
RESEARCH Open Access

The shape of incident shock wave in steady
axisymmetric conical Mach reflection
Yu-xin Ren1* , Lianhua Tan2 and Zi-niu Wu1

* Correspondence: ryx@tsinghua.
edu.cn
1School of Aerospace Engineering,
Tsinghua University, Beijing 100084,
China
Full list of author information is
available at the end of the article

Abstract

For internal flow with supersonic inflow boundary conditions, a complicated oblique
shock reflection may occur. Different from the planar shock reflection problem,
where the shape of the incident shock can be a straight line, the shape of the
incident shock wave in the inward-facing axisymmetric shock reflection in steady
flow is an unknown curve. In this paper, a simple theoretical approach is proposed
to determine the shape of this incident shock wave. The present theory is based on
the steady Euler equations. When the assumption that the streamlines are straight
lines at locations just behind the incident shock is adopted, an ordinary differential
equation can be derived, and the shape of the incident shock wave is given by the
solution of this ordinary differential equation. The predicted curves of the incident
shock wave at several inlet conditions agree very well with the results of the
numerical simulations.

Keywords: Axisymmetric shock reflection, The shape of incident shock wave, Euler
equations

1 Introduction
Understanding the characteristics of the shock waves is important in the design of

supersonic vehicles. Li and Ben-Dor [1] used several examples to show the great influ-

ence of the shock waves on the operating conditions of the inlet/combustor of a hyper-

sonic craft, on the heating loads of a blunt body, and on the initiation of the

detonation in a ram accelerator. In the axisymmetric supersonic internal flows, an ob-

lique inward-facing conical shock will steepen near the symmetry axis, which has been

observed by Mölder et al. [2]. As a result, transition to Mach reflection has to occur,

so that regular reflection is not possible (Hornung and Schwendeman [3]). In contrast

to the planar shock reflection problem where the shape of the incident shock can be a

straight line, the shape of the incident shock wave in the inward-facing axisymmetric

shock reflection is a curve with unknown shape. Therefore, to study the characteristics

of the Mach reflection, one of the preconditions is to know the shape of the incident

shock waves. A typical axisymmetric Mach reflection in steady flow is shown in Fig. 1.

As pointed out by Whitham [4], the study of shock wave in problems more than one

dimension is “difficult due to the combination of two effects: the shock is adjusting to
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changes in the geometry (or in the medium) at the same time that it is coping with a

complicated nonlinear interaction with the flow behind it”. “In the more general case, if

one of the effects can be dealt with fairly simply so that emphasis can be placed on the

other, there is hope for an approximate theory.” The theory of geometrical shock dy-

namics [4] is one example of this consideration where only the geometrical effects are

taken to be important. Unsteady oblique shock reflection from an axis of symmetry is

studied using theory of geometrical shock dynamics by Hornung and Schwendeman

[3], and the results are compared with previous numerical simulations of the

phenomenon by Hornung [5]. The shock shapes, and the location of the shock-shock,

are in good agreement with the numerical results. They also fit the moving incident

shock shape with a generalized hyperbola based on an analogy with the Guderley singu-

larity in cylindrical shock implosion.

However, the theory of geometrical shock dynamics is difficult to be applied in steady

flow. In this paper, a simple approach to determine the shape of the incident shock

wave in steady flow is proposed based on the assumption that the streamlines are

straight lines at locations just behind the incident shock. The theoretical predictions of

the shape of the incident shock are compared with the numerical results [6] and good

agreement is observed.

2 The shape of axisymmetric incident shock wave
2.1 The nonorthogonal curvilinear coordinate

As shown in Fig. 2, at the leading edge of the conically contracting section with a half

cone angle θw, there is an incident shock which connects with the Mach stem and the

reflected shock at the triple point. For a point on the incident shock wave, the shock

Fig. 1 Axisymmetric Mach reflection
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angle and the deflecting angle are denoted by β and θ respectively. The β and θ are

both positive by the definition of the present analysis.

The present study aims at finding the shape of the incident shock. To simplify the

analysis, a nonorthogonal curvilinear ξ − η coordinate is introduced as follows.

ξ ¼ r − R xð Þ; ð1Þ

η ¼ ψ x; rð Þ
V∞r0

: ð2Þ

where r = R(x) is the shape of the incident shock which satisfies

dR
dx

¼ − tanβ; ð3Þ

and ψ(x, r) is the stream function for the axisymmetric flow, V∞ is the velocity of the

uniform incoming flow, and r0 is the radius of the leading edge point, O ' (x0, r0), of the

conically contracting section. The physical meaning of this curvilinear coordinate is as

follows. The ξ coordinate with η = constant is a family of streamlines which is used to

facilitate the introduction of the basic assumption of the present paper. The η coordin-

ate with ξ = constant is used to introduce the shape of the incident shock wave into the

transformed governing equation so that a solvable equation for the shape of the inci-

dent shock wave can be derived. Indeed, ξ = 0 is corresponding to the exact shape of

the incident shock wave. We notice that the shapes of neither the incident shock wave

nor the streamlines are known. However, since we are only interested in the shape of

the incident shock wave, additional assumption on the streamlines at ξ = 0 is sufficient

for deriving the governing equation for the shape of the incident shock wave. There-

fore, the introduction of this coordinate transform greatly simplifies the derivation of

the present paper.

Fig. 2 Axisymmetric Mach reflection and the nonorthogonal curvilinear coordinate

Ren et al. Advances in Aerodynamics            (2020) 2:24 Page 3 of 11



In the next subsection, the steady Euler equations in ξ − η coordinate will be derived.

For this purpose, the metric terms of the transform (Eqs. (1) and (2)) will be present

first. The differential relationship between two coordinates is

dx
dr

� �
¼ xξ xη

rξ rη

� �
dξ
dη

� �
¼ ξx ξr

ηx ηr

� � − 1
dξ
dη

� �
: ð4Þ

According to Eqs. (1) and (2), we have

ξx ξr
ηx ηr

� �
¼

tanβ 1

−
rV r

r0V∞

rV x

r0V∞

0
@

1
A; ð5Þ

where the second line of Eq. (5) is obtained following the definition of the stream func-

tion and Vr and Vx are the two components of the velocity. By the fact

tanθ ¼ −
Vr

Vx

and by the introduction of the notation

f ¼ rV x

r0V∞

Eq. (5) can be written as

ξx ξr
ηx ηr

� �
¼ tanβ 1

f tanθ f

� �
: ð6Þ

This leads to

xξ xη
rξ rη

� �
¼ 1

f tanβ − tanθð Þ
f − 1

− f tanθ tanβ

� �
: ð7Þ

Thus first derivatives with respect to x and r can be transformed into corresponding

partial derivatives with respect to ξ and η by

∂
∂x

¼ ∂
∂ξ

tanβþ ∂
∂η

f tanθ; ð8Þ

∂
∂r

¼ ∂
∂ξ

þ ∂
∂η

f : ð9Þ

2.2 The shape of the incident shock wave

The governing equations of the present paper are the axisymmetric steady Euler equa-

tions which can be written as

∇ � ρVð Þ ¼ 0; ð10Þ

V � ∇ð ÞV ¼ −
1
ρ
∇p; ð11Þ

V � ∇ð ÞS ¼ 0; ð12Þ

where V =Vxex +Vrer is the vector of velocity, p is the pressure and S is the entropy.

The two components of velocity can be expressed as
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Vx ¼ V cosθ;Vr ¼ −V sinθ: ð13Þ

Substituting Eqs. (8), (9) into Eqs. (10) – (13), we obtain the Euler equations in ξ − η

coordinate as

1
ρ
V

ρ cotθ þ tanβð Þ
cotθ tanθ − tanβð Þ 0

0 V sinθ cosθ tanθ − tanβð Þ V 2 cos2θ tanθ − tanβð Þ 1
ρ

0 − V cos2θ tanθ − tanβð Þ V 2 sinθ cosθ tanθ − tanβð Þ 1
ρ

tanβ

a2 0 0 − 1

0
BBBBBBBB@

1
CCCCCCCCA

∂
∂ξ

ρ
V
θ
p

0
BB@

1
CCA

¼

− ρf
∂θ
∂η

cotθ þ tanθð Þ
cotθ tanθ − tanβð Þ −

ρ
r cotθ tanθ − tanβð Þ

−
1
ρ
∂p
∂η

f

−
1
ρ
∂p
∂η

f tanθ

0

0
BBBBBBBB@

1
CCCCCCCCA

ð14Þ

This is a system of partial differential equations and it is difficult to get the shape of

the incident shock by directly solving these equations. In order to overcome this diffi-

culty, certain assumptions about the flow field behind the incident shock must be

made. During the numerical simulations of the problem considered in the present

paper, we find that when a steady Mach reflection can be realized in the configuration

shown in Fig. 1, the streamlines just behind the incident shock have very small curva-

tures and can be accurately approximated by a family of straight lines. This fact is

shown in Fig. 3. According to this observation, we assume in this paper that

∂θ
∂ξ

����
s

¼ 0 ð15Þ

Fig. 3 The numerical results of the axisymmetric Mach reflection
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where the subscript s denotes the location just behind the incident shock. Using this as-

sumption, the problem is greatly simplified. Solving for ∂θ
∂ξ using Eq. (14) yields

∂θ
∂ξ

¼
1
a2

∂p
∂η

f M2 − 1
� �

tanθ − tanβð Þ� �
− ρ M2 sin2θ cotθ þ tanβð Þ� �

f
∂θ
∂η

cotθ þ tanθð Þ þ 1
r

� �

cotθ þ tanβð Þρ M2 sin2θ cotθ þ tanβð Þ� �
− ρM2 tanθ − tanβð Þ2 cos2θ M2 − 1

� � : ð16Þ

Applying Eq. (16) and Eq. (15) at places just behind the incident shock wave, we have

∂θ
∂η

−
1
a2

∂p
∂η

tanβ − tanθð Þ
tanθ tanβþ 1ð Þ

1 −M2
� �
ρM2

� �
cotθ þ tanθð Þ f þ 1

r

	 

s

¼ 0: ð17Þ

For simplicity, we omit the subscript s since it is understood that the following dis-

cussions are focused on the shape of the incident shock.

For a point on the incident shock wave, deflecting angle θ and pressure are functions

of shock angle β, i.e.

tanθ ¼ 2
cosβ
sinβ

M2
∞ sin2β − 1

M2
∞ γ þ cos2βð Þ þ 2

ð18Þ

and

p
p∞

¼ 1þ 2γ
γ þ 1

M2
∞ sin2β − 1

� �
: ð19Þ

In Eqs. (18) and (19), γ is the ratio of specific heat. Therefore, Eq. (17) can be rewrit-

ten as

∂θ
∂β

−
1
a2

∂p
∂β

tanβ − tanθð Þ
tanθ tanβþ 1ð Þ

1 −M2
� �
ρM2

� �
cotθ þ tanθð Þ f ∂β

∂η
¼ −

1
r
: ð20Þ

On the incident shock curve, we have r = R(x) so that

η x; rð Þ ¼ η x;R xð Þð Þ ¼ η xð Þ;

and subsequently

∂β
∂η

����
ξ¼0

¼ ∂β
∂x

dx
dη

¼ ∂β
∂x

− 1
f tanβ − tanθð Þ ; ð21Þ

which leads to

∂θ
∂β

−
1
a2

∂p
∂β

tanβ − tanθð Þ
tanθ tanβþ 1ð Þ

1 −M2
� �
ρM2

� �
cotθ þ tanθð Þ
tanβ − tanθð Þ

dβ
dx

¼ 1
R
: ð22Þ

According to Eq. (3), it is easy to derive

d2R
dx2

¼ − 1þ tan2β
� � dβ

dx
: ð23Þ

Eqs. (22) and (23) can be combined to give

Rxx ¼
1þ Rx

2
� �

R cotθ þ tanθð Þ
∂θ
∂β

1
tanθ þ Rxð Þ þ

1
γp

∂p
∂β

1 −M2
� �

M2

1
1 − Rx tanθð Þ

� � − 1

: ð24Þ

The boundary conditions are
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RO
0 ¼ r0;

dR
dx

� �
O

0
¼ βw;

where βw is computed using Eq. (18) by setting θ = θw. Eq. (24) is transformed into the

system of first order ordinary differential equations by the introduction of Q = Rx,

which is

Rx ¼ Q

Qx ¼
1þ Q2
� �

R cotθ þ tanθð Þ
∂θ
∂β

1
tanθ þ Rxð Þ þ

1
γp

∂p
∂β

1 −M2
� �

M2

1
1 −Q tanθð Þ

� � − 1

:

8<
: ð25Þ

Then Eq. (25) is numerically solved using the standard four stage Runge-Kutta

scheme to predict the curve of the incident shock wave. Specifically, after obtaining nu-

merically Q = Rx , β is computed using Eq. (3), θ, ∂θ/∂β and ∂p/∂β are derived respect-

ively using Eqs. (18) and (19), and M is updated using the oblique shock relation

M2 ¼
M2

∞ þ 2
γ − 1

2γ
γ − 1

M2
∞ sin2β − 1

þ M2
∞ cos2β

γ − 1
2

M2
∞ sin2β − 1

:

3 Results and discussions
In order to validate the present analysis, the shapes of the incident shock waves pre-

dicted by solving Eq. (24) are compared with those obtained from the numerical simu-

lations. The numerical method in the simulations is the finite volume scheme based on

the rotated Riemann solver proposed by Ren (2003) [7]. The shapes of the shock waves

are extracted from the numerical results using the method of Tan et al. [8].

The shapes of the incident shock waves are predicted using the present theory and

the numerical simulation for several combinations of incoming flow-Mach number M∞

and cone half angle θw listed in Table 1. Referring to Fig. 1, r0 = 0.5 is the leading edge

radius, and w is the length of the contracting section. The shapes of the incident shock

waves are displayed in Figs. 4, 5, 6 and 7. It is seen that the theoretical curves agree

very well with the simulated curves in each test cases. This indicates the hypothesis of
∂θ
∂ξ ¼ 0 is reasonable for the given flow conditions. It is observed in Figs. 4, 5, 6 and 7,

when r is large enough (close to r0), the discrepancy between the numerical and theor-

etical curves becomes clearer, this is possibly due to the numerical viscosity of the nu-

merical scheme, which leads to the inaccuracy in βw in the numerical results. It is also

observed that when r is smaller (close to the axis of symmetry), there are singularities

in the theoretical predictions so that there does not exist a smooth curve of the inci-

dent shock wave all the way to the axis of symmetry. We think this phenomenon is

helpful to explain the fact that there does not exist the regular shock reflection at the

axis of symmetry in the axisymmetric supersonic internal flows [3].

Table 1 The flow conditions for the four additional test cases

Case I (Fig. 4) Case II (Fig. 5) Case III (Fig. 6) Case IV (Fig. 7)

θw 10o 12 o 12 o 12 o

M∞ 1.8 2.0 2.2 3.5

w/r0 0.6 0.6 0.6 0.6
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Fig. 4 The theoretical and simulated shapes of the incident shock wave when M∞ = 1.8 and θw = 10.0o

Fig. 5 The theoretical and simulated shapes of the incident shock wave when M∞ = 2.0 and θw = 12.0o
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Fig. 7 The theoretical and simulated shapes of the incident shock wave when M∞ = 3.5 and θw = 12.0o

Fig. 6 The theoretical and simulated shapes of the incident shock wave when M∞ = 2.2 and θw = 12.0o
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Equation (24) indicates that the shape of the incident shock is determined by incom-

ing flow conditions and the half cone angle θw. To verify this conclusion, the numerical

simulations are conducted for two flows with the same incoming flow conditions and

the half cone angle θw but with different aspect ratios. Here the aspect ratio is defined

as w/r0, where w is the diagonal length of the conically contracting section. In Fig. 8,

two simulated incident shock curves are compared with the theoretical curve. The

incoming-flow Mach number is 2.0, the wedge angle is 10.0o, and the aspect ratios are

0.6 and 0.4 respectively. It is shown that two simulated shapes of the incident shocks

are not affected by the aspect ratios and are both in good agreement with the theoret-

ical curve.

4 Conclusion
In this paper, a theoretical method to predict the shape of the incident shock in steady

axisymmetric Mach reflection is proposed. A nonorthogonal curvilinear ξ − η coordin-

ate is introduced to simplify the analysis. The basic assumption of the present paper is

that the streamlines just behind the incident shock wave can be approximated by

straight lines, which is strongly supported by the numerical simulations. Under this as-

sumption, the basic flow equations are simplified to an ordinary differential equation

whose solution gives the shape of the incident shock directly. The theoretical curves of

the incident shock waves agree very well with the simulated ones. It is found that the

shape of the incident shock wave is related only to the incoming-flow Mach number

and the half cone angle.

Fig. 8 The theoretical and simulated shapes of the incident shock wave when M∞ = 2.0, θw = 10.0o. The
aspect ratio is w/r0 = 0.6 and w/r0 = 0.4 respectively
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