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Abstract

In this paper, we present a hybrid grid generation approach for viscous flow
simulations by marching a surface triangulation on viscous walls along certain
directions. Focuses are on the computing strategies used to determine the marching
directions and distances since these strategies determine the quality of the resulting
elements and the reliability of the meshing procedure to a large extent. With respect
to marching directions, three strategies featured with different levels of efficiencies
and robustness performance are combined to compute the initial normals at front
nodes to balance the trade-off between efficiency and robustness. A novel weighted
strategy is used in the normal smoothing scheme, which evidently reduces the
possibility of early stop of front generation at complex corners. With respect to
marching distances, the distance settings at concave and/or convex corners are
locally adjusted to smooth the front shape at first; a further adjustment is then
conducted for front nodes in the neighbourhood of gaps between opposite viscous
boundaries. These efforts, plus other special treatments such as multi-normal
generation and fast detection of local/global intersection, as a whole enable the
setup of a hybrid mesher that could generate qualitied viscous grids for geometries
with industry-level complexities.
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1 Introduction
For RANS computations involving complex geometries, a challenging task is the gener-

ation of high-quality RANS meshes. Among the different mesh types, prismatic hybrid

meshes are preferred in many applications because they represent a good compromise

between solution accuracy and ease of use [1–4]. In a prismatic hybrid mesh, the near

field of viscous walls (referred to as a boundary layer hereafter) is configured with

layered prismatic elements to resolve high flow gradients normal to the walls, whereas

the remaining domain is usually filled with an unstructured mesh. Thus, the generation

of a hybrid prismatic mesh usually consists of two individual meshing steps: boundary

layer mesh generation and unstructured mesh generation.

In general, the generation of boundary layer elements starts from the surface triangu-

lation on viscous walls. The initial front is defined on this triangulation, and a march-

ing direction is computed at each mesh point of the front. Each front point is then
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propagated to a new position by adding a step value along the marching directions. As

a result, a layer of prismatic elements can be formed by connecting all the front points

with their new neighbours. The entire boundary layer mesh could then be created by

repeating the above procedure a few times [2–7]. With respect to the generation of un-

structured meshes, either the advancing front technique (AFT) based approach [8] or

the Delaunay triangulation (DT) based approach [9–11] could be adopted. In some

studies, it has been suggested to first fill an axis-aligned Cartesian mesh in the far field

of viscous walls and then connect the boundary layer mesh and the Cartesian mesh

with a few transition layers of unstructured elements [12–15].

Compared with the now mature unstructured mesh generation and Cartesian mesh

generation, the generation of boundary layer meshes still gives rise to numerous diffi-

culties and is therefore the main challenge in generating the entire prismatic hybrid

mesh. Among those difficulties, those induced by the computations of marching direc-

tions and marching distances should be highlighted because both computations deter-

mine the quality of the resulting elements and the reliability of the meshing procedure

to a large extent. A large portion of the efforts involved in the development of a

prismatic hybrid mesher were invested in tackling these issues [16–22].

In principle, a practically useful hybrid mesh generation scheme should take the qual-

ity of the resulting elements and the reliability of the meshing procedure as the primary

consideration. Following this principle, we proposed several novel computing strategies

for marching directions and marching distances. With respect to the computation of

marching directions, three strategies featured with different levels of efficiencies and ro-

bustness performance are combined to compute the initial normals at front nodes to

balance the trade-off between efficiency and robustness. After that, an improved

smoothing scheme is proposed for these normals to avoid the abrupt changes on

lengths of neighbouring front lines. As a result, this smoothing could evidently reduce

the possibility of early stop of front generation at complex corners. With respect to the

computation of marching distances, the initial marching distances are computed by the

user-specified parameters, followed by a two-step adjustment: the distance settings at

concave and/or convex corners are locally adjusted to smooth the front shape at first; a

further adjustment is then conducted for front nodes in the neighbourhood of gaps

between opposite viscous boundaries. To support the second-step adjustment, an im-

proved ray-casting algorithm is developed for the automatic identification of the gaps.

In the meantime, the cost of this computation is reduced to a very low level with the

aid of a background mesh.

In addition to the above novel strategies, other special treatments are developed to

improve the robustness and efficiency of the hybrid meshing procedure, multi-normal

generation, fast detection of intersections between front faces, remove of non-manifold

fronts, to name a few. These efforts, as a whole, enable the setup of a hybrid mesher

that could generate qualitied viscous grids for geometries with industry-level complex-

ities. Numerical experiments are conducted including comparison with results by state-

of-the-art commercial tools to verify the effectiveness and efficiency of the mesher.

The remainder of this paper is organized as follows. Section 2 reviews the existing

computing strategies of marching directions and distances briefly. Section 3 presents an

outline of the hybrid meshing method. Section 4 introduces important implementation

details involved in the hybrid meshing method. Section 5 presents various numerical
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experiments. Section 6 concludes with the outcomes of the study and points out some

directions for future studies.

2 Literature review
2.1 On computation of marching directions

Presently, the most prevailing approaches for computing marching directions are those

based on the analysis of the manifold of a point [16–20, 23]. The manifold of a point

here refers to the set of front faces adjacent to the point, and these front faces are thus

named manifold faces of that point. Intuitively, the marching direction at a point could

be obtained by computing a weighted average of the normal vectors of its front faces.

However, this intuitive computation strategy cannot ensure the resulting marching

direction is always visible to all the manifold faces. As a remedy, Kallinderis and Ward

[23] presented the visibility cone concept, which refers to a subset of the space depicted

by the manifold of the point. To ensure the mesh validity, the computed marching dir-

ection must be located within the visibility cone. Based on the visibility cone concept,

Aubry and Löhner [16, 17] recast the problem of computing a marching direction into

an optimization problem. The solution of that problem could result in the ‘best’ march-

ing direction at a point by providing an optimal angle property for the next layer of ele-

ments that meet at that direction. Nevertheless, it was reported that if the marching

direction at each point of a front face was computed in a locally optimal fashion [19,

20], it still might not be optimal for the prism carried by the face. Therefore, some kind

of global smoothing must be performed after the initial computation of the marching

directions. To improve the effect, a front node classification procedure is required be-

fore the execution of such smoothing techniques such that the marching directions

defined at different types of front nodes could be treated differently. It is worth noting

that the results of this node classification procedure are very sensitive to the user-

specified angle thresholds [19, 20]. There also exist some other approaches for comput-

ing marching directions. For example, in the face offsetting method proposed by Jiao

[21], faces are directly propagated along their normals and the vertices are then recon-

structed through an eigenvalue analysis locally, and good resulting boundary layer

meshes are presented [22] for several biomedical models based on this method.

Recently, a few new techniques that rely on the solution of a partial differential equa-

tion (PDE) have been investigated for boundary layer mesh generation [1, 14, 24–27].

Accordingly, the computation of marching directions is defined in the solution space of

the adopted governing equation rather than in the geometric space. For example, the

marching direction at a point could be defined as the gradient vector of the solution at

that point [25]. At present, a frequently adopted governing equation is the Eikonal

equation, and the adopted numerical schemes for the solution include the fast-

marching method [25, 28], fast sweeping method [29], the finite element method and

the finite difference method. To harness these numerical schemes, an additional vol-

ume background mesh is always created [24–27]. Recently, the Laplacian equation has

been chosen as the governing PDE but changed from the scalar function to a vector

one [1]. Mathematically speaking, the solution of this vector form Laplacian equation

could smoothly propagate the marching vectors defined at initial fronts into the do-

main interior. Meanwhile, the authors suggest the boundary element method (BEM)
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be adopted as the numerical scheme of the governing equation due to two advantages

of the BEM over other numerical schemes. Firstly, the result of BEM is computed by

boundary integration equations rather than by interpolations; therefore, the computed

directions are more accurate. Secondly, the BEM only needs a surface mesh input

rather than a volume counterpart.

In comparison with conventional approaches based on local geometric computations,

the PDE based approaches provide a new global angle to view the front propagation

problem. However, the present PDE-based approaches have some common issues as

well. For example, these approaches are usually much slower. Moreover, it remains a

challenging issue on how to combine these approaches with multi-normal generation

schemes.

2.2 On computation of marching distances

The default marching distance at a front node could be computed by user-specified pa-

rameters. This default value leads to viscous elements with the same lateral edge

lengths at each layer. For viscous walls having complex corners and/or small gaps, local

adjustment is necessary to avoid intersections of front lines and generation of low-

quality elements. Most existing algorithms support increasing marching distances

slightly at concave corners and vice versa at convex corners in order to smear concave

and convex corners and facilitate the marching process. The computation of local cur-

vatures or angle values, based on either the discrete manifold or the original CAD

model, is commonly used to determine local marching distances [1, 3, 20]. Neverthe-

less, for some PDE-based approaches [1], the solution of PDEs could support a correct

adjustment of local marching distance as above. In this case, no local geometric compu-

tation is needed any more.

In the neighbourhood of small gaps, reducing marching distances appropriately is an

option to avoid global intersection of viscous elements propagated from opposite vis-

cous walls. Here, the main issue is efficient computation of gap distances. Normally, an

extra data structure (e.g. quadtree in two-dimensional and octree in three dimensional)

is required. In [20], an approach relying on constrained DT is suggested.

The local adjustment of marching distances may lead to an abrupt change of march-

ing distances at neighbouring front nodes. If this issue happens, Laplacian-type smooth-

ing strategies are usually suggested to resolve it.

The more challenging issue is to adapt the mesh to flow solutions or boundary move-

ments. Since this issue is not involved in this study, the discussion is beyond the scope

of this paper. Interested readers are referred to [30, 31].

3 Outline of the hybrid meshing method
Figure 1 presents the main steps included in our hybrid meshing method. Given a valid

CAD model, the proposed method mainly takes the following steps to output a hybrid

mesh.

Step 1. Apply the approach proposed in [32] to compute a sizing function for surface

mesh generation and define boundary conditions on surface patches of the model.

Step 2. Given the input model and the sizing function, create a surface triangulation

by an in-house advancing front mesher [33].
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Step 3. The viscous layer meshing step needs three user parameters that indicate the

height of the first layer h0, the expansion ratio of neighbouring layers μ and the allowed

maximum number of layers nl, respectively. According to these parameters, we can com-

pute the marching distance at each front node. In addition, the marching direction at each

front node can be computed by analyzing the manifold of the node. Once the marching

directions and marching distances are determined at all the front nodes, a layer of pris-

matic elements can then be created by connecting the front nodes and their duals after

propagating the front. Repeating this front propagation procedure for at most nl times, we

can then create semi-structured prismatic elements in the vicinity of the viscous walls.

Step 4. If a symmetry plane is defined on the domain boundary, layered quadrilateral

elements should be created in the vicinity of the common curves of the symmetry plane

and viscous walls after Step 3. Therefore, the surface mesh of the symmetry plane,

which is initially composed of triangular elements only, needs to be updated to accom-

modate these quadrilateral elements.

Step 5. We can then collect the surface triangles that depict the remaining unmeshed vol-

ume region. These triangles include those located at the boundaries with the non-viscous

wall types and those depicting the outmost boundary of the boundary layer elements. With

these surface triangles as the input, we finally employ an in-house mesher to fill the unstruc-

tured tetrahedra in the domain enclosed by the input surface triangles [10, 11]. A feature of

the employed mesher is its robust capability to create a boundary constrained tetrahedral

mesh. This feature is a key for the success of this step, where a point-to-point conformity is

required between the unstructured tetrahedra and boundary layer elements.

The above discussion only sketches the main steps in our method. Nevertheless, to

be concise, this discussion does not include a few non-trivial techniques incorporated

in our method. These techniques are necessary to improve our method for application

to real problems. In Sections 4 to 6, we will discuss the important technical details

involved in the three steps, respectively, with a particular focus on Step 3.

4 Boundary layer mesh generation
4.1 Outline of the method

The right part of Fig. 1 presents the workflow of our boundary layer mesh generation

method. The inputs include the surface triangulation of the domain boundary and

Fig. 1 Flowchart of hybrid mesh generation
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some user parameters (such as h0, μ and nl). A list of front faces Lf and a list of front

nodes Ln are maintained during the entire workflow. Accordingly, flags are attached to

the active front nodes and faces to distinguish them from others.

Initially, Lf and Ln are filled in with those input surface elements and surface

nodes located on the viscous walls, respectively. After that, four steps are consecu-

tively followed to create the boundary layer mesh: (1) computing marching direc-

tions, (2) computing marching distances, (3) creating a layer of elements and (4)

updating Lf and Ln. To ensure the reliability of the algorithm and the validity and

usability of the output mesh, the intermediate outputs of the former three steps

are checked carefully.

In the following subsections, we will present the algorithmic details of the four main

steps.

4.2 Computing marching directions

The computation of marching directions is based on the classification of front nodes. A

front node is labelled as flat if the maximal angle is smaller than 5 degrees between any

two normals of the faces connected to the node. For those unlabelled nodes, a further

classification is conducted by computing the average of angles between neighbour face

normals. Here, the average angle is denoted by β, and approximately, front nodes are

classified as concave or convex ones by their β values.

For flat nodes, its marching direction is computed by a simple average of all neigh-

bouring normals. For other nodes, three strategies are combined to set up a cost-

effective scheme for marching direction computation:

Strategy I. Compute the normals of faces connected to a given front node and clas-

sify them into groups such that the number of groups is as small as possible under the

condition that the maximal angle is smaller than 25 degrees between any two normals

belonging to the same group. For each group, a representative normal is computed by

averaging all normals belonging to the group. The normal at the front node is exactly

the average of all representative normals.

Strategy II. Compute the marching vector lying on the bisection plane of the two

faces on the manifold forming the wedge with the smallest angle. The location of the

marching vector on that plane is evaluated by bisecting the visibility region on that

plane [6]. As is shown in Fig. 2, the visibility region is represented by a polyhedral cone

extending outward from the point, and it can be simplified into a visibility cone with

the circular cross section and half-cone angle, which can also be called the visibility

angle βi.

Strategy III. This is an iterative algorithm aimed at finding the ‘most normal’ normal,

i.e., the normal that minimizes the maximal angle with the given set of normals [16].

Weights are given to each face normal depending on the angle created with the current

normal. If the angle is high, more weight is given to the normal. See [16] for a pseudo

code of this implementation.

To balance the trade-off between efficiency and robustness, the above strategies are

conducted in the order listed above. The quality of the normal at the front node is eval-

uated by the maximal angle between the normal and normals of manifold faces. A hill-

climbing scheme is used to ensure the optimal normal is kept always. Meanwhile, the
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next level of strategy gets no opportunity in order to save computing time when the

quality of the present ‘optimal’ normal is less than 30 degrees.

After computing the initial marching directions, a further smooth is executed to en-

sure a desirable variation across the front and facilitate the following marching process.

Here, the smooth is performed by a weighted Laplacian approach, i.e.,

Nn
i ¼ 1 − ωð ÞN n − 1

i þ ωP
jwij

X
j
wij
� �

N n − 1
j ; ð1Þ

where N n − 1
i and N n

i are normals at front node pi after n and n-1 iterations, N n − 1
j is

the normal at neighbouring front node pj after n-1 iterations, and wij is the weight de-

fined at pj. Note that it is beneficial to let normals at convex corners be closer to their

neighbours, and vice versa for concave corners. To achieve this, nij is defined as below,

wij ¼
k2ij pi is a convex point

1=k2ij pi is a concave point
1 otherwise

8<
: ; ð2Þ

where

kij ¼ n
dijP
j¼1;ndij

and dij is the distance between pi and pj.

There are cases where one single normal could not ensure the validity of visibility

cone. A multi-normal strategy is adopted in these cases. Interested readers are referred

to [33] for more details.

To ensure the validity of the computed marching directions, for each marching direc-

tion, we check whether it is visible to all the front faces adjacent to the front nodes. If

no valid marching direction can be defined at a front node, we stop propagating the

front node and clear the ‘front’ flag attached to that node.

Figure 3 presents the computed marching directions in the neighbourhood of two

typical corners. It can be seen that the computed directions are reasonable and no

abrupt changes occur between neighbouring marching directions.

Fig. 2 The visibility region and its subset (a cone region) at a front node
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4.3 Computing marching distances

Suppose pi is a front node, ui is the marching direction at pi, and m is the present layer

number. The marching distance at pi can be computed by

hi ¼ μm − 1h0: ð3Þ

If simply applying the above Equation in all front nodes, the computed marching

sizes would be the same. As a result, the front will conduct a so-called advective motion

at expansion. As illustrated in Fig. 4, wave-frontal motion may be more desirable than

advective motion because it would smooth out convex or concave corners, whereas the

advective motion would preserve them. To implement the effect of a wave-frontal mo-

tion, a coefficient α can be added such that the distances at the convex corners need to

be shortened and the marching distances at the concave corners need to be lengthened.

hi ¼ αμm − 1h0; ð4Þ

where

α ¼ 1þ cosβi
�� �� β < 180°

1 − cosβi
�� �� β≥180°

�

Another geometric factor that impacts the computation of marching distances is the

gap between opposite viscous boundaries. Given a front node pi and a direction starting

Fig. 3 Marching directions in the neighbourhood of two different types of corners. (a) A concave corner.
(b) A convex corner

Fig. 4 Advection vs. wave-frontal propagation at expansion at a (a) convex corner and (b) concave corner
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from pi to domain interiors, a minimal distance between pi with viscous walls is com-

puted first, denoted by dG
i . Denote the total height of viscous boundary at pi by

li ¼
X

m¼1;nl
αμm − 1h0: ð5Þ

If dG
i > 2li, no further modification is required on the marching distance at pi; other-

wise, the height of the first viscous layer at pi is computed by

hi;0 ¼ ε1 � dG
iP

m¼1;nl
μm − 1

; ð6Þ

where ε1 ∈ [0,0.5] is a user parameter that determines how large the space is left for un-

structured elements (less is more).

Apparently, the computation of dG
i should be speeded up with the aid of a spatial

data structure. Here, we reuse the octree grid for speeding up front intersection checks

to compute dG
i . Algorithm 1 presents the setup procedure of this octree grid, and Algo-

rithm 2 presents the computation of dG
i based on the grid.

In Algorithm 2, variable Hi is a prediction of the local height of boundary layer ele-

ments enumerated from front node pi. Assuming h0 is the height of the first layer, μ is

the ratio of heights of neighbouring layers, mi is the possible layer number at pi, then

Hi ¼
Xmi

1
μm − 1h0: ð7Þ

Here, both h0 and μ are specified by the user, and mi meets the equation as below

under the requirement of stopping front propagation when the shapes of prisms are

nearly isotropic:

Si ≈ μmi − 1h0: ð8Þ
Here Si is the average length of surface edges connecting to pi.

By adding Eq. 8 to Eq. 7, we can finally get

Hi ≈
Siμ − h0
μ − 1

: ð9Þ

After executing Algorithm 2, a smoothing procedure is executed to avoid the abrupt

changes of neighbouring marching directions. A simple Laplacian smoothing is

presently employed.
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4.4 Creating a layer of elements
For each front node qualified for propagation, we can compute its dual by marching it

along the marching direction. After that, we can create a layer of prismatic elements by

connecting all the front nodes qualified for propagation and their duals.

Low-quality elements may be created in this step, in particular in the vicinity of concave

corners. In this study, we selected scaled aspect ratio [22] to evaluate the quality of a

prism. This quality measure in effect combines the measures of triangle shapes and edge

orthogonality. For a given prism τ, denote the scaled aspect ratio of this element by ρ(τ)

(ρ(τ)∈[− 1,1]). ρ = 1 indicates an ideal prism, and ρ < 0 indicates an inverted element.

After creating a layer of elements, we pick those elements whose quality values are

below 0.1 for removal. Meanwhile, we stop propagating the front faces that carry those

elements.

4.5 Updating the front

The mesh nodes on viscous walls are regarded as the initial front nodes. Correspond-

ingly, those fronts composed of the initial front nodes are regarded as the initial propa-

gating fronts. As the propagation of nodes continues layer by layer, the propagating

fronts are updated according to the propagating behaviour of their forming nodes. In

this study, three stopping criteria are applied to each front node:

(1).The current layer number of the node is equal to the prescribed maximum

number of boundary layers, i.e., il = nl;

(2).At each node of a newly generated element e, the scaled aspect ratio (denoted by

ρ(p) hereafter) [22] is computed, and the propagation will stop when ρ(p) < 0;

(3).The new front faces starting from the front node are involved in global

intersections;

(4). If one of the neighbouring nodes of the current node in the previous layer is set to

stop propagating, then the propagation of that node is stopped.

Criterion 1 is straightforward and ensures the termination of the boundary layer

mesh generation procedure. Criterion 2 avoids the generation of elements with negative
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signed volumes. Figure 5a presents a node p1 with ρ(p1) < 0, which leads to an inverted

element. Criterion 3 is used to avoid global intersection. Criterion 4 is only executed

for 3D cases and ensures the difference in the layer numbers of the neighbouring nodes

does not exceed one. In 2D problems, the exposed segments after boundary layer mesh

generation are sent to a triangular mesh generator, and the difference in the layer num-

bers of the neighbouring nodes will not affect the resulting mesh quality. However, in

3D problems, the exposed faces include triangles and quadrilaterals, and some transi-

tion elements should be added to hide the quadrilateral faces before the exposed faces

are sent to a tetrahedral mesh generator. If the difference in the layer numbers of the

neighbouring nodes is allowed to be larger than one, stretched pyramids will be added

as the transition elements. Figure 5b presents the added transition elements for two

different cases.

Let F be one of the current propagating fronts and pi (i = 0, 1, 2) be the forming nodes

of that front. If pi (i = 0, 1, 2) is propagated to a new position, i.e., p’i (i = 0, 1, 2), then F is

propagated to F′, with p’i as its forming nodes. In addition, F′ will replace F as a new front

in the next layer. However, if at least one node of pi (i = 0, 1, 2) is not allowed to propagate

to the next layer, F will also be allowed to propagate to the next layer.

5 Unstructured mesh generation
If a symmetry plane is defined on the domain boundary, layered quadrilateral elements

should have been created in the vicinity of the common curves of the symmetry plane

and viscous walls after boundary layer mesh generation. To accommodate those quadri-

lateral elements, we first remove the original surface mesh of the symmetry plane, then

obtain the boundary description of the unmeshed region of the symmetry plane, and

finally mesh this region using an advancing front surface mesher [33].

We next employ an in-house DT mesher to fill the unstructured tetrahedra in the do-

main enclosed by the input surface. Note that the DT criterion provides a reasonable

method to link a given point set; however, it cannot ensure the existence of boundary

constraints in the resulting tetrahedralisation. A boundary recovery procedure is thus

required to ensure the boundary integrity of the resulting mesh. For the hybrid meshing

problem focused on in this study, one part of the surface input to the DT mesher is

composed of the exposed faces of the boundary layer elements. Some of those faces

Fig. 5 (a) An invalid element with ρ(p1) < 0. (b) Transition elements in two different cases
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could be rather stretched and thus lead to a more challenging task for the boundary

recovery procedure. By incorporating a few novel techniques for boundary recovery

[10, 11], a feature of our in-house mesher is its capability to robustly create a boundary

constrained tetrahedral mesh. This feature is a key for the success of the unstructured

mesh generation step because point-to-point conformity is required between the

unstructured tetrahedra and boundary layer elements.

6 Numerical experiments
6.1 DLR F6 aircraft model

The surface mesh of the F6 model is presented in Fig. 6a; it contains 14,866 nodes and

29,732 triangle elements. Many complex concave regions and corner nodes are involved

in this model, e.g., a complex corner node at the tail of the engine and several concave

regions near the joint of the engine and wing (see close-up views in Fig. 6a). In the

process of boundary layer mesh generation, the surface mesh of the F6 model was set

as the viscous wall boundary condition. Figure 10b presents a cut view of the hybrid

mesh for exterior flow simulations, in which 689,281 prisms, 160,452 tetrahedron and

9441 pyramids are contained. A cut-out view of the boundary layer mesh and local

mesh details around two complex corners are presented in Fig. 10b. As can be seen, a

Fig. 6 The hybrid mesh of the F6 model: (a) The surface mesh; (b) Cut-out views of the hybrid mesh
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valid normal vector was obtained by the proposed method in both corners. If using the

average normal vectors of the neighbouring surfaces, it was difficult to determine suit-

able normals here because the normal vectors of several faces around both corners are

nearly in opposite directions.

6.2 Rocket model

To demonstrate that the proposed method could avoid global intersections by identify-

ing small gaps and reducing marching distances locally, a rocket model is selected in

which a few volume proximities exist between the main body and 9 boosters. This

model contains 445 surface patches, on which 73,759 surface nodes and 147,470 trian-

gles are generated. The resulting hybrid mesh contains 3,891,188 prisms, 520,245 tetra-

hedrons and 42,862 pyramids. Figure 7 presents the surface mesh and the close-up

views for the color map of gap distances, in which regions with small gap distances are

rendered in blue. As can be seen, the volume proximities between the main body and

boosters are all correctly identified. Figure 8 presents two cut-out views of the hybrid

mesh. Narrow gap can be clearly observed and the global intersection there is effect-

ively avoided with the proposed method.

6.3 Space shuttle model

To demonstrate the proposed method for configurations with industry-level com-

plexity, we chose to generate the hybrid mesh of a space shuttle model. This

model contains 595 surface patches, on which 170,933 surface nodes and 341,846

triangles are generated. Note that this model contains abundant geometric details

near the joints of different parts, the volume proximities between the main bodies

Fig. 7 The hybrid mesh of a rocket model: (a) The surface mesh; (b) Close-up views of the color map of

gap distances (dGi )

Fig. 8 Cut-out views of the hybrid mesh of the rocket model
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of boosters and fuel tanks, etc. The resulting hybrid mesh contains 6,176,455

prisms, 2,111,679 tetrahedrons and 114,465 pyramids. Figure 9 presents two cut-

out views of the hybrid mesh. Figure 10 presents close-up views of three local de-

tails of the hybrid mesh.

6.4 Mesh quality

Quality of prismatic elements is our major concern. To evaluate the quality of the gen-

erated prismatic elements, the scaled aspect ratio quality measure was first adopted in

this study. In this study, inverted elements are not allowed, and we refer to elements

with ρ(τ) < 0.2 as low-quality elements. The distributions of scaled aspect ratios of pris-

matic elements for the F6, rocket and space shuttle models are presented in Fig. 11.

The ratio of low-quality elements accounts for 0.4%, 0.7%, 0.03% of the total numbers

of prism elements for the three models, respectively.

The equiangular skewness is another commonly used quality measure for various types

of elements. For a prism, it is represented as the maximum ratio of the element faces’ in-

cluded angles to the angles of equilateral faces. Its value varies between 0 (good) and 1

(bad). It is recommended this skewness measure be kept below 0.8 for a good grid; values

below 0.9 are acceptable, depending on the solver. Therefore, we refer to elements with

skewness values larger than 0.9 as low-quality elements. Under this new standard, the ra-

tio of low-quality elements accounts for 0.17%, 0.18%, 0.026% of the total numbers of

prism elements for the three models, respectively.

Fig. 9 Cut-out views of the hybrid mesh of the space shuttle model: (a) Front view; (b) Side view

Fig. 10 Local details of boundary layer meshes of the space shuttle aircraft. (a) Boundary layer meshes
around the support between the plane and rocket; (b) Boundary layer meshes around the top view of
rocket; (c) Boundary layer meshes around space shuttle tail
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Overall, the above data reveals that the boundary layer elements created by the

proposed method have acceptable shape and quality.

6.5 Comparison with commercial tools

In most tests we conducted, the proposed method achieved the similar level of reliabil-

ity and element quality as commercial mesh tools, such as Pointwise. However, it was

also observed in some convex corners, the proposed method creates boundary layer

elements with more desirable quality. Figure 12a presents the surface input used for

comparison. With the same surface input and same user settings, we create two hybrid

meshes by using the proposed method and Pointwise, respectively. Figure 12b and c

enlarge the details of two meshers near the tail of the aircraft, in which a convex corner

with a very small angle exists. Although the multi-normal technique was employed by

Pointwise, the resulting boundary mesh by Pointwise stopped its propagation much

earlier than its counterpart by our method.

In addition, we add two examples to compare the meshing results of our algorithm

and Pointwise at sharp concave angles, as shown in Fig. 13. In the presented cases, our

algorithm produces quite large boundary layers as expected, although Pointwise be-

haves better in terms that it provides larger boundary layers than our algorithm. More

investigations reveal that Pointwise can tolerate prisms with very small quality values,

while our algorithm choose to stop front propagation once such prisms are going to ap-

pear (considering the requirements of our in-house flow solver). It deserves further

Fig. 11 Quality histogram of prisms. (a) Scaled aspect ratio; (b) Equiangular skewness

Fig. 12 Meshing results in the neighbourhood of one sharp convex corner. (a) Surface input. (b) Result by
our algorithm. (c) Result by Pointwise
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studies to develop strategies that could increase the heights of boundary layer at the

same time of maintaining the quality of boundary layer elements at a reasonable level.

Table 1 lists the timing statistics of our algorithm and Pointwise, plus a breakdown of

time spent on different steps of our algorithm. All the tests are conducted on a personal

computer (Frequency: 4GH; Memory: 32G), and the same settings of surface inputs and

user parameters are applied for our algorithm and Pointwise in each group of the tests.

The test results reveal that their timing performance is at the same level in general.

7 Concluding remarks
A prismatic hybrid mesh configured with layered prismatic elements in the near field

of viscous walls and an unstructured mesh in the rest of the domain is preferred in

many applications because it represents a good compromise between solution accuracy

and ease of use. Several novel computing strategies for marching directions and march-

ing distances are implemented by taking the quality of the resulting elements and the

reliability of the meshing procedure as the primary consideration. These efforts enable

the setup of a hybrid mesher that could generate qualitied viscous grids for geometries

with industry-level complexities. Numerical experiments including academic cases,

benchmark cases and cases from industry-level simulations are presented to verify its

effectiveness and efficiency.
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