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Abstract

Since the classical weighted essentially non-oscillatory (WENO) scheme is proposed,
various improved versions have been developed, and a typical one is the WENO-Z
scheme. Although better resolution is achieved, it is shown in this article that, the
result of WENO-Z scheme suffers evident distortion in the long-time simulation of
the linear advection equation. In order to fix the problem of WENO-Z, a symmetry-
preserving mapping method is proposed in this article. In the original mapping
method, the weight of each sub-stencil is used to map, which is demonstrated to
cause asymmetric improvement about a discontinuity. This asymmetric improvement
will lead to a distorted solution, more severe with longer output time. In the
symmetry-preserving mapping method, a new variable related to the smoothness
indicator is selected to map, which has the same ideal value for each sub-stencil.
Using the new mapping method can not only fix the distortion problem of WENO-Z,
but also improve the numerical resolution. Several benchmark problems are
conducted to show the improved performance of the resultant scheme.

Keywords: WENO-Z, Mapping method, Nonlinear weights, Hyperbolic conservation
laws

1 Introduction
Weighted essentially non-oscillatory (WENO) finite difference/volume scheme has be-

come one of the most popular shock-capturing schemes to solve hyperbolic conserva-

tion laws, which are developed from the essentially non-oscillatory (ENO) schemes [1–

3]. Unlike linear schemes using a single fixed stencil to interpolate, an r th-order ENO

scheme chooses r stencils as candidates. The smoothest stencil is selected from r can-

didates with the aid of smoothness indicator. It is reasonable to abandon discontinuous

stencils when there is a discontinuity, however, in the smooth region, r stencils to-

gether can reach (2r − 1) th-order accurate interpolation. Therefore, the ENO schemes

do not make full use of all stencils’ information in the smooth region, leading to the

problem of accuracy losing and computation wasting.

In order to utilize the information of less-smooth stencils in ENO schemes, Liu et al.

[4] introduced the WENO schemes. Using the smoothness indicator proposed by Liu

et al., WENO scheme adopts a convex combination of r stencils, and an r th-order

ENO scheme can be converted to an (r + 1) th-order WENO scheme. Jiang and Shu
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[5] redefined the smoothness indicator of stencils, so that an r th-order ENO scheme

can be converted to an (2r − 1) th-order WENO scheme, which is known as the

WENO-JS scheme. However, Henrick et al. [6] pointed out that the actual accuracy

order of WENO-JS scheme is less than the optimal one in smooth region with critical

points. To recover the accuracy at critical points, they introduced an extra mapping

process where the weights of stencils are mapped to more accurate values, and the re-

sultant scheme is known as WENO-M. Then, Feng et al. [7, 8] further improved the

WENO-M scheme by optimizing the mapping function involved in the mapping

process. To increase the relevance of less-smooth stencils, Borges et al. [9] took both

local and global smoothness indicators into consideration, and the resolution of scheme

in both discontinuous and smooth regions is significantly improved. Castro et al. [10]

then extended this idea to higher order schemes, which is known as the WENO-Z.

From another perspective, Fedkiw et al. [11, 12] observed that a small parameter ε used

in formula to avoid the denominator being 0, has evident influence on the accuracy of

WENO scheme. Shen et al. [13] investigated the effect of ε on the convergence prop-

erty of WENO scheme in detail, and their results showed that ε = 10−2 can significantly

improve the numerical solution for subsonic and transonic flows. Don et al. [14, 15]

theoretically and numerically demonstrated that if ε is taken as a power function of the

uniform grid space, i.e. ε =Ω(Δxm), the WENO-JS and WENO-Z schemes can retain

the optimal order in the smooth region, regardless of critical points. However, a larger

ε leads to a less stable scheme, and thus the effect of adjusting ε to recover accuracy is

problem-dependent. Acker et al. [16] pointed out that to improve the resolution on a

coarse grid, increasing the relevance of less-smooth stencils is much more important

than recovering accuracy at a critical point. By adding a new term that increases the

relevance of less-smooth stencils to the original formula of weight, they proposed an

improved version of the fifth-order WENO-Z scheme. Besides WENO-M and WENO-

Z, other variants of WENO scheme have emerged and gained attention. Using a de-

tector as weighting function to couple WENO reconstruction and linear compact

scheme, hybrid method was proposed in [17, 18] to obtain low-dissipation and low-

dispersion scheme for turbulence and aeroacoustics. Then, Sun et al. [19, 20] developed

a linear minimum dispersion and controllable dissipation scheme to hybridize with

WENO scheme to retain good performance in flow with shocks. However, hybrid func-

tion is critical in hybrid methods and still a big challenge. To reduce the dissipation,

Martin et al. [21] proposed WENO-SYMBO scheme through adding a downwind sten-

cil and optimizing the ideal coefficients for better spectral property. Hu et al. [22] pro-

posed a new weighting strategy and new smoothness indicator for the downwind

stencil, leading to the adaptive central-upwind sixth-order WENO scheme (WENO-

CU6). However, since the background central scheme cannot suppress disturbances

from accumulated dispersion errors, spurious waves may appear at marginally-resolved

wave numbers. Based on Lagrangian interpolation polynomial, Pan et al. [23, 24] pro-

posed a new smoothness indicator with more succinct form compared to the classical

one by Jiang and Shu [5], leading to a scheme named WENO- η. Don et al. [25] found

that due to the numerical unstable form of the local smoothness indicators, asymmetry

occurs in an otherwise problem for seventh and higher-order WENO schemes. Then,

they introduced an equivalent but compact and numerical stable form of the smooth-

ness indicators. Recently, Fu et al. [26–28] proposed a family of targeted ENO (TENO)
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schemes. By using a set of low-order candidate stencils with incrementally increasing

width, discontinuities and small-scale fluctuations are efficiently separated, and the

numerical dissipation is significantly diminished by an ENO-like stencil selection.

Due to better resolution while with almost the same computational cost as WENO-

JS, WENO-Z has gained extensive attention. In this article, from the simulation of lin-

ear advection equation, it is observed that the numerical solution of WENO-Z suffers

distortion problem near a discontinuity. To overcome this deficiency, a symmetry-

preserving mapping method is proposed to improve the WENO-Z scheme. This article

is organized as follows. Section 2 describes the classical WENO-JS scheme and

WENO-Z scheme. In Section 3, the original mapping method and the symmetry-

preserving mapping method are introduced in detail. The mapped WENO-Z is pro-

posed in Section 4. Numerical experiments with one- and two- dimensional benchmark

problems are presented in Section 5. Conclusions are drawn in Section 6.

2 WENO scheme
2.1 WENO reconstruction

Here, a grid with uniform space Δx is used, and the positions of cell center and cell

boundary are represented as xi = iΔx, xiþ1=2 ¼ xi þ Δx
2 ; i ¼ 0;…;N , respectively. The

values of flux at cell center and cell boundary are denoted as fi = f(xi) and fi + 1/2 = f(xi +

1/2). The numerical flux h(x) is defined as

f xð Þ ¼ 1
Δx

Z xþΔx=2

x − Δx=2
h ξð Þdξ; ð1Þ

so that 1
Δx ðhiþ1=2 − hi − 1=2Þ is exactly equal to the first-order derivative of f at cell center

i, i.e. f
0
i.

Without loss of generality, the fifth-order WENO (WENO5) scheme is taken as an

example to illustrate the WENO reconstruction procedure. In linear scheme, a fifth-

order approximation of h(x) only needs a five-point stencil S5, while in WENO5, S5 is

divided into three sub-stencils {S0, S1, S2}, and each sub-stencil contains three adjacent

grid cells, shown in Fig. 1. In the smooth region, WENO5 combines each sub-stencil

with corresponding ideal weights to obtain a fifth-order approximation of h(x). While

in the region with discontinuities, to avoid numerical oscillation, sub-stencils contain-

ing the discontinuity are suppressed by assigning small weights to them.

Let ĥ denote the approximation of h(x), and the three sub-stencils of WENO5 give

ĥ
0
iþ1=2 ¼

1
6

2 f i − 2 − 7 f i − 1 þ 11 f ið Þ;
ĥ
1
iþ1=2 ¼

1
6

− f i − 1 þ 5 f i þ 2 f iþ1

� �
;

ĥ
2
iþ1=2 ¼

1
6

2 f i þ 5 f iþ1 − f iþ2

� �
;

ð2Þ

where the superscript is used to distinguish different sub-stencils. hki − 1=2 can be

obtained via shifting each index in hkiþ1=2 by −1.Then the ĥi�1=2 of stencil S5 is obtained

by a weighted average of hki�1=2,
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ĥi�1=2 ¼
X2
k¼0

ωk ĥ
k
i�1=2: ð3Þ

In the smooth region, the weights approach their ideal values, which are

d0 ¼ 1
10

; d1 ¼ 6
10

; d2 ¼ 3
10

: ð4Þ

2.2 WENO5-JS scheme

In the classical fifth-order WENO (WENO5-JS), proposed by Jiang and Shu [5], the

nonlinear weights are defined as

αk ¼ dk

βk þ ε
� �p ;ωk ¼ αkP2

l¼0αl
; k ¼ 0; 1; 2: ð5Þ

ε is a small positive parameter to avoid denominator being zero, and the power par-

ameter p ≥ 1 controls the amount of dissipation, usually taken as 2. βk is the smooth-

ness indicator of k-th sub-stencil, defined as

β0 ¼
13
12

f i − 2 − 2 f i − 1 þ f ið Þ2 þ 1
4

f i − 2 − 4 f i − 1 þ 3 f ið Þ2;
β1 ¼

13
12

f i − 1 − 2 f i þ f iþ1

� �2 þ 1
4

f i − 1 − f iþ1

� �2
;

β2 ¼
13
12

f i − 2 f iþ1 þ f iþ2

� �2 þ 1
4

3 f i − 4 f iþ1 þ f iþ2

� �2
:

ð6Þ

In the smooth region, in order to achieve optimal order of accuracy, i.e., satisfying

the relation

1
Δx

ĥiþ1=2 − ĥi − 1=2

� �
¼ f

0
i þΟ Δx5

� �
; ð7Þ

the weights of sub-stencils need to meet certain constraints. A strong sufficient condi-

tion is used in [6], given as

ωk ¼ dk þΟ Δx3
� �

; ð8Þ

and a weaker sufficient condition is derived in [14],

ωk ¼ dk þΟ Δx2
� �

: ð9Þ

Taylor series expansions of Eq.(6) at cell center xi give

β0 ¼ f
02Δx2 þ 13

12
f
00
2 −

2
3
f
0
f
000

� �
Δx4 þ −

13
6

f
00
f
000 þ 1

2
f
0
f 4ð Þ

� �
Δx5 þΟ Δx6

� �
;

β1 ¼ f
02Δx2 þ 13

12
f
002 þ 1

3
f
0
f
000

� �
Δx4 þΟ Δx6

� �
;

β2 ¼ f
02Δx2 þ 13

12
f
00
2 −

2
3
f
0
f
000

� �
Δx4 þ 13

6
f
00
f
000
−
1
2
f
0
f 4ð Þ

� �
Δx5 þΟ Δx6

� �
:

ð10Þ

� If f' ≠ 0, one can have
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βk ¼ D 1þΟ Δx2
� �� �

;D ¼ f
0
Δx

� �2
: ð11Þ

� If f' = 0 and f'' ≠ 0 (critical point), one can have

βk ¼ D 1þΟ Δxð Þð Þ;D ¼ 13
12

f
00
Δx2

� �2
: ð12Þ

If βk in Eq.(6) takes the form of

βk ¼ D 1þΟ Δxmð Þð Þ; ð13Þ

where D is a non-zero constant independent of sub-stencils, and m is a positive param-

eter. Then Eqs.(5) and (13) give

αk ¼ dk

Dp 1þΟ Δxmð Þð Þ; ð14Þ

and

X2
k¼0

αk ¼ 1
Dp 1þΟ Δxmð Þð Þ; ð15Þ

which lead to

ωk ¼ dk þΟ Δxmð Þ: ð16Þ

In the context of this article, a critical point refers to the point where the first-order

derivative is zero while the second-order derivative is non-zero. From Eqs.(11) and

(12), two observations can be obtained in the smooth region as follows.

� At a point which is not a critical point, ωk obtained by WENO5-JS satisfies the

weaker sufficient condition for achieving optimal order, i.e. Eq.(9).

� At a critical point, ωk obtained by WENO5-JS only satisfies ωk = dk +Ο(Δx), result-

ing in the accuracy loss at this point.

2.3 WENO5-Z scheme

Borges et al. [9] found that the increase of weights of less-smooth sub-stencils can sub-

stantially improve the numerical solution near both discontinuities and small-scale

structures. Based on this, through the novel use of higher information that is already

presented in the framework of classical WENO5-JS, they devised new smoothness indi-

cators given as

βZk ¼ βk þ ε
βk þ τ5 þ ε

; ð17Þ

where τ5 = ∣ β0 − β2∣ is the higher order smoothness indicator. τ5 has two important

properties, which are
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� If S5 is smooth, then τ5 =Ο(Δx5).

� If S5 is discontinuous, then τ5 =Ο(1) ≤max(β0, β1, β2).

Substitute Eq.(17) into Eq.(5), and the new weights are obtained by

αZk ¼ dk 1þ τ5
βk þ ε

� �
; ωZ

k ¼ αZkP2
l¼0α

Z
l

; k ¼ 0; 1; 2; ð18Þ

which lead to the fifth-order WENO-Z (WENO5-Z). At a critical point with f' = 0 and

f'' ≠ 0, βk =Ο(Δx4) in Eq.(10), leading to τ5
βkþε ¼ ΟðΔxÞ and thus ωk = dk +Ο(Δx). There-

fore, Eq.(18) does not solve the problem of accuracy loss at a critical point. However,

due to the larger assignment of weights to the less-smooth sub-stencils, the numerical

results of WENO5-Z are substantially improved compared to WENO5-JS, and slightly

better compared to WENO5-M, details shown in [9].

Castro et al. [10] then fixed the problem of accuracy loss and extended WENO5-Z to

higher order. For (2r − 1) th-order WENO-Z, the weights are obtained by

αZk ¼ dk 1þ τ2r − 1

βk þ ε

� �p� �
; ωZ

k ¼ αZkPr − 1
l¼0 αZl

; k ¼ 0;⋯; r − 1: ð19Þ

The power parameter p ≥ 1 in Eq.(19) plays two roles. On one hand, p controls the

amount of numerical dissipation, and the scheme is more dissipative with a larger p. On

the other hand, the accuracy at a critical point can be recovered by increasing p. The

former is intuitive and easy to understand. As for the latter, at a critical point, ð τ5
βkþεÞp ¼ Ο

ðΔxpÞ leads to ωk = dk +Ο(Δxp), and thus the weaker sufficient condition, Eq.(9), for

achieving optimal order is satisfied if p ≥ 2. Changing the value of p to alter convergence

rate at critical points is a unique feature of WENO-Z, while in WENO-JS and WENO-M,

p only controls the amount of numerical dissipation. In order to balance accuracy and

stability, for (2r − 1) th-order scheme, p is generally suggested to be r − 1 [10].

3 The symmetry-preserving mapping method
3.1 The mapping method by Henrick

Henrick et al. [6] first pointed out the fact that WENO5-JS suffers accuracy loss at a

critical point, and then they introduced an extra mapping process to recover the accur-

acy, where the weights are mapped to more accurate values. To be specific, the

mapping is achieved through a set of mapping functions having the form of

gk ωð Þ ¼ ω dk þ d2
k − 3dkωþ ω2

� �
d2
k þ ω 1 − 2dkð Þ ; ω∈ 0; 1ð Þ: ð20Þ

The function is smooth and has the following features: gk(0) = 0, gk(1) = 1, gk(dk) = dk,

g
0
kðdkÞ ¼ 0 and g

00
kðdkÞ ¼ 0. Once the weight of WENO5-JS in Eq.(5) is obtained, the

new unnormalized weight is given by

α�k ¼ gk ωkð Þ: ð21Þ

Taylor series expansion of Eq.(21) gives
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α�k ¼ gk dkð Þ þ g
0
k dkð Þ ωk − dkð Þ þ g

00
k dkð Þ
2

ωk − dkð Þ2 þ g
000
k dkð Þ
6

ωk − dkð Þ3

¼ dk þ ωk − dkð Þ3
dk − d3

k

þ⋯

¼ dk þΟ Δx3
� �

:

ð22Þ

Then, new weight is obtained by

ωM
k ¼ α�kP2

l¼0α
�
l

: ð23Þ

Substitute Eq.(22) into Eq.(23), and new weight satisfies

ωM
k ¼ α�kP2

l¼0α
�
l

¼ dk þΟ Δx3ð Þ
1þΟ Δx3ð Þ ¼ dk þΟ Δx3

� �
: ð24Þ

Eq.(24) indicates that the strong sufficient condition, Eq.(8), is satisfied. Therefore,

the problem of accuracy loss at a critical point is fixed. The resultant mapped WENO

scheme is generally abbreviated as WENO-M.

3.2 The asymmetric improvement of WENO5-M

Here, the linear advection equation,

∂u
∂t

þ ∂u
∂x

¼ 0; x∈ − 1; 1½ �; ð25Þ

with periodic boundary conditions, is taken as an example for illustration. Consider a

single square wave, and the initial condition is

u x; t ¼ 0ð Þ ¼ 1; x∈ − 0:5; 0:5½ �;
0; else:

�
ð26Þ

The third-order TVD Runge-Kutta method is used to do the discretization in time,

expressed as

Q 0ð Þ ¼ Qn;

Q 1ð Þ ¼ Q 0ð Þ þ ΔtR Q 0ð Þ
� �

;

Q 2ð Þ ¼ 3
4
Q 0ð Þ þ 1

4
Q 1ð Þ þ 1

4
ΔtR Q 1ð Þ

� �
;

Q 3ð Þ ¼ 1
3
Q 0ð Þ þ 2

3
Q 2ð Þ þ 2

3
ΔtR Q 2ð Þ

� �
;

Qnþ1 ¼ Q 3ð Þ:

ð27Þ

Time is integrated to t= 20, and the numerical results are shown in Fig. 2. Due to the less

dissipation of WENO5-M compared to WENO5-JS, an improvement in the result near the

discontinuity is observed in Fig. 2 (a). From the absolute pointwise errors in Fig. 2 (b), how-

ever, the improvement on both sides of the discontinuity is not in a symmetric fashion. Specif-

ically, the error curve of WENO5-JS is almost symmetric about the discontinuity, shown with

a red line in Fig. 2 (b), while WENO5-M has obvious larger error on the right side of the

discontinuity, shown with a blue line in Fig. 2 (b). Consequently, as is shown in Fig. 2 (a), the

improvement of WENO5-M on the right side of the discontinuity is obviously less than that

on the left side. Due to the asymmetry near the discontinuity, the whole error curve of

WENO5-M is no longer symmetric about the center of domain x= 0, shown in Fig. 2 (b).
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In order to clarify the cause of this asymmetric improvement of WENO5-M, a simple

model shown in Fig. 3 is used. On a six-point domain with a discontinuity at the

center, there are two sets of five-point stencils symmetric about the discontinuity. A

quantity with superscript L belongs to the left stencil, while with superscript R belongs

to the right stencil.

According to Eq.(6) and due to the symmetry, smoothness indicators of left and right

stencils have the following relation,

βL0 ¼ βR2 ¼ 0;

βL1 ¼ βR1 ¼ 13
12

b − að Þ2 þ 1
4

b − að Þ2;
βL2 ¼ βR0 ¼ 13

12
b − að Þ2 þ 1

4
3b − 3að Þ2:

ð28Þ

Obviously, for the left stencil, 0-th sub-stencil is the smoothest, and 2-th sub-stencil is

the least smooth. While for the right stencil, 2-th sub-stencil is the smoothest, and 0-th

sub-stencil is the least smooth.

According to Eq.(5), the weight of each sub-stencil on the same stencil satisfies the

relation,

ωi

ω j
¼ di

d j

β j þ ε

βi þ ε

� �p

; i ¼ 0; 1; 2; j ¼ 0; 1; 2: ð29Þ

Assuming that θ, σ are weights assigned to the least-smooth sub-stencils of left and

right stencils, the weight of each sub-stencil can be written as

ωL
0 ¼ 1 − ωL

1 − ωL
2 ; ωL

1 ¼ 2 � 5
2

� �p

θ; ωL
2 ¼ θ;

ωR
0 ¼ σ; ωR

1 ¼ 6 � 5
2

� �p

σ; ωR
2 ¼ 1 − ωR

0 − ωR
1 :

ð30Þ

WENO scheme behaves like an ENO scheme at a discontinuity, and thus θ, σ

are small values close to 0. Then, new weights are obtained through the mapping

process, i.e.,

Fig. 1 Schematic of stencil and sub-stencils in WENO5
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Fig. 2 Numerical solutions and absolute pointwise errors of linear advection equation computed by
WENO5-JS, WENO5-M and WENO5-FM at t = 20. A uniform grid with 200 cells is used. CFL = 0.1
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ωL;M
k ¼ gk ωL

k

� �
g0 ωL

0ð Þ þ g1 ωL
1ð Þ þ g2 ωL

2ð Þ ;

ωR;M
k ¼ gk ωR

k

� �
g0 ωR

0ð Þ þ g1 ωR
1ð Þ þ g2 ωR

2ð Þ :
ð31Þ

As θ, σ approach 0, it is approximately obtained that

ωL;M
0

ωL
0

¼ 1;
ωL;M
1

ωL
1

¼ 1þ 1
d1

¼ 8
3
;

ωL;M
2

ωL
2

¼ 1þ 1
d2

¼ 13
3
;

ωR;M
0

ωR
0

¼ 1þ 1
d0

¼ 11;
ωR;M
1

ωR
1

¼ 1þ 1
d1

¼ 8
3
;

ωR;M
2

ωR
2

¼ 1:

ð32Þ

From Eq.(32), it is observed that after mapping, the magnification of weight of the

least-smooth sub-stencil is not identical for both sides of the discontinuity, i.e. ωL;M
2
ωL
2
≠

ωR;M
0

ωR
0
, obviously larger on the right side. It is the mismatched magnification that results

in the asymmetric improvement of WENO5-M around a discontinuity.

3.3 A symmetry-preserving mapping method

It is the derivative of mapping function at 0 that determines the magnification of

weight of less-smooth sub-stencils, i.e.,

g
0
k 0ð Þ ¼ 1þ 1

dk
: ð33Þ

Due to the difference in ideal weights for each sub-stencil, mapping the weight with

the function by Henrick inevitably causes the problem of asymmetric improvement.

There are two ways to overcome the problem of mismatched magnification. One way is

to redesign a set of mapping functions with identical derivatives at 0, and the other is

to choose a new mapping object that has the same ideal value for each sub-stencil. An

example of the former is the work in [7], where the new mapping function is smooth

and piecewise,

pk ωð Þ ¼ c1 ω − dkð Þnþ1 ωþ c2ð Þ þ dk ; n≥2; ð34Þ
where

Fig. 3 Schematic of the analysis model
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c1 ¼
− 1ð Þn nþ 1

dkð Þnþ1 ; ω∈ 0; dk½ �;

−
nþ 1

1 − dkð Þnþ1 ; else;

8>><
>>:

ð35Þ

and

c2 ¼
dk

nþ 1
; ω∈ 0; dk½ �;

dk − nþ 2ð Þ
nþ 1

; else:

8><
>: ð36Þ

The new function has identical derivative at 0,

p
0
k 0ð Þ ¼ 0: ð37Þ

In [7], the researchers noticed the distortion problem of WENO5-M, but they im-

properly attributed this to the numerical instability, which was thought to be caused by

over-amplification of weight of less-smooth sub-stencil. Therefore, they proposed the

function with derivative of 0 at 0, in the form of Eq.(34), to retain the ENO property at

a strong discontinuity. Although the reason is not properly understood, due to restrict-

ing all derivatives to be identical at 0, using mapping function in the form of Eq.(34) is

able to avoid the problem of asymmetric improvement. However, extra constraint on

derivative brings difficulty in designing concise mapping function, and complicated

function will result in significantly increased computational cost. The other way is

choosing a new mapping object that has identical ideal value for each sub-stencil, so

that extra constraint on derivative at 0 is not necessary. Furthermore, when the ideal

value is the same, the mapping function is unique, and the function design is much

simplified. Therefore, the second way is more reasonable.

In the formula of weight Eq.(5), besides the weight ωk, there is another quantity re-

lated to each sub-stencil, i.e. the smoothness indicator βk. In the smooth region, differ-

ent from the weight ωk, the smoothness indicator βk is equal for each sub-stencil, and

thus its ideal value is unique. In order to keep proportional to ωk, consider the inverse

of smoothness indicator with power parameter p, i.e. 1
ðβkþεÞp . But for mapping, it is

necessary to normalize them to a limited interval,

λk ¼
1= βk þ ε

� �p
P2

l¼0 1= βl þ ε
� �p� � ; λk∈ 0; 1ð Þ: ð38Þ

The normalized variable, λk, is the new mapping object, and its unique ideal value is

λ ¼ 1
3
: ð39Þ

In general, the ideal value of λk for (2r − 1) th-order WENO scheme is 1
r.

Substitute Eq.(12) into Eq.(38), and it is obtained at a critical point that

λk ¼ λþΟ Δxð Þ: ð40Þ

It is straightforward to apply the mapping function, originally designed for ωk, to do

the mapping for λk. Considering the function by Henrick, the mapping function for λk
is unique and written as
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g λð Þ ¼
λ λþ λ

2
− 3λλþ λ2

� �

λ
2 þ λ 1 − 2λ

� � : ð41Þ

Similar to Eq.(22), after mapping, it is obtained that

λ�k ¼ λþΟ Δx3
� �

: ð42Þ

Then, new weight is evaluated and satisfies

ωFM
k ¼ dkλ

�
kP2

l¼0dlλ
�
l

¼ dk λþΟ Δx3ð Þ� �
P2

l¼0dl λþΟ Δx3ð Þ� � ¼ dk þΟ Δx3
� �

: ð43Þ

Eqs.(43) and (24) indicate that at a critical point, mapping λk can achieve the same

effect as mapping ωk.

According to Eqs.(28) and (38), λk for the left and right stencils in Fig. 3 satisfies

λL0 ¼ λR2 ; λ
L
1 ¼ λR1 ; λ

L
2 ¼ λR0 : ð44Þ

After mapping with function Eq.(41), the mapped value still satisfies

λL;�0 ¼ λR;�2 ; λL;�1 ¼ λR;�1 ; λL;�2 ¼ λR;�0 : ð45Þ

According to Eq.(43), it is obtained that

ωFM
i

ωFM
j

¼ di

d j

λ�i
λ�j

; i ¼ 0; 1; 2; j ¼ 0; 1; 2: ð46Þ

Based on Eqs.(45) and (46), one has

ωL;FM
2

ωL;FM
0

¼ ωR;FM
0

ωR;FM
2

;
ωL;FM
1

ωL;FM
0

¼ ωR;FM
1

ωR;FM
2

: ð47Þ

As ωL
2 ;ω

R
2 approach 0, ωL;FM

0
ωL
0

and ωR;FM
2
ωR
2

approach 1. Therefore, it is approximately

obtained that

ωL;FM
2

ωL
2

¼ ωL;FM
2

ωL;FM
0

� ω
L
0

ωL
2
;
ωL;FM
1

ωL
1

¼ ωL;FM
1

ωL;FM
0

� ω
L
0

ωL
1
;

ωR;FM
0

ωR
0

¼ ωR;FM
0

ωR;FM
2

� ω
R
2

ωR
0
;
ωR;FM
1

ωR
1

¼ ωR;FM
1

ωR;FM
2

� ω
R
2

ωR
1
:

ð48Þ

From Eqs.(28) and (29), one has

ωL
2

ωL
0
¼ ωR

0

ωR
2
;
ωL
1

ωL
0
¼ ωR

1

ωR
2
: ð49Þ

According to Eqs.(33), (47), (48) and (49), it is obtained that

ωL;FM
2

ωL
2

¼ ωR;FM
0

ωR
0

¼ ωL;FM
1

ωL
1

¼ ωR;FM
1

ωR
1

¼ 1þ 1

λ
: ð50Þ

Eq.(50) indicates that using the new mapping object λk, the problem of mismatched

magnification of weights of less-smooth sub-stencils is fixed.

In this article, WENO5-JS with the symmetry-preserving mapping method is abbrevi-

ated as WENO5-FM. As is shown in Fig. 2 (b), the error curve of WENO5-FM is
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symmetric about the discontinuity, and almost symmetric about the center x = 0 on

the whole domain. Consequently, compared to WENO5-JS, the improvement of

WENO5-FM on both sides of a discontinuity is in a symmetric fashion. To present an in-

tuitive comparison, the linear advection equation initialized by Eq.(26), is still numerically

tested here. Results of the first way, where Eq.(34) is used to map ωk, are also presented,

n = 6 as suggested in [7]. The corresponding scheme is abbreviated as WENO5-MP. As is

shown in Fig. 4, with longer output time t = 100, the asymmetric improvement is more

evident compared the case of t = 20. On the left side of the discontinuity, three schemes

have similar results, while on the right side, the result of WENO5-M is much worse than

the others and suffers obvious distortion.

It is observed from Fig. 5 that at t = 250, both sides of the discontinuity are influenced

in the result of WENO5-M, and similar to the right side of the discontinuity, the result on

the left side also becomes distorted. On the right side of the discontinuity, the results of

WENO5-MP and WENO5-FM are still close to each other, similar to the case of t = 100.

However, on the left side, there is obvious overshoot in the result of WENO5-MP, shown

with a blue line in Fig. 5. Taking the result at t = 400 in Fig. 6 into consideration together,

it can be inferred that the overshoot of WENO5-MP is caused by numerical instability.

From the results at t = 100, 250, 400, WENO5-FM is always able to obtain non-oscillatory

results and the improvement is symmetric about the discontinuity.

As is mentioned before, to enhance the numerical stability near a discontinuity, the

function used in WENO5-MP constrains the derivative at 0 to be 0, but numerical

Fig. 4 Numerical results of linear advection equation computed by WENO5-M, WENO5-MP and WENO5-FM
at t = 100. A uniform grid with 200 cells is used. CFL = 0.1

Hong et al. Advances in Aerodynamics            (2020) 2:18 Page 13 of 31



oscillation is observed in Figs. 5 and 6. To figure out the numerical instability, it is neces-

sary to have an observation at the distribution of mapping functions. As is shown in Fig. 7,

the black dashed line corresponds to the case without mapping, while the red and

blue lines are related to functions used in WENO5-FM and WENO5-MP, respect-

ively. Due to different ideal weights for each sub-stencil, there are three different

functions involved in WENO5-MP. Only the function for the minimum weight d0

¼ 1
10, is presented in Fig. 7.

It is observed that the magnification of weight near 0 is smaller with blue line, which

is beneficial to capture strong discontinuities. However, for a weak discontinuity in nu-

merical sense, i.e., the weight is not so close to 0 or 1 but deviates significantly from

the ideal value, the adjustment of weight is obviously stronger with blue line. From the

results in Figs. 4, 5 and 6, it can be concluded that even with larger magnification of

weight near strong discontinuity, the numerical stability of WENO5-FM is still ensured.

By contrast, there is no oscillation observed in the result of WENO5-MP at t = 100,

while evident oscillation occurs at t = 250 when the initial strong discontinuity is

smoothed out and becomes much weaker due to numerical dissipation. It can be in-

ferred that, the numerical instability of WENO5-MP comes from the over-adjustment

of weight near a weak discontinuity. As is mentioned previously, there is a controllable

parameter n in the function defined by Eq.(34). Functions with n = 4 and n = 2 are plot-

ted in Fig. 7, and it is shown that with smaller n, the adjustment of weight is weaker,

Fig. 5 Numerical results of linear advection equation computed by WENO5-M, WENO5-MP and WENO5-FM
at t = 250. A uniform grid with 200 cells is used. CFL = 0.1
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Fig. 6 Numerical results of linear advection equation computed by WENO5-M, WENO5-MP and WENO5-FM
at t = 400. A uniform grid with 200 cells is used. CFL = 0.1

Fig. 7 Distribution of the mapping functions
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especially in the region with weak discontinuities. Figure 8 shows the results of WENO5-

MP with n = 6, 4, 2. In the results of n = 4, 2, there is no numerical oscillation observed,

while n = 2 leads to a slightly more dissipative result. This further supports the inference

that the numerical instability is due to the over-adjustment of weight near a weak

discontinuity.

The above results suggest that weak discontinuity is also important for numerical stabil-

ity. To ensure a stable mapping, excessive adjustment should be avoided near both strong

and weak discontinuities. The core of mapping method lies in the mapping function, and

different requirements on a scheme, such as strong stability, low dissipation, can be met

with specifically designed function. In terms of function design, using λk to map has two

main advantages over using ωk. On one hand, for (2r − 1) th-order scheme, there are r dif-

ferent ideal weights and thus r different functions need to be designed. While there is only

one function to be designed for using λk to map due to the unique ideal value, which

greatly simplifies the function design. On the other hand, the minimum ideal weight is

closer to 0 with higher order, e.g., d0 ¼ 1
10 ;

1
35 ;

1
126 for fifth-, seventh- and ninth-order

schemes, respectively. Ideal value close to 0 brings difficulty in balancing accuracy recov-

ery and numerical stability. By contrast, λ ¼ 1
3 ;

1
4 ;

1
5 for fifth-, seventh- and ninth-order

schemes respectively, which significantly alleviates this dilemma.

4 Improved WENO5-Z with mapping
4.1 The distortion of WENO-Z in long-time simulation

Figure 9 shows the numerical results of WENO5-JS in simulating linear advection

equation initialized by Eq.(26). Due to the role of numerical dissipation, the sharp

Fig. 8 Numerical results of linear advection equation computed by WENO5-MP with n = 6, 4, 2 at t = 250. A
uniform grid with 200 cells is used. CFL = 0.1
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discontinuity is captured in the form of smooth curve at a short time t = 4. How-

ever, with longer output time t = 100, 250, the result near a discontinuity suffers

not only greater dissipation, but also distortion, obviously shown with a green line

at t = 250. Greater dissipation with longer output time is normal, while the distor-

tion is not expected and severely deviates the numerical solution from the real

solution.

By introducing a global smoothness indicator, the relevance of less-smooth sub-

stencil is increased in WENO5-Z, and thus less dissipation is achieved compared to

WENO5-JS. However, it is shown in Fig. 10 that the distortion still exists in the results

of WENO5-Z. Different from WENO5-JS, the distortion is already obvious at t = 100

for WENO5-Z, shown with a blue line in Fig. 10, while the distortion at t = 250 is less

severe compared to WENO5-JS.

The distortion problem of WENO5-JS and WENO5-Z, in the long-time simula-

tion of linear advection equation, is also observed by Feng et al. [7]. By designing

a new set of mapping functions that satisfy g
0
kð0Þ ¼ 0 , the distortion problem of

WENO5-JS was fixed with an extra mapping process. Inspired by this, the mapping

method can also be potential to overcome the distortion problem of WENO5-Z.

However, based on the results in Section 3, it is necessary to adopt the symmetric-

preserving mapping method.

4.2 Mapped WENO5-Z scheme

It is straightforward to do the symmetric-preserving mapping for WENO5-Z. Specific-

ally, the new variable for WENO5-Z to map is

Fig. 9 Numerical solutions of linear advection equation computed by WENO5-JS at t = 4, 100, 250. A
uniform grid with 200 cells is used. CFL = 0.1
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λZk ¼ 1þ τ5
βk þ ε

� �p

: ð51Þ

The ideal value of λZk is the same as λ, i.e.,

λ
Z ¼ 1

3
: ð52Þ

Therefore, the mapping function is also the same as Eq.(41). Through mapping, it is

obtained that

λZ�k ¼ g λZk
� �

: ð53Þ

Then, the new weight is obtained by

ωZM
k ¼ dkλ

Z�
kP2

l¼0dlλ
Z�
l

: ð54Þ

In this article, WENO5-Z with the symmetric-preserving mapping method is abbrevi-

ated as WENO5-ZM.

To demonstrate the effect of the mapping on WENO5-Z, the same numerical simula-

tion in Section 4.1 is conducted. As is shown in Fig. 11, there is no more distortion ob-

served in the results of WENO5-ZM at t = 100, 250, shown with the green and orange

lines. With distortion problem fixed, the improvement near the discontinuity is signifi-

cant compared to WENO5-Z.

To further demonstrate the performance of WENO5-ZM in problems with multiple

discontinuities, consider the following initial condition,

Fig. 10 Numerical solutions of linear advection equation computed by WENO5-Z at t = 4, 100, 250. A
uniform grid with 200 cells is used. CFL = 0.1
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u x; t ¼ 0ð Þ ¼

1
6
G x; β; z − δð Þ þ 4G x; β; zð Þ þ G x; β; z þ δð Þ½ �; x∈ − 0:8; − 0:6½ �;

1; x∈ − 0:6; − 0:4½ �;
1 − 10 x − 0:1ð Þj j; x∈ 0; 0:2½ �;
1
6

F x; α; a − δð Þ þ 4F x; α; að Þ þ F x; α; aþ δð Þ½ �; x∈ 0:4; 0:6½ �;
0; else;

8>>>>>>><
>>>>>>>:

ð55Þ

where Gðx; β; zÞ ¼ e − βðx − zÞ2 ; Fðx; α; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxð1 − α2ðx − aÞ2; 0Þ

q
; z = − 0.7, δ = 0.005,

β ¼ log2
36δ2

; a = 0.5, α = 10. The initial condition consists of a Gaussian function, a square

function, a piecewise linear triangle function and an ellipse function. It is shown in

Fig. 12 that at a short time t = 4, there is no evident distortion in the results of

WENO5-JS and WENO5-Z, and WENO5-Z has slight improvement near a discontinu-

ity compared to WENO5-JS. By contrast, the improvement of WENO5-ZM is much

significant, clearly shown in the zoomed-in solutions with the green line. As is shown

in Figs. 13 and 14, at t = 100, 250, there is evident distortion in both results of

WENO5-JS and WENO5-Z, and it is more severe with WENO5-JS. As expected, all the

results of WENO5-ZM free from the distortion problem, and significantly improved

results near discontinuities are observed. For comparison, the result of WENO5-FM is

also presented in this test case. As is shown in these figures, WENO5-FM produces

results very similar to that of WENO5-ZM, Specifically, WENO5-FM shows slightly

more dissipation compared to WENO5-ZM, see the zoomed-in solutions.

Following the approximated dispersion relation (ADR) analysis [29], the spectral

properties of various schemes are shown in Fig. 15. With the symmetry-preserving

Fig. 11 Numerical results of linear advection equation computed by WENO5-Z and WENO5-ZM at t = 100,
250. A uniform grid with 200 cells is used. CFL = 0.1. “(M)” corresponds to the WENO5-ZM
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Fig. 12 Numerical results of linear advection equation, initialized with Eq.(55), computed by WENO5-JS,
WENO5-Z, WENO5-ZM and WENO5-FM at t = 4. A uniform grid with 400 cells is used. CFL = 0.2

Fig. 13 Numerical results of linear advection equation, initialized with Eq.(55), computed by WENO5-JS,
WENO5-Z, WENO5-ZM and WENO5-FM at t = 100. A uniform grid with 400 cells is used. CFL = 0.2
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mapping, the bias of overall scheme towards the linear scheme is increased. Thus,

the spectral properties of WENO5-FM and WENO5-ZM are improved compared

to WENO5-JS and WENO5-Z, respectively. Since WENO5-Z has better resolution

than WENO5-JS in the intermediate-to-high wave-number range, WENO5-ZM

shows lower dispersion and dissipation than WENO5-FM. Notice that WENO5-Z

shows better spectral properties than WENO5-FM in the intermediate wave-

number range, roughly from ξ = 1 to ξ = 1.5. However, as is shown in Figs. 12, 13

and 14, WENO5-FM produces much better results than WENO5-Z near

discontinuities.

Fig. 14 Numerical results of linear advection equation, initialized with Eq.(55), computed by WENO5-JS,
WENO5-Z, WENO5-ZM and WENO5-FM at t = 250. A uniform grid with 400 cells is used. CFL = 0.2

Fig. 15 Spectral properties of WENO5-JS, WENO5-Z, WENO5-FM and WENO5-ZM
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4.3 Pre-discrete mapping method

The disadvantage of mapping method is obvious, i.e., due to involving extra mapping

process, the computational cost will be increased. As was reported in [10], WENO5-M

led to 20% ~ 30% extra cost compared to WENO5-JS. More complex function, like

Eq.(34), will undoubtedly worsen this disadvantage.

In order to reduce the cost of mapping process, Hong et al. [30] proposed a pre-

discrete mapping method. The method consists of three steps, which are described as

follows.

Step 1. Discretize the interval (0, 1), range of λk, with a uniform space Δλ ¼ 1
N , where

N is the number of subintervals and satisfies

1
N

< Δx: ð56Þ

Step 2. The discrete sequence of λk can be expressed as λk, j = 0 + jΔλ, j = 0, …, N, and

corresponding discrete sequence of mapped value can be obtained by

λ�k; j ¼ g λk; j
� �

: ð57Þ

Step 3. The index of the point closest to λk is obtained by

index ¼ int λk � Nð Þ; ð58Þ

where int denotes a rounding operation. Finally, the mapped value of λk is given by

λ�k ¼ λ�k;index: ð59Þ

In fact, λk, index is a first-order approximation to λk, and in the smooth region it can

be written as

λk;index ¼ λk þΟ Δxð Þ ¼ λþΟ Δxð Þ: ð60Þ

Also, Taylor series expansion of g(λk, index) at λ gives

λk;index ¼ λþΟ Δx3
� �

: ð61Þ

Equations (61) and (42) indicate that the pre-discrete mapping method can do the

same mapping as the original method.

In the pre-discrete mapping method, the calculation of mapping function, which is

the most time-consuming in mapping process, is only done once in step 1 before the

iteration. Instead of calculating the function directly, the mapped value is obtained by
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one multiplication, one rounding operation and one addressing operation, which leads

to lower computational cost. Moreover, this low cost is independent of the specific

form of mapping function, and thus all kinds of functions can be used at the same cost,

which frees the function design from the limit of computational cost.

5 Numerical results
In this section, several one- and two-dimensional Euler problems are conducted to val-

idate the performance of WENO5-ZM. The Roe scheme [31] is used to solve a local

Riemann problem at cell boundary. An explicit third-order TVD Runge-Kutta method,

defined as Eq.(27), is used to solve the resulting set of ordinary differential equations in

time. Referring to [14], the parameter ε is set to be as small as 10−20, and the power

parameter p is taken as 2 in all schemes. All numerical experiments are computed with

double precision (64 bits). In the pre-discrete mapping method, N is taken as 104 for all

cases.

5.1 One-dimensional Euler equations

The strong conservative form of one-dimensional Euler equations of gas dynamics is

∂ρ
∂t

þ ∂ ρuð Þ
∂x

¼ 0;

∂ ρuð Þ
∂t

þ ∂ ρu2 þ pð Þ
∂x

¼ 0;

∂E
∂t

þ ∂ uE þ upð Þ
∂x

¼ 0;

ð62Þ

where ρ, u, p, E represent the density, velocity, pressure and total energy, respectively.

The equation of state,

E ¼ p
γ − 1

þ 1
2
ρu2; ð63Þ

is supplemented to close the system of equations. γ is the specific heat ratio and taken

as 1.4 if not specified.

5.1.1 The Riemann problem of Sod

Sod problem [32] is used to demonstrate the ability of shock-capturing. The initial

condition on domain [−0.5, 0.5] is

ρ; u; pð Þ ¼ 1; 0; 1ð Þ; − 0:5≤x≤0;
0:125; 0; 0:1ð Þ; 0 < x≤0:5:

�
ð64Þ

Zero-gradient boundary conditions are imposed at x = ± 0.5, and the numerical solu-

tions are shown in Fig. 16. The solution consists of a left-going rarefaction wave, a cen-

tral contact discontinuity and a right-going shock wave. All results are non-oscillatory,

and due to less dissipation, WENO5-ZM shows better resolution near discontinuities

than WENO5-Z, clearly observed in the zoomed-in solutions.

5.1.2 Mach 3 shock-density wave interaction

The initial condition is a Mach 3 shock interacting with a perturbed density field, and

given as
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ρ; u; pð Þ ¼
27
7
;
4

ffiffiffiffiffi
35

p

9
;
31
3

� �
; − 5≤x < − 4;

1þ 0:2 sin5x; 0; 1ð Þ; − 4≤x≤5:

8<
: ð65Þ

At x = ± 5, the zero-gradient boundary conditions are applied, and the numerical

solutions are shown in Fig. 17. It is observed that in regions with discontinuities and

high-frequency wave, WENO5-ZM shows the best resolution. While due to the exces-

sive dissipation, the high-frequency wave is nearly smoothed out in the result of

WENO5-JS.

Fig. 16 Numerical solutions of Sod problem at t = 0.2. A uniform grid with 100 cells is used. The reference
result is obtained by WENO5-JS on a uniform grid with 2000 cells. CFL = 0.9

Fig. 17 Numerical solutions of Mach 3 shock-density wave interaction at t = 1.8. A uniform grid with 200
cells is used. The reference result is obtained by WENO5-JS on a uniform grid with 2000 cells. CFL = 0.9
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5.1.3 Interacting blast waves

The test consists of two interacting blast waves. The strong shocks in the solution are

computationally hard to solve, and schemes with unstable tendencies often fail to

converge in this test. The initial condition on domain [0, 1] is

ρ; u; pð Þ ¼
1; 0; 1000ð Þ; x < 0:1;
1; 0; 100ð Þ; x > 0:9;
1; 0; 0:01ð Þ; else:

8<
: ð66Þ

Reflective boundary conditions are used at x = 0 and x = 1, and the numerical

solutions are shown in Fig. 18. Obviously shown in the zoomed-in solutions, the result

of WENO5-ZM shows the best resolution near discontinuities without any oscillation.

5.2 Two-dimensional Euler equations

For two-dimensional problem, the strong conservative form of Euler equations is

∂ρ
∂t

þ ∂ ρuð Þ
∂x

þ ∂ ρvð Þ
∂y

¼ 0;

∂ ρuð Þ
∂t

þ ∂ ρu2 þ pð Þ
∂x

þ ∂ ρuvð Þ
∂y

¼ 0;

∂ ρvð Þ
∂t

þ ∂ ρuvð Þ
∂x

þ ∂ ρv2 þ pð Þ
∂y

¼ 0;

∂E
∂t

þ ∂ uE þ upð Þ
∂x

þ ∂ vE þ vpð Þ
∂y

¼ 0;

ð67Þ

where y, v represent the other direction and the velocity component in this direction,

respectively. The two-dimensional equation of state is

Fig. 18 Numerical solutions of interacting blast waves at t = 0.038. A uniform grid with 400 cells is used.
The reference result is obtained by WENO5-JS on a uniform grid with 4000 cells. CFL = 0.9
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E ¼ p
γ − 1

þ 1
2
ρ u2 þ v2
� �

: ð68Þ

5.2.1 Rayleigh-Taylor instability problem

The Rayleigh-Taylor instability (RTI) occurs at the interface between two fluids with

different density when the heavier fluid accelerates to the lighter fluid. The computa-

tional domain is [0, 0.25] × [0, 1], and the initial condition is

ρ ¼ 2; u ¼ 0; v ¼ − 0:025c � cos 8πxð Þ; p ¼ 2yþ 1; y≤0:5ð Þ;
ρ ¼ 1; u ¼ 0; v ¼ − 0:025c � cos 8πxð Þ; p ¼ yþ 1:5; y > 0:5ð Þ;

�
ð69Þ

where c ¼ ffiffiffiffiffiffiffiffiffiffi
γP=ρ

p
, is the speed of sound. The interface of two fluids with different

density is at y = 0.5. The specific heat ratio in Eq.(68) is specified as γ = 5/3 in this case.

At x = 0 and x = 0.25, reflective boundary conditions are used. ρ = 2, u = v = 0, p = 1 are

set for y = 0, while ρ = 1, u = v = 0, p = 2.5 are set for y = 1. To exert the effect of gravity,

the source terms ρ, ρv are explicitly added to the right hand side of third and fourth

equations of Eq.(67).

As is shown in Fig. 19, all schemes can obtain symmetric results. Due to the Kelvin-

Helmholtz instability, vortices are rolled up around the interface indicated by clustered

contour lines. The least dissipation of WENO5-ZM leads to a result with the most

details of vortices, while small-scale vortices are nearly smoothed out in the result of

WENO5-JS due to its over-dissipation.

5.2.2 Double Mach reflection problem

Double Mach reflection (DMR) describes a Mach 10 moving shock with an angle of 60∘

with respect to the wall. The computational domain is [0, 4] × [0, 1], and the initial

condition is

Fig. 19 Contour lines of density of the RTI problem at t = 1.95. This figure is drawn with 15 density
contours between 0.9 and 2.3. A uniform grid with 120 × 480 cells is used, Δx ¼ Δy ¼ 1

480. CFL = 0.5
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ρ; u; v; Pð Þ ¼ 8; 8:25 cosθ; − 8:25 sinθ; 116:5ð Þ; x < x0 þ y=
ffiffiffi
3

p
;

1:4; 0; 0; 1ð Þ; x≥x0 þ y=
ffiffiffi
3

p
;

�
ð70Þ

where x0 = 1/6 is the leading position of the wall, and θ = π/6 is the angle between ini-

tial oblique shock and y-axis. Supersonic inflow and outflow boundary conditions are

used at x = 0 and x = 4 respectively. At the lower boundary y = 0, post-shock values are

used at (0, x0), while a reflective boundary condition is used at (x0, 4). As for the upper

boundary y = 1, the exact solution of the Mach 10 moving oblique shock is applied.

It is observed from Fig. 20 that all schemes can give results without any oscillation,

and the main difference is reflected near the slip line. Vortices rolled up around the slip

line can be observed in the result of WENO5-Z, while in the result of WENO5-ZM,

they are more obvious, indicating the improvement of the latter.

5.2.3 2D Riemann problem

The 2D Riemann problem [33] is defined on a square domain [0, 1] × [0, 1], which is di-

vided into four rectangular sub-domains with lines x = 0.8 and y = 0.8, and the initial

condition is

ρ; u; v; pð Þ ¼
1:5; 0; 0; 1:5ð Þ; 0:8≤x≤1; 0:8≤y < 1;
0:5323; 1:206; 0; 0:3ð Þ; 0≤x < 0:8; 0:8≤y < 1;
0:138; 1:206; 1:206; 0:029ð Þ; 0≤x < 0:8; 0≤y < 0:8;
0:5323; 0; 1:206; 0:3ð Þ; 0:8≤x≤1; 0≤y < 0:8:

8>><
>>:

ð71Þ

Figure 21 shows the density contour obtained with WENO5-JS, WENO5-Z and

WENO5-ZM. It is generally thought that capturing more small-scale structures indi-

cates better resolution in this problem. Therefore, from the comparison of the three

results, WENO5-ZM obviously has the best resolution.

5.2.4 Isentropic vortex propagation problem

The initial condition on a square domain [0, 10] × [0, 10] is given by

u; vð Þ ¼ 1; 1ð Þ þ κ
2π

e0:5 1 − r2ð Þ − y − ycð Þ; x − xcð Þ;T ¼ 1 −
γ − 1ð Þκ2
8γπ2

e1 − r2 ;

ρ ¼ T
1

γ − 1; p ¼ ρT ; r2 ¼ x − xcð Þ2 þ y − ycð Þ2;

where κ = 5 is the vortex strength, and (xc, yc) = (5, 5) is the initial location of the vortex

center. Periodic boundary conditions are used for all boundaries. Referring to [34], this

Fig. 20 Zoomed-in contour lines of density of the DMR problem at t = 0.2. This figure is drawn with 28
density contours between 1.5 and 15.5. A uniform grid with 960 × 240 cells is used,
Δx ¼ Δy ¼ 1

240. CFL = 0.5
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test is tested under 10 periods and 100 periods with t = 100 and t = 1000, respectively.

After 10 periods propagation with t = 100, it is shown in Fig. 23 (a) that the three

results are very close to each other and in good agreement with the reference result.

However, as is shown with the contours in Fig. 22, the difference becomes evident after

100 periods propagation with t = 1000. A quantitative comparison is given in Fig. 23

(b). It is observed that WENO5-JS and WENO5-ZM still keep the vortex at the center

of the computational domain, while in the result of WENO5-Z, the vortex travels a

little faster and thus is off center. Moreover, the result of WENO5-ZM is the closest to

that of the optimal linear scheme but with slightly more dissipation.

5.3 The computational cost

Due to involving an extra mapping process, the computational cost of WENO5-ZM

must be higher than that of WENO5-Z. If the improvement of WENO5-ZM comes at

the cost of significantly increased computational time, then the attractiveness of the

improved scheme will be greatly reduced. In order to give an intuitive comparison, the

computational cost is numerically investigated here.

Take the DMR problem in Section 5.2.2 as the object to test, and to eliminate occasion-

ality, the experiment is repeated three times under the same conditions. The computation

is performed with double precision on a 2.40GHz Intel Xeon CPU E5–2676, and the code

is developed in Fortran. In average, the computational cost of WENO5-ZM is about 6%

Fig. 21 Contour lines of density of 2D Riemann problem at t = 0.8. This figure is drawn with 34 density
contours between 0.15 and 1.75. A uniform grid with 400 × 400 cells is used, Δx ¼ Δy ¼ 1

400. CFL = 0.5

Fig. 22 The density contours of isentropic vortex propagation at t = 1000. This figure is drawn with 9
density contours between 0.55 and 0.95. A uniform grid with 80 × 80 cells is used, Δx ¼ Δy ¼ 1

8. CFL = 0.5

Hong et al. Advances in Aerodynamics            (2020) 2:18 Page 28 of 31



higher than that of WENO5-Z. Compared to 20% ~ 30% extra cost of WENO5-M

reported in [10], such a low extra cost indicates the efficiency of WENO5-ZM.

6 Conclusions
In the original mapping method proposed by Henrick, the weight of each sub-

stencil is used to map for recovering the accuracy at critical points. The numer-

ical experiment of linear advection equation in this article shows that, the result

around a discontinuity is improved but in an asymmetric fashion. With longer

output time, this asymmetric improvement results in a solution with evident

distortion. From a qualitative analysis, it is found that there is mismatched

magnification of weight of less-smooth sub-stencil for both sides of a discon-

tinuity, due to the difference in ideal weights of sub-stencils. To overcome the

problem of asymmetric improvement, a symmetry-preserving mapping method

is proposed in this article. Instead of the weight, a new variable related to the

smoothness indicator is chosen as the mapping object, which has the same ideal

value for each sub-stencil. Moreover, since the function is unique and the ideal

value is not close to 0, function design is much simplified in the new mapping

method. In the long-time simulation of linear advection equation, it is found

that the numerical solution of WENO5-Z suffers evident distortion, which ser-

iously degrades the quality of solution. When applying the new mapping

method to WENO5-Z, the distortion no longer exists, and thus the result is

significantly improved.

Numerical experiments with one- and two-dimensional Euler equations are

conducted to validate the performance of mapped WENO5-Z. In all problems, the

results of mapped WENO5-Z show better resolution at both discontinuities and

small-scale structures compared to WENO5-Z, and there is no oscillation observed

in these results. The extra computational cost, brought by the mapping process, is

moderate with a value of 6%, which is numerically investigated by the DMR

problem.

Fig. 23 Distribution for isentropic vortex propagation along y = yc at t = 100 and t = 1000
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