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Abstract
In this paper, we introduce the discrete Maxwellian equilibrium distribution function for
incompressible flow and force term into the two-stage third-order Discrete Unified Gas-
Kinetic Scheme (DUGKS) for simulating low-speed turbulent flows. The Wall-Adapting
Local Eddy-viscosity (WALE) and Vreman sub-grid models for Large-Eddy Simulations
(LES) of turbulent flows are coupled within the present framework. Meanwhile, the
implicit LES are also presented to verify the effect of LES models. A parallel
implementation strategy for the present framework is developed, and three canonical
wall-bounded turbulent flow cases are investigated, including the fully developed
turbulent channel flow at a friction Reynolds number (Re) about 180, the turbulent
plane Couette flow at a friction Re number about 93 and lid-driven cubical cavity flow
at a Re number of 12000. The turbulence statistics, including mean velocity, the r.m.s.
fluctuations velocity, Reynolds stress, etc. are computed by the present approach. Their
predictions match precisely with each other, and they are both in reasonable
agreement with the benchmark data of DNS. Especially, the predicted flow physics of
three-dimensional lid-driven cavity flow are consistent with the description from
abundant literature. The present numerical results verify that the present two-stage
third-order DUGKS-based LES method is capable for simulating inhomogeneous
wall-bounded turbulent flows and getting reliable results with relatively coarse grids.

Keywords: Large-eddy simulation, Wall-bounded turbulent flow, DUGKS, High order
scheme

1 Introduction
Turbulent flow is one of the most common and complicated problems in fluid dynamics.
In the study of turbulent flows, they are usually formulated in terms of the Navier-Stokes
(NS) equations for the macroscopic variables that are functions of position and time.
Based on NS equations, many pioneers have successively proposed and applied the direct
numerical simulation (DNS) [1, 2] approaches for numerical simulation of turbulent flow.
Theoretically, DNS is designed to resolve all the scales of turbulent motion using very
fine grids, which is unrivalled in accuracy and in the level of description provided [3],
but the computational costs are very high, especially for high-Reynolds number turbulent
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flows. In order to balance the application and research requirements with the compu-
tational costs, the Reynolds averaged Navier-Stokes (RANS) methods [3, 4] have been
developed and applied on unresolved grids. The RANS method solves the time-averaged
NS equations and the effect of the unsteady turbulent motions on the mean flow-field
is approximated by turbulence models. Another alternative method, namely, the large-
eddy simulation (LES) method [5–7] has also attracted a vast amount of attention of the
engineering and scientific communities. The LES directly computes the large-scale tur-
bulent structures and establishes a sub-grid scale (SGS) model to capture the effects of
the smaller unresolved scales. Over the past several decades, the LES has become an
indispensable fundamental research and engineering tool in the prediction and analysis
of unsteady, multi-scale, and multi-physics turbulent flows [8, 9].
The conventional approach for analyzing continuum physics is that uses a coarse-

grained model in terms of macroscopic variables [10]. In recent years, some kinetic
schemes based on the mesoscopic models have been utilized to simulate turbulent flows
via combining with large-eddy simulation methods. Among them, because of the simplic-
ity in formulation and multi-functionality, the lattice Boltzmann equation (LBE) methods
have been widely and successfully used in the numerical simulation of turbulence. At
present, the majority of the existing LBM-LES methods introduce the effect of eddy vis-
cosity from SGS models into the relaxation time [11–13]. Hou et al. [14] firstly reported
a simple large-eddy simulation based on LBM for two-dimensional turbulent flow. Prem-
nath et al. [11] implemented both the standard Smagorinsky model [5] modified by using
the van Driest wall-damping function and the dynamic procedure [15] to simulate a wall
bounded turbulent flow. Recently, the wall-adapting local eddy-viscosity (WALE) model
[16] and Vremanmodel [17] were reported within the lattice Boltzmann framework, such
as multiple-relaxation time (MRT) [11, 12] and filter-matrix lattice Boltzmann (FMLB)
[13] for simulating the fully developed turbulent channel flows. Besides, the gas-kinetic
scheme (GKS) [18, 19] and implicit high-order GKS [20] for solving NS equations have
also been extended to turbulent large-eddy simulations.
Recently, a discrete unified gas kinetic scheme (DUGKS) [21, 22] in a finite-volume

framework has been developed, keeping the advantages of LBM, moreover, possessing a
flexible mesh adaptation like unified gas kinetic scheme (UGKS) [23]. The characteristic
difference solution of Boltzmannmodel equation, which couples the molecular advection
and collision in numerical flux construction, makes the DUGKS capable of simulating the
whole flow region from free molecular flow to continuum flow. In recent years, benefiting
from the simulation capability of whole flow region, DUGKS has attracted a vast amount
of attention from the CFD communities in many scientific domains. Zhu et al. [24]
extended the DUGKS to unstructured meshes. Wu et al. [25] proposed a DUGKSmethod
considering the external force. An implicit DUGKS [26] for simulating of steady flow in
all flow regions was constructed with an implicit macroscopic prediction technique [27].
A simplified DUGKS was proposed recently [28]. Up to now, DUGKS has been applied
to many fields, such as compressible flow [29, 30], multi-phase flow [31, 32], multi-
component flow [33], complex motion (with immerse boundary method) [34], radiative
transfer [35], etc.
DUGKS has also been used in direct numerical simulation of simple incompressible

turbulent flows [36, 37], and another potential application of DUGKS is the large-eddy
simulation of turbulent flows. Compared with the LBE method, the merits of DUGKS in
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turbulent simulation are better numerical stability and its support for non-uniform and
unstructured grids [24]. However, there are still some issues to be improved. For example,
the DUGKS has a relatively large numerical dissipation compared with the LBE method
[36], which is one of the reasons why the high-order DUGKS is needed for large-eddy
simulation of turbulent flows. In addition, the LES for turbulent flows generally requires
higher-order (greater than second-order) numerical methods to minimize the numerical
error, because the discretization error is dominant at all wave numbers for the second-
order accurate scheme, whereas the sub-grid stress is dominant at the low frequencies
for the high-order accurate scheme [8]. Recently, Wu et al. [38], inspired by two-stage
fourth-order time accurate discretization (TFTD) method [39, 40], proposed a two-stage
third-order DUGKS for low-speed isothermal flow by reducing the requirement of time
accuracy. In this paper, for simulating low-speed incompressible flows, the incompressible
discrete Maxwellian equilibrium distribution function [41, 42] is introduced to reduce
the compressibility error. For the channel flow driven by external force, the external force
term is introduced into the high-order DUGKS. In addition, the distribution function will
be approximated by the Taylor expansion with fourth-order accuracy.
The present work mainly focuses on combining the two-stage third-order DUGKS with

the WALE model [16] and Vreman model [17] for large-eddy simulation of wall-bounded
turbulent flows. The fully developed turbulent channel flow with a friction Reynolds
number Reτ = 180, the turbulent plane Couette flow with a friction Reynolds number
Reτ = 93 and the three-dimensional lid-driven cubical cavity flow with Reynolds num-
ber Re = 12000 are investigated to validate the capability and accuracy of the present
high-order DUGKS (with D3Q19) for turbulent simulations. The rest of this paper is orga-
nized as follows. In Section 2, the basic algorithm of two-stage third-order DUGKS with
a force term is described, meanwhile, the key elements of DUGKS-based LES method
and computation procedure are also given in Section 2. In Section 3, three wall-bounded
turbulent flows, respectively, the fully developed turbulent channel flow, the turbulent
plane Couette flow and three-dimensional lid-driven cubical cavity flow are performed
and discussed. Finally, conclusions and future outlook are given in Section 4.

2 Numerical method
2.1 Third-order DUGKS with force term

2.1.1 Two-stage third-order temporal discretization

The Boltzmann-BGK equation with a force term can be written as:
∂f
∂t

= L
(
f
)+ �

(
f
)+ S

(
f
)
, (1)

where L
(
f
)
,�
(
f
)
, S
(
f
)
are transport term, BGK collision operator [43] and external force

term, respectively, which can be expressed as follows:

L
(
f
) = −ξ · ∇f , (2)

�
(
f
) = f eq − f

τ
, (3)

S
(
f
) = −F

ρ
· ∇ξ f , (4)

where f = f (x, ξ , t) is the distribution function which is defined as the density of particles
at time t and in phase space (x, ξ). Here, x is the physical space coordinates, and ξ is the
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particle velocity. In Eq. (3), τ = μ/p is the relaxation timewhereμ is the dynamic viscosity
and p is the pressure, and f eq is the Maxwellian equilibrium distribution function defined
in the following form:

f eq = ρ

(2πRT)D/2 exp
(

−|ξ − u|2
2RT

)

, (5)

where R is the specific gas constant, D is the spatial dimension, ρ is the density, u is the
macroscopic velocity of fluid, and T is the temperature.
Two conservative flow variables, namely, the mass and momentum, are considered in

the low-speed isothermal flows and defined as the moments of distribution function as
follows:

W =
(

ρ

ρu

)

=
∫

ψ (ξ) fdξ , (6)

where ψ (ξ) = (1, ξ)T is the collision invariants.
In Eq. (4), F = F (x, t) is external force per unit volume. Under the assumption of

nearly incompressible low-speed isothermal flows, the external force term S
(
f
)
can be

approximated as [44, 45]:

S
(
f
) ≈ −F

ρ
· ∇ξ f eq = F · (ξ − u)

ρRT
f eq = Hf eq, (7)

where H = F ·(ξ−u)
ρRT . In addition, the approximation in Eq. (7) can also be derived from

Hermite expansion [37, 45] for low Mach number flow.
For convenience in formula derivations, a new source term Q

(
f
)
is defined as the

summation of BGK collision operator and external force term:

Q
(
f
)
:= �

(
f
)+ S

(
f
) = 1

τ

[
(1 + Hτ ) f eq − f

]
. (8)

Since the collision operator conserves mass and momentum, it is easy to verify that the
source term Q

(
f
)
satisfies the following conservative law:

∫
ψ (ξ)Q

(
f
)
dξ =

(
0
F

)

. (9)

Consequently, the Boltzmann-BGK equation with the force term can be rewritten as:

∂f
∂t

= L
(
f
)+ Q

(
f
)
. (10)

The form of Eq. (10) is in accord with the Boltzmann-BGK equation without the force
term which is used in the original two-stage third-order DUGKS [38], while the only dif-
ference is that the original collision operator �

(
f
)
is replaced by a new source term Q

(
f
)

including collision operator and force term.
The present third-order DUGKS algorithmwith the force term employs a finite-volume

formulation. The flow domain is divided into a set of control volumes Vj centered at xj.
Then integrating Eq. (10) in control volume Vj from time tn to tn + �t with third order
time discretization method for transport term and source term same [38]. But the differ-
ence is that an error termO (τ�t)will be included due to the approximation of force term
in Eq. (7), which has no effect on the flow without external force term. Finally, the evo-
lution equation Eq. (11) with third-order temporal accuracy can be obtained as follows:



Zhang et al. Advances in Aerodynamics            (2020) 2:26 Page 5 of 27

f n+1
j = f nj + 3

4
�tQn+1/3

j + 1
4
�tQn+1

j + 1
7
�t
[
3Ln+1/6

j + 4Ln+3/4
j

]

+ O
(
�t4, τ�t

)
,

(11)

where fj and Qj are the cell-averaged values of the distribution function and source term,
e.g.,

f n+1
j = 1

∣
∣Vj
∣
∣

∫

Vj
f
(
xj, ξ , tn + �t

)
dV , (12)

Qn+1/3
j = 1

∣∣Vj
∣∣

∫

Vj
Q
(
xj, ξ , tn + 1

3
�t
)
dV , (13)

and Ln+1/6
j and Ln+3/4

j are the micro-fluxes across the interface of control volumes Vj:

Ln+1/6
j = 1

∣
∣Vj
∣
∣

∫

∂Vj
(ξ · n) f

(
xcf , ξ , tn + 1

6
�t
)
dS, (14)

Ln+3/4
j = 1

∣
∣Vj
∣
∣

∫

∂Vj
(ξ · n) f

(
xcf , ξ , tn + 3

4
�t
)
dS, (15)

where
∣
∣Vj
∣
∣ and ∂Vj are the volume and surface of control volumes Vj, n is the outward

unit normal vector on the surface, and xcf is the coordinates of point on this control
surface (If the control surface is in discrete form, xcf is defined as the center of a discrete
control surface). The time step �t is determined by the Courant-Friedrichs-Lewy (CFL)
condition and stability condition �t/τ ≤ 12 [38]:

�t = min
{
C

�xmin

U0 + √
3DRT

, 12τ
}
, (16)

where C is the CFL number, U0 is the characteristic velocity of flow, and �xmin is the
minimal grid spacing.
Like the original DUGKS [21, 38], in order to remove the implicit treatment of the

source term Qn+1
j in Eq. (11), a new auxiliary distribution function is introduced:

f̂ n+1
j = f n+1

j − �t
4
Qn+1
j , (17)

where the distribution function f can be expressed as follows from Eq. (17).

f = 4τ
4τ + �t

f̂ + �t
4τ + �t

(1 + Hτ) f eq. (18)

Since the source term conserves mass and momentum, the following explicit evolution
equation of the distribution function f̂ is solved instead of the original implicit one:

f̂ n+1
j = f nj + 3

4
�tQn+1/3

j + 1
7
�t
[
3Ln+1/6

j + 4Ln+3/4
j

]
, (19)

and the conservative variables can be calculated from the auxiliary distribution function
f̂ n+1 as follows:

W n+1 =
(

ρ

ρu

)n+1

=
∫

ψ (ξ) f̂ dξ +
(
0
�tF/4

)

. (20)

According to Eq. (19), it is necessary to evaluate source term Qn+1/3
j and micro-fluxes

Ln+1/6
j and Ln+3/4

j in order to update the auxiliary distribution function. The calculation
of the micro-fluxes will be described in the next section, and the second-order DUGKS
method is used to update the source term Qn+1/3

j . Integrating Eq. (10) in control volume
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Vj from tn to tn + �t/3 with midpoint rule for the convection term and trapezoidal rule
for the source term, it can be obtained that,

f n+1/3
j − f nj + �t

3
Ln+1/6
j = �t

6

(
Qn
j + Qn+1/3

j

)
. (21)

The following new set of auxiliary distribution functions are also introduced to remove
the implicit terms in Eq. (21):

f̃ n+1/3
j = f n+1/3

j − 1
6
�tQn+1/3

j , (22)

f̃ +,n
j = f nj + 1

6
�tQn

j . (23)

Then, Eq. (21) can be rewritten as:

f̃ n+1/3
j = f̃ +,n

j − �t
3
Ln+1/6
j . (24)

The relations between auxiliary distribution functions f̃ , f̃ + and distribution functions
f, f̂ are as follows:

f n+1/3
j = 6τ

6τ + �t
f̃ n+1/3
j + �t

6τ + �t
(1 + Hτ)

n+1/3
j f eq,n+1/3

j , (25)

f nj = 6τ
6τ − �t

f̃ +,n
j − �t

6τ − �t
(1 + Hτ)nj f

eq,n
j , (26)

f̃ +,n
j = 12τ − 2�t

12τ + 3�t
f̂ nj + 5�t

12τ + 3�t
(1 + Hτ)nj f

eq,n
j . (27)

The hydrodynamic variables density and fluid macroscopic velocity can be solved from
the following equation (Eq. (28)), once the auxiliary distribution functions f̃ at time tn +
�t/3 is obtained.

W n+1/3 =
(

ρ

ρu

)n+1/3

=
∫

ψ (ξ) f̃ dξ +
(
0
�tF/6

)

, (28)

meanwhile, Qn+1/3
j can also be obtained as follows:

Qn+1/3
j = 1

τ

[
(1 + Hτ)

n+1/3
j f eq,n+1/3

j − f n+1/3
j

]

= 6�t
6τ + �t

[
(1 + Hτ)

n+1/3
j f eq,n+1/3

j − f̃ n+1/3
j

]
.

(29)

2.1.2 Flux evaluation

According to Eqs. (14) and (15), the key point in solving micro-fluxes Ln+1/6
j and Ln+3/4

j is
calculating the distribution function f

(
xcf , ξ , tn + �t/6

)
and f

(
xcf , ξ , tn + 3�t/4

)
on the

control surface. First, the Boltzmann-BGK equation in Eq. (10) is integrated within a half
time step h along the characteristic line x + ξ t whose end point xcf is located at the cell
interface, which leads to the following characteristic line solution:

f
(
xcf , ξ , t∗ + h

)− f
(
xcf − ξh, ξ , t∗

)

= h
2
[
Q
(
xcf , ξ , t∗ + h

)+ Q
(
xcf − ξh, ξ , t∗

)]
.

(30)

where t∗ = tn, h = �t/6 and t∗ = tn + �t/3 , h = 5�t/12 can be chosen for calculating
f
(
xcf , ξ , tn + �t/6

)
and f

(
xcf , ξ , tn + 3�t/4

)
, respectively. Similar to the treatment in
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Eq. (11), another auxiliary distribution function f̄ is introduced as follows to remove the
implicit term in Eq. (30):

f̄ = f − h
2
Q, (31)

f̄ + = f + h
2
Q. (32)

Then Eq. (30) can be expressed as,

f̄
(
xcf , ξ , t∗ + h

) = f̄ + (xcf − ξh, ξ , t∗
)
. (33)

where the relationship between f and f̄ is:

f
(
xcf , ξ , t∗ + h

) = 2τ
2τ + h

f̄
(
xcf , ξ , t∗ + h

)

+ h
2τ + h

(1 + Hτ) f eq
(
xcf , ξ , t∗ + h

)
.

(34)

The distribution function f̄ + (xcf − ξh, ξ , t∗
)
is approximated by second-order Taylor

expansion in original third-order DUGKS. In the present work, the distribution func-
tion f̄ + (xcf − ξh, ξ , t∗

)
is approximated by the following third-order Taylor expansion to

improve the spatial accuracy:

f̄ + (xcf − ξxh, ycf − ξyh, zcf − ξzh, ξ , t∗
)

= f̄ + (xc, yc, zc, ξ , t∗) +
(
m

∂

∂x
+ n

∂

∂y
+ r

∂

∂z

)
f̄ +
∣
∣∣
xc,ξ ,t∗

+ 1
2

(
m

∂

∂x
+ n

∂

∂y
+ r

∂

∂z

)2
f̄ +
∣∣
∣
xc,ξ ,t∗

+ 1
6

(
m

∂

∂x
+ n

∂

∂y
+ r

∂

∂z

)3
f̄ +
∣∣
∣
xc,ξ ,t∗

+ O
(
m4 + n4 + r4

)
, xcf − ξh ∈ Vc,

(35)

where the coefficients arem = xcf − ξxh − xc, n = ycf − ξyh − yc and r = zcf − ξzh − zc.
(xc, yc, zc) and

(
xcf , ycf , zcf

)
are the central points of cell and cell-interface, respectively. Vc

is the cell whose center is located at (xc, yc, zc). All derivatives in Eq. (35) are calculated
by the central difference method, where the p-order accuracy of central schemes used to
approximate q-order derivatives should satisfy the relation p + q ≥ 4.
The conservative variables at the control surfaces can be obtained by calculating

the moments of the auxiliary distribution function f̄ with Eq. (36). Once the con-
servative variables at control surface are known, the equilibrium distribution function
f eq
(
xcf , ξ , t∗ + h

)
can be obtained directly.

ρ
(
xcf , t∗ + h

) =
∫

f̄
(
xcf , ξ , t∗ + h

)
dξ ,

ρu
(
xcf , t∗ + h

) =
∫

ξ f̄
(
xcf , ξ , t∗ + h

)
dξ + h

2
F .

(36)

Therefore, using Eqs. (35), (33), (36) and (34) in turn, the original distribution functions
f
(
xcf , ξ , tn + �t/6

)
and f

(
xcf , ξ , tn + 3�t/4

)
can be obtained. With the determination

of these original distribution functions, the micro-fluxes Ln+1/6
j and Ln+3/4

j can be fully
evaluated according to Eqs. (14) and (15). So far, the two-stage third-order DUGKS with
external force is completely established, and the only remaining issue is the velocity space
discretization.
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2.2 Discrete velocity space

In the present two-stage third-order DUGKS, the Maxwellian equilibrium distribution
f eq is approximated by its second-order Taylor (or Hermit) expansion for theMa 	 1. By
discretizing the velocity space and employing the Gauss-Hermite quadrature, the discrete
equilibrium distribution function can be obtained,

f eqα = ρWα

[

1 + ξα · u
RT

+ 1
2

(
ξα · u
RT

)2
− |u|2

2RT

]

, (37)

whereWα are the weight coefficients corresponding to particle discrete velocity ξα .
For the incompressible flow, the slight compressible effect will cause small numerical

error in discrete Maxwellian distribution Eq. (37). To reduce this numerical error, the
density can be approximated as ρ = ρ0 + �ρ [41, 42]. Then, the following new type of
equilibrium distribution function can be adopted in two-stage third-order DUGKS.

f eqα = Wα

{

ρ + ρ0

[
ξα · u
RT

+ 1
2

(
ξα · u
RT

)2
− |u|2

2RT

]}

. (38)

Since only the nearly incompressible turbulent flows at constant temperature are con-
sidered in this paper, the following efficient D3Q19 model in Eq. (39) for discrete velocity
space, which is originally used in the LBMmethod, can be adopted:

ξ = √
3RT⎡

⎢
⎣

0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 −1 −1 1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 −1 −1 1 1 −1 −1 1

⎤

⎥
⎦ ,

(39)

where the associated weights are

Wα =

⎧
⎪⎨

⎪⎩

1/3 α = 0
1/18 α = 1, ..., 6
1/36 α = 7, ..., 18

. (40)

2.3 Sub-grid scale model

Many SGS models have been proposed with the rapid development of LES method,
most of them model the sub-grid scale tensor based on an eddy-viscosity assumption as
follows [3]:

τij − 1
3
τkkδij = −2νt S̄ij, (41)

where τij = uiuj − ūiūj is the residual-stress tensor, νt is the eddy viscosity, and S̄ij is the
symmetric part of the resolved velocity gradient. In the present high-order DUGKS, the
effective viscosity can be expressed as the sum of molecular viscosity and eddy viscosity,
therefore the effective relaxation time τe can be expressed as:

τe = νe
RT

= ν + νt
RT

. (42)

TheWALEmodel [16] and Vremanmodel [17] will be used to solve the near-wall region
problem in the present work, which offers a global coefficient SGS model that is afford-
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able, easy to implement, and applicable to fully inhomogeneous flows. The turbulent eddy
viscosity in the WALE model is calculated by the following equations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

νt = (Cw�)2
(
SdijS

d
ij

)3/2

(
S̄ij S̄ij

)5/2+
(
SdijS

d
ij

)5/4 ,

Sdij = S̄ik S̄kj + �̄ik�̄kj − 1
3δij
[
S̄mnS̄mn − �̄mn�̄mn

]
,

(43)

with the model constant Cw = 0.5 ∼ 0.6. The S̄ij and �̄ij are respective symmetric part
and anti-symmetric part of the resolved velocity gradient:

S̄ij = 1
2

(
∂ūi
∂xj

+ ∂ūj
∂xi

)
, �̄ij = 1

2

(
∂ūi
∂xj

− ∂ūj
∂xi

)
. (44)

In the Vreman model, the turbulent eddy viscosity is given by another template as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

νt = Cv

√
Bβ/
(
αijαij

)
,

βij = �2
mαmiαmj,

Bβ = β11β22 + β11β33 + β22β22 − β2
12 − β2

13 − β2
23,

(45)

where the symbol αij = ∂ūi/∂xj represents the derivatives of the filtered velocity ū, Bβ is
an invariant of the matrix βij, while αijαij is an invariant of αTα. The model constant Cv
is related to the Smagorinsky constant Cs by Cv ≈ 2.5C2

s . In the present simulations, the
WALE model employs model coefficient Cw = 0.50, and the Vreman model simulation
employs Cv = 0.07 [16, 17]. Moreover, the first-order derivatives of the velocity field in
these models are calculated by a fourth-order central difference in the fully fluid cells, and
the three-point scheme is used for the cells near wall boundary.

2.4 Computational procedure

In this section, the numerical procedure for one time step evolution of two-stage third-
order DUGKS with force term is summarized as follows:
Step1: Compute the microscopic flux Ln+1/6

j across the surface of control volumes from
time tn to tn + �t/3, and the half time step is set as h = �t/6;

a) Solve the eddy viscosity νt at time tn by WALE or Vreman models, and the
effective relaxation time can be calculated by Eq. (42);

b) Solve the auxiliary distribution function f̄ +,n
j according to Eq. (46) and its spatial

derivatives;

f̄ +,n
j = f nj + h

2
Qn
j = f nj + �t

12
Qn
j = 12τ − �t

12τ + 3�t
f̂ nj + 4�t

12τ + 3�t
(1 + Hτ )nj f

eq,n
j .

(46)

c) Calculate the auxiliary distribution function f̄
(
xcf , ξ , tn + h

)
with Eqs. (33) and

(35), then calculate the density and velocity with Eq. (36);
d) Given the density and velocity, calculate the equilibrium distribution function

f eq
(
xcf , ξ , tn + h

)
with Eq. (38);

e) Calculate the original distribution function f
(
xcf , ξ , tn + h

)
with Eq. (34);

f) Calculate the microscopic flux Ln+1/6
j with Eq. (14).
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Step2: Compute the source term Qn+1/3
j as the sum of BGK collision operator and

external force term;

a) Calculate the auxiliary distribution function f̃ n+1/3
j with Eq. (24), and f̃ +,n

j can be
solved with Eq. (27);

b) Update the conservative flow variablesW n+1/3
j with Eq. (28), and update the

equilibrium distribution function with Eq. (38);
c) Solve the source term Qn+1/3

j with Eq. (29).

Step3: Compute the microscopic flux Ln+3/4
j across the surface of control volumes from

time tn + �t/3 to tn + 7�t/6, and the half time step is set as h = 5�t/12;

a) Solve the eddy viscosity νt at time tn + �t/3 by WALE or Vreman models, and the
effective relaxation time can be calculated by Eq. (42);

b) Solve the auxiliary distribution function f̄ +,n+1/3
j according to Eq. (47) and its

spatial derivatives;

f̄ +,n+1/3
j = 24τ − 5�t

24τ + 4�t
f̃ n+1/3
j + 9�t

24τ + 4�t
(1 + Hτ)

n+1/3
j f eq,n+1/3

j . (47)

c) Calculate the auxiliary distribution function f̄
(
xcf , ξ , tn + �t/3 + h

)
with Eqs. (33)

and (35), then calculate the density and velocity with Eq. (36);
d) Given the density and velocity, calculate the equilibrium distribution function

f eq
(
xcf , ξ , tn + �t/3 + h

)
with Eq. (38);

e) Calculate the original distribution function f
(
xcf , ξ , tn + �t/3 + h

)
with Eq. (34);

f) Calculate the microscopic flux Ln+3/4
j with Eq. (15).

Step4: Update distribution function with f̂ n+1
j and conservative flow variablesW n+1

j .

a) Update auxiliary distribution function f̂ n+1
j with Eq. (11);

b) Update conservative flow variablesW n+1
j .

3 Numerical results and discussions
3.1 The fully developed turbulent channel flow

The fully developed turbulent channel flow is a canonical wall-bounded turbulent flow,
which has been simulated bymany pioneers [1, 6, 46, 47] withmacroscopic CFDmethods.
In addition, this case has also been simulated by several kinetic schemes based on meso-
scopic models [11–13, 37]. The focus of this study is validating the capability and accuracy
of the present high-order DUGKS-based LES method for simulating the wall-bounded
turbulent flows.
The parameters settings for the turbulent channel flow are as follows. As shown in

Fig. 1, the size of the non-dimensional domain is (3πh, 2h, 4πh/3) in the streamwise (X
coordinate), wall normal (Y coordinate) and spanwise (Z coordinate) directions, respec-
tively. Reτ = uτh/ν = 180 with a kinematic viscosity of ν = 4.5 × 10−5 is the Re number
based on the friction velocity uτ = √

τw/ρ and channel half-height h, where τw is the
wall shear stress. In the simulation the channel half-height is set as h = 1. Meanwhile,
the characteristic viscous length scale is defined as δh = ν/uτ , and the characteristic time
scale is defined as tc = h/uτ . The computational domain is divided into 108 × 96 × 108
in X, Y and Z directions, respectively, where the uniform grids are used in streamwise
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Fig. 1 The flow domain and coordinate system of the fully developed turbulent channel flow

and spanwise directions. In order to resolve the wall layer, a non-uniform distribution of
grid points (Fig. 2, the parameter α = 3.8) defined by Eq. (48) is used in the wall-normal
direction.

yj = y0 + (yN − y0)

{
1
2

+ tanh
[
α
(
j/N − 0.5

)]

2 tanh (α/2)

}

, (48)

where y0 and yN are coordinates of the starting and ending points, respectively. The
parameter α is a constant that determines the distribution of the grid, and a large value of
α leads to a dense distribution of the grid near the walls.
In the present simulations, periodic boundaries are implemented in both the stream-

wise and spanwise directions, and the bounce-back treatment for distribution function
[21] is applied to the solid walls to recover the macroscopic no-slip boundary condition.
The initial density field is set to ρ0 = 1, and the initial velocity is given by a lami-
nar (Poiseuille) parabolic profile with divergence free fluctuating velocity satisfying wall
boundary conditions. In the present simulations, the fluctuating velocity field is given by
Eq. (49),

Fig. 2 The grid on X-Y plane for the fully developed turbulent channel flow
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u′ = βucA
[
cos
(
x̃
)
sin
(
z̃
)+ 1

4 cos(2x̃) sin
(
4z̃
)+ 1

8 sin(4x̃) cos
(
8z̃
)+ φ

]
,

v′ = βucB
[ 4
3 sin

(
x̃
)
sin
(
z̃
)+ sin(2x̃) sin

(
4z̃
)− cos(4x̃) cos

(
8z̃
)]
,

w′ = βucA
[
sin
(
x̃
)
cos
(
z̃
)+ 1

4 sin(2x̃) cos
(
4z̃
)+ 1

8 cos(4x̃) sin
(
8z̃
)+ ϕ

]
,

A =
[
cos (ỹ) − 3

2π2 ỹ2 + 3 1
π
ỹ − 1

]
,B = 3

2

[
sin (ỹ) − 1

2π2 ỹ3 + 3
2π ỹ

2 − ỹ
]
,

(49)

where x̃ = 2πx/Lx, ỹ = 2πy/Ly, z̃ = 2πz/Lz, uc ≈ 18.20uτ = 0.14742 [1] is the mean
velocity in the channel center and β = 0.1 is a constant that determines the magnitude of
fluctuating velocity.
In addition, the uniform pressure gradient in the streamwise direction is implemented

as a driving force Fx. Meanwhile, the force term will be adjusted at each time step [48] in
order to provide the desired mass-flux as,

Fn+1
x = Fn

x + 1
�t

1
LyLz

[
ṁ0 − 2ṁn + ṁn−1] , (50)

where the initial force term is F0
x = −dp/dx = ρ0u2τ /h. The ṁn is the average mass-flux

at time level n, and ṁ0 = 2hρ0um is the initial mass-flux, where the um = 1
2h
∫ 〈u〉x,zdy

is the bulk mean velocity calculated by um/uτ = 15.63 [1]. The average mass-flux is
given by

ṁ =
∫

〈ρu〉x,zdy, (51)

where 〈...〉x,z denotes an average in the X and Z directions.
The simulation runs until stationary turbulence statistics are obtained. The initial

run is carried out for approximately 55tc to obtain a statistically stationary state. Then,
an additional run is carried out for 24tc to gather the average data. The averaging of
flow quantities is performed in time as well as in space in the homogeneous directions
(streamwise and spanwise directions).
Figure 3 illustrates the distribution of the streamwise mean velocity along the wall

normal direction with wall-layer scaling law. Besides, the result of direct numerical simu-
lation from Moser et al. [46] is plotted as well. It can be found that the present computed
mean velocity profiles satisfy u+ = y+ in the viscous sublayer region (y+ ≤ 5) and log-
arithm law (y+ ≥ 30), i.e., u+ = A ln y+ + B, where the values of A = 2.5 and B = 5.5
are known to be reasonably accurate for flow over smooth walls at Reτ ≈ 180 [1, 3].
The results of the implicit LES and two models almost coincide with each other. Both of
them over-predict the mean velocity profile in the log-law region by approximately 3.5%.
Such differences are likely due to the error of wall shear stress calculation. The computed
friction velocity uτ = 0.0077 ∼ 0.0078 is smaller than setting value that uτ = 0.0081.
In addition, they are also influenced by the numerical dissipation of the computational
approach. The influence of numerical scheme is dominant for mean velocity.
The profiles of root-mean-square (r.m.s.) velocity fluctuations are illustrated in Fig. 4a, b

and c. The computed profiles match well with each other, and they are both in reasonable
agreement with the results of DNS [46]. In the buffer layer (15 ≤ y+ ≤ 60), the present
results in the streamwise and spanwise slightly deviate from the reference data. Mean-
while, the r.m.s. velocity results in the normal direction show larger deviations than those
in streamwise and spanwise. The Reynolds stress normalized by the wall-shear stress is
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Fig. 3 The computed mean velocity profile with wall-layer scaling laws in inner wall coordinates for the fully
developed turbulent channel flow

presented in Fig. 4d. The computed Reynolds stress profiles also coincide with each other,
and follow the results of DNS [46] fairly closely with about 4% difference in the buffer
regions.
Figure 5 shows the computed r.m.s. pressure fluctuations, which are normalized by the

wall shear stress and qualitatively consistent with the results of DNS [46]. However, there
are also evident differences between the current results and reference data. The computed
maximum pressure fluctuations have a maximum value of 1.75 at y+ ≈ 34 for two models
and 1.72 at y+ ≈ 34 for implicit LES, which is close to the value of 1.75 at y+ ≈ 30 [1] and

Fig. 4 The r.m.s. velocity fluctuations and Reynolds stress for the fully developed turbulent channel flow. a
the r.m.s. streamwise velocity fluctuation; b the r.m.s. wall-normal velocity fluctuation; c the r.m.s. spanwise
velocity fluctuation; d Reynolds stress
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Fig. 5 The r.m.s. pressure fluctuations for the fully developed turbulent channel flow

1.88 at y+ ≈ 30 [46], respectively. In addition, the present pressure fluctuation is about
1.46 for two models and 1.44 for implicit LES at the wall boundary. It is smaller than prior
data in Refs. [1, 46] whose values are about 1.50 and 1.53, respectively. As discussed in
Refs. [11, 12], such difference could conceivably be due to compressibility effects and filter
effects.
The fluctuations of r.m.s. vorticity components are illustrated in Fig. 6. Being same with

the above analysis, the present results of LES are almost the same, and all of them are qual-
itatively consistent with the reference data. Because of the inhomogeneity and anisotropy
of turbulence closer to the wall, it is found that there are evident differences among the
components of vorticity. In addition, as expected, all the components of vorticity away
from the wall tend to be consistent value.
The ratio of eddy viscosity νt to kinematic viscosity ν in the near wall region is shown in

Fig. 7. It can be found that the eddy viscosity keeps an almost constant value in the log-law
region, and dramatically decreases near the wall. The eddy viscosity from WALE model
drops faster than that from Vreman model as a result of the WALE model reproduces the
proper scaling (νt = O(y3)) at the wall, while Vreman model reproduces νt = O(y) [49].

3.2 The turbulent plane Couette flow

The study on turbulent plane Couette flow [50, 51] was relatively insufficient compared
with the fully developed turbulent channel flow. One of the reasons is the existence of
very-large-scale motions in Couette flow [51, 52] (especially for large Re number) that is
particularly challenging to implement DNS, therefore LES may be a good alternative.
In this sub-section, a turbulent plane Couette flow at low friction Re number (Reτ =

93) will be investigated. The flow domain (4πh in the streamwise, 2h in the wall normal
and 2πh in the spanwise directions) and coordinate system are shown in Fig. 8. The half
distance between the walls is set as h = 1. Meanwhile, the characteristic viscous length
scale is defined as δh = ν/uτ , and the characteristic time scale is defined as tc = h/uτ ,
where the ν = 4.95 × 10−5 is kinematic viscosity and uτ is the friction velocity. The
computational domain is divided into 108 × 96 × 108 in the streamwise (X coordinate),
wall normal (Y coordinate) and spanwise (Z coordinate) directions, respectively, where
the uniform grids are used in streamwise and spanwise directions. In order to resolve the
wall layer, a non-uniform grid (Fig. 9) generated by Eq. (48) with parameter a = 3.5 is
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Fig. 6 The r.m.s. vorticity fluctuations for the fully developed turbulent channel flow. a X component, b Y
component, c Z component

used in the wall-normal direction, where the grid resolution is�y+
min ≈ 0.44 near the wall

and �y+
max ≈ 3.59 at the center region between two walls.

The initial density of the flow field is set as ρ0 = 1. The initial velocity is given by
a laminar (Couette) linear profile with divergence free fluctuating velocity calculated by
Eq. (49). The statistical average of flow quantities is performed in time about 36tc as well
as in space in the homogeneous directions until the flow reaches a statistical steady state.
The streamwise mean velocity profiles along the wall normal direction are shown in

Fig. 10 scaled in outer (Fig. 10a) and inner (Fig. 10b) units. The u+ = y+ in the viscous
sublayer (y+ ≤ 5) and logarithm law u+ = ln y+/0.41+5.1 in the near-wall log-law region

Fig. 7 The νt/ν in the near wall region for the fully developed turbulent channel flow
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Fig. 8 The flow domain and coordinate system of the turbulent plane Couette flow

(y+ ≥ 30) are also plotted on Fig. 10b. The present profiles, computed with two models
and without using SGS model, agree well with the DNS results [51], where the maximum
relative error in log-law region is 3.96% for implicit LES, 2.3% for Vreman model and 2.0%
for WALE model.
The r.m.s. velocity fluctuations are illustrated in Fig. 11a, b and c. The r.m.s. velocity

profiles from the Vreman and WALE models match well with each other, and they are in
accord with the results of implicit LES. The present r.m.s. velocity fluctuations are both
in reasonable agreement with the DNS results by Lee and Moser [51]. In the region of
15 ≤ y+ ≤ 50, the v′

rms and w′
rms slightly deviate from the reference result, while u′

rms
slightly deviates from the DNS data in the region of y+ ≥ 40.
The Reynolds stress is also presented in Fig. 11d. Different from the turbulent chan-

nel flow, in the plane Couette flow, the Reynolds stress increases monotonically from the
wall to an almost constant level in the center region. The present profiles by Vreman
and WALE models are consistent with the result computed by direct numerical simu-
lations [48], export for some slight deviations near the buffer layer and log-law region.
These deviations may be due to the following reasons. Firstly, the grids in the stream-
wise and spanwise directions are relatively coarser than wall normal direction. Secondly,
owing to great computational cost, the computational domain size (the streamwise and
spanwise directions) for the present work is not long enough to cover the extent of the

Fig. 9 The grid on X-Y plane for the turbulent plane Couette flow at Reτ = 93
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Fig. 10 The mean velocity profiles for the turbulent plane Couette flow at Reτ = 93. a outer scales, b inner
scales

large-scale motion in Couette flow [50, 51]. It should be noted that the selected computa-
tional domain is sufficient for the present research purpose, and capturing and studying
all the very-large-scale motions is out of scope for the current study. It can be found
that the Reynolds stress computed without using SGS model obviously deviates from the
DNS data in the log-law region. We think it needs a longer time to reach the statistical
steady state compared with the Vreman and WALE models. A longer calculation time
may improve the results for implicit LES.
The computed r.m.s. pressure fluctuations normalized by the wall shear stress are illus-

trated in Fig. 12, which are reasonably consistent with the DNS results [51]. The r.m.s.
pressure fluctuation at the wall boundary is about 2.30 for implicit LES, 2.41 for Vreman
model and 2.44 for WALE model, which are close to the prior data based DNS in Ref.

Fig. 11 The r.m.s. velocity fluctuations and Reynolds stress for the turbulent plane Couette flow at Reτ = 93.
a the r.m.s. streamwise velocity fluctuation, b the r.m.s. wall-normal velocity fluctuation, c the r.m.s. spanwise
velocity fluctuation, d Reynolds stress
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Fig. 12 The r.m.s. pressure fluctuations for the turbulent plane Couette flow at Reτ = 93

[51] whose value is about 2.37. The r.m.s. pressure fluctuations predicted by Vreman and
WALE models are better than implicit LES. Figure 13 shows the r.m.s. of vorticity fluctu-
ations components. Being same with the turbulent channel flow, the present results are
almost the same, and all of them are qualitatively consistent with the DNS results [51].
The ratio of eddy viscosity νt to kinematic viscosity ν in the near wall region is shown

in Fig. 14. The trend of νt/ν for Couette flow is consistent with that of channel flow, while
the νt/ν for Couette flow is smaller than channel flow.

3.3 Three-dimensional lid-driven cubical cavity flow

The two-dimensional lid-driven cavity flow is a classic benchmark case for testing new
numerical methods and studying additional physical effects of flow phenomenon [53].
The three-dimensional cavity flow has also attracted a vast amount of attention and has

Fig. 13 The r.m.s. vorticity fluctuations for the turbulent plane Couette flow at Reτ = 93. a X component, b Y
component, c Z component
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Fig. 14 The νt/ν in the near wall region for the turbulent plane Couette flow at Reτ = 93

been studied both experimentally [54] and numerically [11, 55–57]. This section focuses
on relatively high Reynolds number (Re = 12000) lid-driven cubical cavity flow. Generally
speaking, when the Reynolds number based on the lid-driven velocity and cavity length
is less than 2000, the flow is laminar. At Reynolds number higher than the critical value
between 2000 and 3000, an instability appears in the vicinity of the downstream-corner-
eddy [58]. Although the critical Reynolds number is not clear, with the further increase of
Re, there is turbulence over some part of the flow field. At Reynolds number higher than
10000, the flow near the downstream-corner-eddy becomes fully turbulent.
The lid-driven cubical cavity flow has a simple geometry, while it contains complex

flow phenomena [55]. In addition, there is not any homogeneous flow direction, and the
presence of side walls affect the full flow patterns. Due to the complex flow phenomena
encountered within such a system at higher Re, it becomes a very challenging case. Espe-
cially, it requires accurate time and space discrete schemes to obtain results with long
averaging times. Consequently, the present high-order DUGKS-based LES method will
be used to study this problem, and its numerical capability is testified.
The fluid enclosed in the cavity is assumed to be nearly incompressible with uniform

density and temperature. The flow domain of the lid-driven cubical cavity of length 2h is
shown in Fig. 15a with coordinate system. The flow is driven by the top lid that moves in
the X-direction with maximum velocity Uw = 0.15 to keep the Ma = Uw/

√
3RT 	 1.

Consequently, the Reynolds number used in our computation is Re = (2hUw) /ν = 12000
with a viscosity of ν = 2.5× 10−5. In order to obtain an efficient near-wall resolution, the
stretching smooth grid of 64×64×64 in Fig. 15b is adopted. The grid points are generated
by Eq. (48) with the parameter a = 3 in all directions and refined grids are used near the
wall boundary.
In the present simulations, the time step is chosen as 8.4 × 10−4. The statistically sta-

tionary state of the flow field is achieved after running for 510tc, where the characteristic
time is tc = (2h) /Uw. In addition, the computed turbulence statistics, including mean
velocity, Reynolds stress profiles, and r.m.s. velocity fluctuations are obtained by a long
time averaging about 600tc.
As far as the constant velocity is imposed on the lid, it will lead to severe discontinu-

ities along the top edges. Moreover, the presence of such discontinuities may undermine
the accuracy and stability of numerical simulations [55, 56]. In order to remove these
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Fig. 15 a The flow domain and coordinate system of the lid-driven cubical cavity flow. b The grid on plane
Z=1

weaknesses, a high degree polynomial velocity distribution as Eq. (52) on the lid is adopted
according to the recommendation of Leriche and Gavrilakis [55].

uw (x, 2h, z) = Uw

[

1 −
(
x
h

− 1
)18]2[

1 −
(
z
h

− 1
)18]2

, (52)

where the moving boundary is at y = 2h (top wall) and Uw is the maximum velocity. This
profile in Eq. (52) makes the velocity zero value at the intersection between the top wall
and other walls, meanwhile, the lid-driven velocity grows rapidly to a constant value over
a short distance away from side walls.
The mean velocity profiles along the horizontal (X-direction) and vertical (Y-direction)

symmetry axes are shown in Fig. 16. The predictions by both WALE and Vreman models
are in good agreement with DNS data of Leriche and Gavrilakis [55] and LES predic-
tions by Shetty et al. [57] with dynamic Vreman model, except that the 〈v〉 profile along X
direction (Fig. 16a) is smaller than DNS data at the negative peak. Besides, the results of
implicit LES are also shown in Fig. 16, which are also in accord with the reference data.
As discussed in Ref. [55], the narrow peak near the downstream wall indicates that the
flow in these regions is laminar but unsteady. It is also obvious from the velocity profiles

Fig. 16 Mean velocity profiles along the central lines. a The x − 〈v〉 profiles on line (x, 1, 1) and b the y − 〈u〉
profiles on line (1, y, 1)
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Fig. 17 Contours of average velocity in the mid-plane Z = 1. 100 contours levels taken between −0.25 and
0.86 for 〈u〉 and between −0.58 and 0.17 for 〈v〉. Dashed contours lines correspond to negative levels. a No
SGS model 〈u〉; b No SGS model 〈v〉; c Vreman model 〈u〉; d Vreman model 〈v〉; eWALE model 〈u〉; fWALE
model 〈v〉

that the flow parallel to the downstream wall is similar to a wall jet. As shown in Fig. 16b,
it also contains a high average velocity gradient in the thin high momentum layer near
the lid. The kinetic energy is injected into the flow by the shear stress at the top lid. The
present prediction of the distance that the mean velocity 〈u〉 falling by half along the nor-
mal direction at the center of the lid is about 0.86% for implicit LES, 0.87% for Vreman
model andWALEmodel of the separation between the cavity walls, which is in agreement
with 0.8% [55].
The contour plots of the mean velocity component 〈u〉 and 〈v〉 in the mid-plane Z = 1

are shown in Fig. 17. The present results correctly capture all secondary corner eddies
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Fig. 18 The contour surface of
√

〈u〉2 + 〈v〉2. a No SGS model, b Vreman model, cWALE model

next to the upstreamwall and located near the upper wall or bottomwall in the mean flow
field. Furthermore, there is almost no difference between the two SGSmodels andwithout
SGS model in prediction of the mean flow structure. The most dominant feature of the
mean flow is the large-scale recirculation which spans the cavity [55]. As shown in Fig. 18,
the flow in the thin high-momentum layer next to the lid changes its direction around
the upper corner near the downstream. Then, the flow develops into an unsteady wall jet
whose thickness varies along the downstream wall, and breaks up into two approximately
elliptical free jets (also see Fig. 19). The prediction of the plane wall jet separates from
the downstream wall at distances �y (from the bottom wall) of about 0.5h − 0.6h, which
is in line with the DNS data [55]. As shown in Fig. 19, the flow pattern is that: the flow
structures (especially the wall jets) on both sides of the symmetry plane (Z = 1) are
similar.
The profiles of r.m.s. velocity fluctuations along two lines (x, 1, 1) and (1, y, 1) are shown

in Fig. 20. The present results show that the r.m.s. fluctuations along the line (x, 1, 1)
(Fig. 20a and b) and the line (1, y, 1) (Fig. 20c and d) are in good agreement with the
DNS results [55], except for the slight deviations at the peak. As for the comparison with
LES data [57] provided by fifth-order WENO scheme and dynamic Vreman model under
the same number of grids, the present results are better in most regions. The compo-
nents of the Reynolds stress

〈
u′v′〉 on these two central lines are also provided in Fig. 21.

They are both consistent to the trend of the DNS data, while their maximums tend to be
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Fig. 19 Distribution of
√

〈u〉2 + 〈v〉2 on the planes Z = 0.5, Z = 1.0 and Z = 1.5. The contour range is
0.01 − 0.13 with 50 levels. a No SGS model, b Vreman model, cWALE model

slightly underestimated, whereas their minimums are somewhat overestimated. In addi-
tion, it can be found that the mean velocity field predicted by the two models and implicit
LES are almost the same, however, there are some slight differences in the r.m.s. velocity
fluctuations and Reynolds stress.
The contours of the νt/ν computed by two models at the mid-plane Z = 1 are shown in

Fig. 22. The present results of bothWALE and Vremanmodels are almost same, while the
νt computed byWALE model is about one order of magnitude larger than that computed
by Vreman model. The eddy viscosity νt near the downstream-corner between with top
lid and bottom wall is larger than other regions, which indeed shows that the flow near
the downstream-corner-eddy is fully turbulent.
The present results explicitly indicate that turbulence is generated on cavity walls. It is

obvious that the turbulent fluctuations are about one order of magnitude larger near the
downstream wall than near the upstream wall. Moreover, the fluctuations on the bottom
wall are the largest. In the region near the downstream wall where the wall jet separated
into two elliptical jets, the high gradients of velocity fluctuations are also well reproduced.
In addition, the Reynolds stress below the top lid is small that can be ignored, which
indeed shows that the flow under the lid is mainly laminar but transient. These physics
seem to be consistent with the descriptions in the abundant literature which studies this
problem [55, 56].
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Fig. 20 Profiles of the u′
rms and v′

rms (r.m.s. fluctuations) in the mid-plane Z = 1. a) x − u′
rms; b x − v′

rms;
c y − u′

rms; d y − v′
rms

4 Summary
In the present work, both the incompressible discrete Maxwellian equilibrium distri-
bution function and the external force are introduced into the two-stage third-order
DUGKS for simulating low-speed turbulent flows. In addition, a parallel code with
three-dimensional domain decomposition for large-eddy simulation of turbulent flows
is developed. Finally, three typical low Reynolds number wall-bounded turbulent flows,
the fully developed turbulent channel flow, the turbulent plane Couette flow and
lid-driven cubical cavity flow are investigated using the present high-order DUGKS-
based LES method (based on D3Q19 model). The implicit LES and two SGS models,

Fig. 21 The Reynolds stress
〈
u′v′〉 along the central lines in the mid-plane Z = 1. a the central line (x, 1, 1),

b the central line (1, y, 1)
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Fig. 22 Contours of the νt/ν at the mid-plane Z = 1. a) The Vreman model, 40 contours levels taken
between 1 × 10−5 and 0.4. b The WALE model, 40 contours levels taken between 1 × 10−5 and 4.0

namely, the Vreman model and the WALE model are implemented in the present
method.
The turbulence statistics, including mean velocity, the r.m.s. fluctuations velocity,

Reynolds stress, et al., are compared with the results of DNS and LES given in the previ-
ous literature. The present results of two SGS models and implicit LES are in reasonable
agreement with the results of DNS. It is no surprise that the results from the Vreman and
WALE models are in perfect agreement with each other. Besides, the results of implicit
LES are almost the same as the explicit LES with Vreman model and WALE model,
which indicate that the influence of numerical scheme is dominating, rather than the sub-
grid scale model in the present simulation. In order to resolve small scale eddies near
solid walls, it usually needs the same amount of grid as DNS. As for lid-driven cubi-
cal cavity flow, the mean velocity field predicted by the two models and implicit LES
are almost the same, while there are some slight differences in the r.m.s. velocity fluc-
tuations and Reynolds stress. In general, the present computed mean velocity field is in
good agreement with the results of DNS. Although the results of the r.m.s. fluctuations of
velocity field and Reynolds stress slightly deviate from the DNS data, the flow physics are
consistent with the descriptions of the abundant literature.
In summary, the LES for wall-bounded turbulent flows using high-order DUGKS shows

that its results are reasonably accurate. It clearly proves that the present high-order
DUGKS has the potential to be used as a LES tool for simulating turbulent flows. How-
ever, we should also note that the flow Reynolds number of the current examples is not
too high, and large-eddy simulations of turbulent flow at extremely high flow Reynolds
numbers are needed to further verify the capabilities and accuracy of the present method
in the recent future.

Acknowledgments
The authors thank National Supercomputing Center in Wuxi and Shanghai Supercomputing Technology Co., LTD for
providing computing resources.

Authors’ contributions
All authors read and approved the final manuscript.



Zhang et al. Advances in Aerodynamics            (2020) 2:26 Page 26 of 27

Funding
The National Numerical Wind Tunnel Project, the National Natural Science Foundation of China (Grant No. 11902264,
11902266, 12072283), the 111 Project of China (B17037), as well as the ATCFD Project (2015-F-016).

Availability of data andmaterials
The data that support the findings of this study are available from the corresponding author upon reasonable request.

Competing interests
The authors declare that they have no competing interests.

Received: 30 July 2020 Accepted: 25 October 2020

References
1. Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid

Mech 177:133–166
2. Moin P, Mahesh K (1998) Direct numerical simulation: A tool in turbulence research. Ann Rev Fluid Mech 30:539–578
3. Pope SB (2000) Turbulent Flows. Cambridge University Press, New York
4. Wilcox DC (2006) Turbulence modeling for CFD. DCW Industries, Inc., La Canada, California
5. Smagorinsky J (1963) General circulation experiments with the primitive equations: I. The basic experiment. Mon

Weather Rev 91(3):99–164
6. Deardorff JW (1970) A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J

Fluid Mech 41(2):453–480
7. Meneveau C, Katz J (2000) Scale-invariance and turbulence models for large-eddy simulation. Ann Rev Fluid Mech

32:1–32
8. Sagaut P (2006) Large eddy simulation for incompressible flows: an introduction. Springer, Berlin
9. Bose ST, Park GI (2018) Wall-modeled large-eddy simulation for complex turbulent flows. Ann Rev Fluid Mech

50:535–561
10. Chen H, Kandasamy S, Orszag S, Shock R, Succi S, Yakhot V (2003) Extended Boltzmann kinetic equation for turbulent

flows. Science 301(5633):633–636
11. Premnath KN, Pattison MJ, Banerjee S (2009) Generalized lattice Boltzmann equation with forcing term for

computation of wall-bounded turbulent flows. Phys Rev E 79(2):026703
12. Liu M, Chen X, Premnath KN (2012) Comparative study of the large eddy simulations with the lattice Boltzmann

method using the wall-adapting local eddy viscosity and Vreman subgrid scale models. Chin Phys Lett 29(10):104706
13. Zhuo C, Zhong C (2016) LES-based filter-matrix lattice Boltzmann model for simulating fully developed turbulent

channel flow. Int J Comput Fluid Dyn 30(7-10):543–553
14. Hou S, Sterling J, Chen S, Doolen GD (1996) A lattice Boltzmann subgrid model for high Reynolds number flows.

Fields Inst Commun 6(13):151–166
15. Premnath KN, Pattison MJ, Banerjee S (2009) Dynamic subgrid scale modeling of turbulent flows using

lattice-Boltzmann method. Phys A: Stat Mech Appl 388(13):2640–2658
16. Nicoud F, Ducros F (1999) Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow,

Turbulence Combust 62(3):183–200
17. Vreman AW (2004) An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and

applications. Phys Fluids 16(10):3670–3681
18. Xu K (2001) A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial dissipation

and Godunov method. J Comput Phys 171(1):289–335
19. Su M, Yu JD (2012) A parallel large eddy simulation with unstructured meshes applied to turbulent flow around car

side mirror. Comput Fluids 55:24–28
20. Cao G, Su H, Xu J, Xu K (2019) Implicit high-order gas kinetic scheme for turbulence simulation. Aerosp Sci Technol

92:958–971
21. Guo Z, Xu K, Wang R (2013) Discrete unified gas kinetic scheme for all Knudsen number flows: Low-speed

isothermal case. Phys Rev E 88(3):033305
22. Guo Z, Wang R, Xu K (2015) Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal

compressible case. Phys Rev E 91(3):033313
23. Xu K, Huang J-C (2010) A unified gas-kinetic scheme for continuum and rarefied flows. J Comput Phys

229(20):7747–7764
24. Zhu L, Guo Z, Xu K (2016) Discrete unified gas kinetic scheme on unstructured meshes. Comput Fluids 127:211–225
25. Wu C, Shi B, Chai Z, Wang P (2016) Discrete unified gas kinetic scheme with a force term for incompressible fluid

flows. Comput Math Appl 71(12):2608–2629
26. Pan D, Zhong C, Zhuo C (2019) An implicit discrete unified gas-kinetic scheme for simulations of steady flow in all

flow regimes. Commun Comput Phys 25(5):1469–1495
27. Zhu Y, Zhong C, Xu K (2016) Implicit unified gas-kinetic scheme for steady state solutions in all flow regimes. J

Comput Phys 315:16–38
28. Zhong M, Zou S, Pan D, Zhuo C, Zhong C (2020) A simplified discrete unified gas kinetic scheme for incompressible

flow. Phys Fluids 32:093601
29. Liu H, Kong M, Chen Q, Zheng L, Cao Y (2018) Coupled discrete unified gas kinetic scheme for the thermal

compressible flows in all Knudsen number regimes. Phys Rev E 98(5):053310
30. Chen J, Liu S, Wang Y, Zhong C (2019) Conserved discrete unified gas-kinetic scheme with unstructured discrete

velocity space. Phys Rev E 100(4):043305
31. Zhang C, Yang K, Guo Z (2018) A discrete unified gas-kinetic scheme for immiscible two-phase flows. Int J Heat Mass

Transfer 126:1326–1336



Zhang et al. Advances in Aerodynamics            (2020) 2:26 Page 27 of 27

32. Yang Z, Zhong C, Zhuo C (2019) Phase-field method based on discrete unified gas-kinetic scheme for
large-density-ratio two-phase flows. Phys Rev E 99(4):043302

33. Zhang Y, Zhu L, Wang R, Guo Z (2018) Discrete unified gas kinetic scheme for all Knudsen number flows. III. Binary
gas mixtures of Maxwell molecules. Phys Rev E 97(5):053306

34. Tao S, Zhang H, Guo Z, Wang L (2018) A combined immersed boundary and discrete unified gas kinetic scheme for
particle–fluid flows. J Comput Phys 375:498–518

35. Song X, Zhang C, Zhou X, Guo Z (2020) Discrete unified gas kinetic scheme for multiscale anisotropic radiative heat
transfer. Adv Aerodyn 2:3. https://doi.org/10.1186/s42774-019-0026-3

36. Wang P, Wang L, Guo Z (2016) Comparison of the lattice Boltzmann equation and discrete unified gas-kinetic
scheme methods for direct numerical simulation of decaying turbulent flows. Phys Rev E 94(4):043304

37. Bo Y, Wang P, Guo Z, Wang L (2017) DUGKS simulations of three-dimensional Taylor–Green vortex flow and
turbulent channel flow. Comput Fluids 155:9–21

38. Wu C, Shi B, Shu C, Chen Z (2018) Third-order discrete unified gas kinetic scheme for continuum and rarefied flows:
Low-speed isothermal case. Phys Rev E 97(2):023306

39. Li J, Du Z (2016) A two-stage fourth order time-accurate discretization for Lax–Wendroff type flow solvers I.
Hyperbolic conservation laws. SIAM J Sci Comput 38(5):3046–3069

40. Li J (2019) Two-stage fourth order: temporal-spatial coupling in computational fluid dynamics (CFD). Adv Aerodyn
1:3. https://doi.org/10.1186/s42774-019-0004-9

41. Zou Q, Hou S, Chen S, Doolen GD (1995) An improved incompressible lattice Boltzmann model for
time-independent flows. J Stat Phys 81(1-2):35–48

42. He X, Luo L (1997) Lattice Boltzmann model for the incompressible Navier–Stokes equation. J Stat Phys
88(3-4):927–944

43. Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. Small amplitude processes in
charged and neutral one-component systems. Phys Rev 94:511–525

44. He X, Chen S, Doolen GD (1998) A novel thermal model for the lattice Boltzmann method in incompressible limit. J
Comput Phys 146(1):282–300

45. Shan X, Yuan X-F, Chen H (2006) Kinetic theory representation of hydrodynamics: A way beyond the Navier–Stokes
equation. J Fluid Mechanics 550:413–441

46. Moser RD, Kim J, Mansour NN (1999) Direct numerical simulation of turbulent channel flow up to Reτ=590. Phys
Fluids 11(4):943–945

47. Vreman AW, Kuerten JGM (2014) Comparison of direct numerical simulation databases of turbulent channel flow at
Reτ=180. Phys Fluids 26(1):015102

48. Gokarn A, Battaglia F, Fox RO, Hill JC, Reveillon J (2008) Large eddy simulations of incompressible turbulent flows
using parallel computing techniques. Int J Numer Methods Fluids 56(10):1819–1843

49. Nicoud F, Toda HB, Cabrit O, Bose S, Lee J (2011) Using singular values to build a subgrid-scale model for large eddy
simulations. Phys Fluids 23(8):085106

50. Bech KH, Tillmark N, Alfredsson PH, Andersson HI (1995) An investigation of turbulent plane Couette flow at low
Reynolds numbers. J Fluid Mech 286:291–325

51. Lee M, Moser RD (2018) Extreme-scale motions in turbulent plane Couette flows. J Fluid Mech 842:128–145
52. Tsukahara T, Kawamura H, Shingai K (2006) DNS of turbulent Couette flow with emphasis on the large-scale

structure in the core region. J Turbul 7(19):1–16
53. Ghia U, Ghia KN, Shin CT (1982) High-Re solutions for incompressible flow using the Navier-Stokes equations and a

multigrid method. J Comput Phys 48(3):387–411
54. Prasad AK, Koseff JR (1989) Reynolds number and end-wall effects on a lid-driven cavity flow. Phys Fluids A: Fluid

Dyn 1(2):208–218
55. Leriche E, Gavrilakis S (2000) Direct numerical simulation of the flow in a lid-driven cubical cavity. Phys Fluids

12(6):1363–1376
56. Bouffanais R, Deville MO, Leriche E (2007) Large-eddy simulation of the flow in a lid-driven cubical cavity. Phys Fluids

19(5):055108
57. Shetty DA, Fisher TC, Chunekar AR, Frankel SH (2010) High-order incompressible large-eddy simulation of fully

inhomogeneous turbulent flows. J Comput Phys 229(23):8802–8822
58. Iwatsu R, Ishii K, Kawamura T, Kuwahara K, Hyun JM (1989) Numerical simulation of three-dimensional flow structure

in a driven cavity. Fluid Dyn Res 5(3):173–189

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1186/s42774-019-0026-3
https://doi.org/10.1186/s42774-019-0004-9

	Abstract
	Keywords

	Introduction
	Numerical method
	Third-order DUGKS with force term
	Two-stage third-order temporal discretization
	Flux evaluation

	Discrete velocity space
	Sub-grid scale model
	Computational procedure

	Numerical results and discussions
	The fully developed turbulent channel flow
	The turbulent plane Couette flow
	Three-dimensional lid-driven cubical cavity flow

	Summary
	Acknowledgments
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

