, which describes the fraction of the radiative
energy scattered into the outgoing direction s from the incoming direction s, and Q' is the
corresponding solid angle domain. In the RTE, the anisotropic scattering characteristic of
the participating media is fully expressed by the scattering phase function ®(s, s), which
satisfies the normalization condition,
1 P (s',5)dQ = 1. (5)
41 Jan
Unlike the isotropic scattering problems where the scattering phase function is constant
(® = 1), the scattering phase function in anisotropic scattering problems changes accord-
ing to the scattering angle. In this study it is approximated by a finite series of Legendre
polynomials [17, 35, 36], i.e.,

N
B(s,5) = Dleosy) = Y Cilarr, az)Py(cosy), (6)
j=0
’ 2\1/2 2\1/2 /
cosy = pup' + (1 — p?) (1—M ) cos(¢’ — @), 7)

where ¥ is the angle between incoming direction s’ (,u’ N4 ) and scattered direction
s (14, ¢). p is the cosine of the zenith angle and ¢ is the azimuth angle of the direction s.
Ci(a1, ) is the angular distribution coefficients, where «; = 7 D/v and ap = mmD/v
with D being the diameter of radiative medium particle, v is the wavelength of the inci-
dent radiation in the surrounding medium, and m is the complex index of refraction of
radiative medium particle relative to the surrounding medium. P; is Legendre polynomi-
als of order j. For strongly anisotropic scattering media, the upper limit N should be big
enough to ensure the accuracy of the calculation results.

In radiative transfer, the incident radiation energy G and heat flux g are two important
physical quantities, which are defined from the radiation intensity,

G= / I(x,s,t)dS2, (8)
4

q =A 1(x,s,t)sdS2. 9)

3 Numerical scheme

3.1 DUGKS with anisotropic scattering effects

In this section, the discrete unified gas kinetic scheme for gray radiative transfer equation
involving the anisotropic scattering effects (Eq. (1)) is constructed in detail. Similar to the
discretization approach in Ref [39], the solid angle space is discretized into M discrete
angles using the discrete ordinates method based on certain spherical quadratures, and
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correspondingly we obtain M discrete directions s¢. With these discrete directions, the
RTE (1) can be expressed as

%ﬂ%%ﬁLHkVMm%D=—M@wﬁ%ﬁ$m&ﬁ, (10)
M
S(x,Sk, t) = (1 - w) Ib (x! t) + % Z [I (x,sm, t) P (Sm,Sk) wm] ’ (11)

m=1
where k,m = 1,2,.., M, and w,, is the weight assigned to the discretized direction s,.
Following Refs. [1, 32], integrating Eq. (10) on a control volume V; centered at x; from
time t, to t,+1 = t, + At, we can obtain

cAt

I (x]; Sk» tn+1) —1 (x], Sk tn) + anJrI/Z
]
At At
- CIB2 [S (xj, o tn+1) -1 (xj’ Sks t”""])] + Cﬂz [S (xﬁ Sk lfn) -1 (xj! Sk tn)] )
(12)
where
Frtl/2 Z (Sk . nf) I (xf,S/o tn+1/2) ASy, 3)

f

is the flux across the cell interface, I (%), ¢, £) denotes the cell averaged value for the dif-
fuse intensity at time £, with control volume of V; located at x; along photon propagation
direction s, ny is the outward unit normal vector at xf of an interface, and ASy is the
corresponding interface area. The midpoint rule for the integration of the second term
on the left-hand of Eq. (12) and trapezoidal rule for the right-hand of Eq. (12) are used,

respectively. Two new distribution functions are introduced to remove the implicitness in

Eq. (12),
7@@@:1@&0+§U@@ﬂ—5@@ﬂL (14)
fas (x,s,8) =1(x,8,1) — % [ (x,8,t) — S(x,8,0)], (15)
where x = ¢SAt. Then Eq. (12) can be rewritten as
~ ~ At
I (xj,Sk, t}’l-‘rl) = I+ (x]’ Sk) t}’l) - ﬁFVH‘l/Z' (16)
J

In order to evaluate the cell interface flux at the half time-step F”71/2, we integrate
Eq. (10) along the characteristic line with a half time step,

1 (xf, Sk» tn+1/2) -1 (xf — sich, si, L‘n)
_epn
2

h
+ % [S (%7 — skch, sg, tn) — I (%7 — sch, i, 1) ],

[S (xf: Skoturrja) —1 (xf, Sk tn+1/2)] (17)

where i1 = At/2, and the trapezoidal rule is again used to evaluate the right-hand term
of Eq. (10). Another two new distribution functions are also introduced to remove the
implicitness in Eq. (17),

7@@&:1@&0+%U@@0—S@@0L (18)

T (,5,6) =1 (x,5,0) — § [ (x,5,8) — S (®5,0)]. (19)
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Substituting Eqs. (18) and (19) into Eq. (17), we can obtain

I (xf,sk, tn+1/2) =TI (xf — sich, sg, tn) . (20)
+ (xf — sich, sg, tn) can be reconstructed by

It (xf — sich, si, tn) =7I" (xj,sk, tn) + (xf — spch — x,-) - 0j, 1)
(% — sch) € V;,
where o; is the slope of the distribution function I in cell j. In the present study, the van
Leer limiter [40] is used to calculate the slope.
The new distribution functions 7,7,1,7" are all related to the original distribution
function I and the scattering phase function ®(cosyr). Their relations in the present work
can be finally obtained as

4, _
[(x,8,6) = ——T(x,s,1) + ﬁ (1 — ) I, (% 1)

4+ 22)
+ _Xe I(x,s’,t)fb(s’,s)dﬂ’,
4 (4+X) %4
Fwst) = 22T mst) +—L (1wl @0
442y 442y (23)

- _+ / ,
+ 87 2+ x) Aﬂ [T(x,s,t)+21 (x,s,t)]q)(s,s)dg,

T+ (x,5,1) = %ﬁ *,5,1) — %7 (®,s,1) . (24)
In the isotropic scattering condition (® = 1), Egs. (22) and (23) can be solved explicitly
[1]. However, in anisotropic case, due to the complexity of the phase function (® (s, s)),
Egs. (22) and (23) can not be solved explicitly. Here a simple iterative method is employed
as follows. First, the iteration procedure for the calculation of the original distribution
function (xf,sk, t,,+1/2) is

' (% 810 tur1/2) = I (%, 8> tug12) + 7(1 — )l (%, tus1/2)

4+ x 4+
(25)
Z Z Om [ xf,sm, tnt12) CiPj (cosw)]
Y@t (4 +0 S5
where [ is the iteration index, and
! (%5, tus12) = Z ol (%7, Sk, tar12) - (26)

k 1

The iteration stops as the intensity is converged, i.e., | I'"1 — I' |< ¢, where € is a small
number which is set to be 107* in our simulations. Eq. (23) is also solved iteratively in
a similar way. We found that the number of iterations is less than 10 in almost all the
numerical tests in the present work. But for more complex problems, more advanced
acceleration technique should be employed.

Finally, we note that with the use of the trapezoidal rule in Egs. (12) and (17), the present
DUGKS is a semi-implicit scheme and the time step At is not limited by the scattering,
which is determined by the Courant-Friedrichs-Lewy (CFL) condition [41],

At = a%, (27)

where 0 < « < 1 is the CFL number, and Ax is the minimal grid spacing.
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3.2 Boundary conditions
In the present work, diffusely emitting and reflecting boundaries are considered. When
the wall is black, a photon is absorbed as it hits the wall, and a new photon in thermal
equilibrium with boundary temperature is emitted into the domain. When the wall is gray,
some of the incident photons are absorbed and the rest are reflected diffusively back to
the domain, depending on the reflectivity of the wall. The general boundary condition for
Eq. (1) can be expressed as

[ (o, 5,8) = ey (30) + 22 / (- 8') I (0,8, £) A, 28)

T Ju,-s<0

where ¢, is the diffuse emissivity, py, is the diffuse reflectivity, and n,, is the unit inner
normal vector at the boundary. I, (x,,) is the blackbody radiation intensity at the boundary
surface having a specified temperature. This boundary condition is implemented in the
DUGKS straightforwardly by replacing the s with each discrete angle si, and evaluating
the integral with the numerical quadrature.

3.3 Algorithm
In summary, the main procedure of the DUGKS from time step ¢, to t,4+1 can be

summarized as follows:
1. Calculate the microflux F"+1/2 at cell interface *¢ and at time £,41/2.

(a) Calculate I'™ from T at each cell center with the iterative method
according to Eq. (23);

(b)  Reconstruct the slope oj of It in each cell center;

(c) Reconstruct the distribution function I at xf — sych according to Eq. (21);

(d)  Calculate the distribution function I at cell interface at time #,41 /2
according to Eq. (20);

(e)  Calculate the original distribution function I at cell interface and at time
tn4+1/2 with the iterative method according to Eq. (25);

(f)  Calculate the microflux F"+1/2 through each cell interface from
1 (xf,sk, tn+1/2) according to Eq. (13).

2. Calculate I* at cell center and at time , according to Eq. (24).
3. Update the cell averagedTin each cell from ¢, to t,4+1 according to Eq. (16).

When the transformed intensity distribution is known, the local incident radiation

energy can be calculated based on Eq. (14)

M
2 ~ x (11— o)
G@xt)= ———— I(x,sp,8) + —————A4Anl, (6, 1), 29
(@, 1) 2+X(1_w)k§wk (6 8100) F 37T ATl (1) (29)
and the net radiative heat flux can be calculated based on Eqgs. (14) and (19),

LM

g0 =33 o (@ s00) + 20" @ s00)]. (30)
k=1

4 Numerical examples

In this section, three radiative transfer problems in anisotropic scattering media are sim-
ulated to validate the proposed DUGKS, including the radiative transfer in a slab with
different wall temperatures, radiative transfer in a square domain with a hot wall, and
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radiative transfer in a square domain with collimated incidence. In each case, Cartesian
coordinates is used to discretize the physical space, and the Gauss-Legendre quadrature
[42] is used for angular discretization, where u €[ —1,1] and ¢ €[0,27] are the cosine
of zenith and azimuth angle, respectively. The CFL number is taken to be @ = 0.5. For
steady problems, the system is regarded as converged as E < 10~°, where

n n+1000
26 =G

> 1G]

(31)

4.1 Radiation in a slab with different wall temperatures

In the first case, the DUGKS is applied to the radiative heat transfer in a slab with
thickness L filled with anisotropic absorbing-scattering media, as shown in Fig. 1. The
temperatures on the boundaries located at x = 0 and x = L are maintained at Ty and
T1, respectively, where T7 > Tj. The angular space is discretized into 40 control angles.
The physical space is discretized into Ny = 21 uniform cells. Two anisotropic media
composed of different particle clouds are considered, where the radiative properties are
summarized in Table 1. The scattering phase function is expressed by N-th Legendre
polynomial expansions obtained from Eq. (6). Figure 2 shows the non-dimensional radi-
ation energy @, at different optical thickness t = BL, where ®;, = (G — Go)/(G1 — Go)
with Go = 4o Tg and G = 40 T}. It can be seen that the results are in good agreement
with the exact results for 7 = 0.1, 1,5 [43]. When 7 is large, the incident radiation energy
G can be solved by the limit diffusion equation such that the distribution of G is linear,
where the optical thick cases for T = 21,40, 100, 1000 agree well with that. It is noted that
the results are still satisfied even as Ax/A = /N, > 1. These results confirm the capa-
bility of the present DUGKS method in simulating anisotropic heat transfer process for

one-dimensional problems.

—bx

Fig. 1 Schematic of one-dimensional radiation heat transfer
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Table 1 Radiative properties of anisotropic absorbing scattering particle clouds

media D m B w orders N
A 5 2-i 0.01904 0.5634 26
B 5 2 0.06420 1 27

4.2 Radiation in a square domain with a hot wall

In this subsection, we consider a square with the side length of L enclosed by four bound-
aries, as shown in Fig. 3. The bottom wall is kept hot with a non-dimensional temperature
of 71 = 1, while the other walls and the media are kept cold with a non-dimensional
temperature of Tp = 0.

A grid size of Ny x N, = 26 x 26 is used for physical space discretization. The
direction cosine of zenith angle © €[—1,1] is discretized with N, = 16 points,
while the azimuth angle ¢ €[0,27] is discretized into N, = 16 points. The scat-
tering albedo is set to be @ = 1.0. Four different kinds of anisotropic scattering
media and the isotropic scattering medium are considered. Table 2 shows the expan-
sion coefficients C; and the asymmetry factors C;/3 of the phase function for different
scattering media [17]. The anisotropic and isotropic scattering phase functions vary-
ing with the scattering angle are shown in Fig. 4. It can be observed that the phase
function for the anisotropic scattering media changes dramatically with the change of
the scattering angle, which will significantly influence the energy transfer in practical
problems.

Figure 5 shows the net radiative heat flux in the y-direction along the vertical
centerline at x = L/2. The net hot surface radiative heat flux is shown in Fig. 6.
For comparison, we also present the solutions of DOM [17] for this problem. It can
be seen the DUGKS results agree quite well with the DOM results for five differ-
ent media. From Fig. 5 and Fig. 6, the effects of the anisotropic scattering media
can be seen clearly. The forward scattering media transport more radiation heat
into the forward direction than the isotropic medium, while the backward scatter-
ing media transport less radiation heat into the forward direction than the isotropic
medium.

The effect of the wall reflectivity on the radiative heat transfer is also examined with the

medium F2. Figure 7 shows the net radiative heat flux along the centerline of the enclosure

1=0.1,1,5,21,40,100,1000 1=0.1,1,5,21,40,100,1000
0.5 o N\e oo 0.5 oo —o
0.4 0.4
& 0.3 & 0.3
0.2 0.2
01 —DUGKS 01 —DUGKS
o Reference o Reference
0 0
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
/L z/L

(a) (b)
Fig. 2 Nondimensional temperature distribution for anisotropic media between isothermal plates. Reference
data are taken from [43] (a) medium A, (b) medium B
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v 1 —» X
L

Fig. 3 Schematic of two-dimensional radiation heat transfer with hot wall

at different wall reflectivity. It is noted that with the increasing of p, the radiative heat
flux g, decreases significantly, which is caused by the increasing of the radiative flux that
reflects from the walls.

The net radiative heat flux along the centerline g, for different optical thickness with the
medium F?2 is also shown in Fig. 8. The optical thickness range from 7 = 0.01 to T = 100
are considered. The DUGKS results agree well with the DOM results [17] from 7 = 0.01
to T = 10, and have the reasonable results when Ax/A = /N, > 1. Furthermore, in the
literature [17], when the optical thickness is larger than 2.5, the DOM scheme should use
finer mesh (52 x 52) to eliminate the error. The DUGKS does not have this problem, as
shown in Fig. 8. These results again confirm the capability of the present DUGKS method
in simulating 2D anisotropic radiative scattering problems.

Table 2 Expansion coefficients for the phase function, G

j isotropy Fy Fr By B,

0 1.00000 1.00000 1.00000 1.00000 1.00000
1 2.53602 2.00917 -0.56524 -1.20000
2 3.56549 1.56339 0.29783 0.50000
3 397976 0.67407 0.08571

4 4.00292 0.22215 0.01003

5 3.66401 0.04725 0.00063

6 3.01601 0.00671

7 2.23304 0.00068

8 1.30251 0.00005

9 0.53463

10 0.20136

11 0.05480

12 0.01099

G/3 0.00000 0.84534 0.66972 -0.18841 -0.40000

Note: F represents forward scattering media and B represents backward scattering media
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4.3 Radiation in a square domain with collimated incidence

To further test the capability of the present DUGKS method in simulating radiative trans-
fer problem with anisotropic scattering media, we now apply it to 2D square problems
with collimated incidence. As shown in Fig. 9, the side length of the square is L. All walls
and the interior domain are kept cold with the temperature Ty. A collimate beam (I, = 1)
is incident through the top boundary. The collimate beam is normal to the top boundary.

The discretization of the physical space is N x Ny = 26 x 26. The solid angle is dis-
cretized with N, x N, = 16 x 16. The scattering albedo is taken to be w = 1.0. The
parameters of phase function for anisotropic scattering media are shown in Table 2. In
this test, with the collimated incidence from the top wall the radiative transfer equation

now can be expressed as follows [18],

0

F1

0

(p=0,0=101t=10)

0.2
y/L

Fig. 5 Effect of anisotropic media on the centerline nondimensional net radiative heat flux in the y-direction
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0 0.2 0.4 0.6 0.8 1
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Fig. 6 Nondimensional net radiative heat flux at the hot wall (p = 0,w = 1.0,7 = 1.0)

101(x,s,t)
P v +s-VIx,s,t) = —plx,s,t) + BS (x,5,1)
c

Bw
4w
where s, is incident angle of the beam, and 7, = By.

(32)

+ ——L.D(sc, )exp {— (t — 1))},

The walls energy losses for the different phase functions are illustrated in Fig. 10.
Fig. 10a shows the reflected components of the radiative flux along the top wall, and the
transmitted components of the radiative flux along the bottom wall are shown in Fig. 10b.
It is observed that the DUGKS results agree well with the DOM results [18] in all cases.
From these figures, the same conclusions as in section 4.2 that backward scattering media
reflect more radiative energy while forward scattering media transmit more energy can
also be obtained. The side walls energy losses for the different phase functions are shown
in Fig. 10c.

The net radiative heat flux along the centerline g, for different anisotropic scattering
media and different optical thickness are shown in Fig. 11 and Fig. 12, respectively. All of

VaV_V.WN
G-8-6-666-0000¢

ot
©6-60-6006060a

¥
860000660000
!

0 0.2 0.4 0.6 0.8 1
y/L

Fig. 7 Effect of wall reflectivity on the centerline nondimensional net radiative heat flux in the y-direction
(Medium: F2,w0 = 10,7 = 1.0)
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o DOM
—DUGKS, 26 x 26
---DUGKS, 52 x 52 |

Fig. 8 Effect of optical thickness on the centerline nondimensional net radiative heat flux in the y-direction
(Medium: F2,p = 0,w = 1.0)

them agree well with the DOM solutions [18]. These tests clearly show that the DUGKS
is an accurate solver for radiative transfer with anisotropic scattering media.

5 Summary

In present work, we developed a discrete unified gas kinetic scheme for radiative trans-
fer with anisotropic scattering media based on the radiative transfer equation. Due to
the complex anisotropic scattering phase function which is calculated by the Legendre
polynomial expansion, a simple and efficient iterative approach is employed. The present
DUGKS has been validated by a set of radiative transport problems including the radiative
transfer in a slab with different wall temperatures, radiative transfer in a square domain
with a hot wall, and radiative transfer in a square domain with collimated incidence. All
results agree well with other different numerical schemes. In these cases, even if the mesh

I
y
i
A
To
— )
= 359
To
> X
L
Fig. 9 Schematic of two-dimensional radiation heat transfer with collimated incidence
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(a) (b)

Fig. 10 Effect of anisotropic media along the walls energy losses (0 = 0, = 1.0, 7 = 1.0). a the reflected
flux loss on top wall, b the transmitted flux loss on bottom wall, € the flux loss on side walls

size is larger than the photon mean free path, the results predicted by the present scheme
are still reliable. As the scheme has the nice unified preserving properties and the mesh
size is not restricted by the photon mean free path, the present DUGKS will be an efficient
and accurate tool to describe the multiscale anisotropic radiative heat transfer. It will also
be easy to handle more complex radiative transfer problems with unstructured meshes,
due to its finite volume property.

1 :
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Fig. 11 Effect of anisotropic media on the centerline nondimensional net radiative heat flux in the
y-direction (p =0,w = 10,7 = 1.0)
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Fig. 12 Effect of optical thickness on the centerline nondimensional net radiative heat flux in the y-direction
(Medium: F2,p = 0,w = 1.0)
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