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Abstract
With the increasing of computing ability, large-scale simulations have been generating
massive amounts of data in aerodynamics. Sort-last parallel rendering is the most
classical image compositing method for large-scale scientific visualization. However, in
the stage of image compositing, the sort-last method may suffer from scalability
problem on large-scale processors. Existing image compositing algorithms tend to
perform well in certain situations. For instance, Direct Send is well on small and
medium scale; Radix-k gets well performance only when the k-value is appropriate and
so on. In this paper, we propose a novel method named mSwap for scientific
visualization in aerodynamics, which uses the best scale of processors to make sure its
performance at the best. mSwap groups the processors that we can use with a (m, k)
table, which records the best combination ofm (the number of processors in subgroup
of each group) and k (the number of processors in each group). Then in each group,
using a m-ary tree to composite the image for reducing the communication of
processors. Finally, the image is composited between different groups to generate the
final image. The performance and scalability of our mSwap method is demonstrated
through experiments with thousands of processors.
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1 Introduction
With the development of HPC systems, simulations could generate larger amounts of data
than before in aerodynamics, which means more powerful techniques should be adopted
for data analyzing. Visualization aimed at aerodynamics has been playing an important
role in scientific discovery, especially in massive data discovery [1–6]. The increase of
data also challenges the traditional methods of scientific visualization. Parallel render-
ing is a useful approach to improve the performance of visualization, which has been
widely used in scientific visualization to make full use of the HPC systems. As defined
by Molnar et al. [7], all parallel rendering approaches are classified into three categories:
sort-first, sort-middle and sort-last based on where the sort from object-space to screen
space occurs. Among these classifications, sort-first and sort-last are more appropriate
for parallel systems than sort-middle, because of their entire rendering pipeline. Besides,
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sort-last parallel rendering has been widely used in parallel systems for its well perfor-
mance in load balancing. Different from the other parallel rendering approaches, sort-last
has the step of image compositing, that’s where the bottleneck is. To settle this problem,
several image composition algorithms have been proposed so far.
For accelerating sort-last parallel rendering, image compositing algorithms are used to

improve the utilization of processors. The classical image compositing algorithms can
be divided into three categories according to [8]: Direct Send, Parallel Pipeline and Tree
which includes all algorithms based on tree. Direct Send is simple to implement. Every
processor will be responsible for part of the dataset. However, its complex communication
between processors leads to lower performance on massive scale. Parallel Pipeline hasn’t
been widely used for the same reason. The algorithms based on tree have been improved
all these years, such as Binary Tree, Binary Swap, 2-3 Swap, Radix-k, 2-3-4 Decomposition
and so on. All of these image compositing algorithms are implemented by an image com-
positing tree, which is designed using the tree structure. Although, parallel rendering has
been studied for so many years, there are still some problems during image compositing.
In this paper, we introduce a new image compositing algorithm, called mSwap, for mak-

ing full use of processors. The advantage of mSwap algorithm is that it can keep each
group running in the best situation for avoiding performance degradation. Besides image
compositing usingm-ary tree could reduce the communication between processors effec-
tively, which is the most time-consume step. Considering the cost of collection, Binary
Tree is used at the end of mSwap, which replaces the collection step because of its no
image split. On the other hand, the mSwap algorithm is easy to be understood and imple-
mented, which makes it very practical. After experiment, the algorithm scales very well
in a massively parallel environment.
Our algorithm also includes the following contributions:

• An optimal (m, k) table, which indicates the highest performance combination of m
and k.

• A new image compositing algorithm named mSwap using m-ary tree to reduce the
communication of processors.

• A newmethod to avoid the collection step at the end of image compositing algorithm.
• A new environment of Tianhe-3 prototype to prove the reliability of parallel

rendering.

The remainder of this paper is organized as follows: Section 2 provides several image
compositing algorithms. Section 3 introduces mSwap algorithm in detail, followed by
descriptions of mSwap, the environment and results of experiments in Section 4. Section
5 discusses existing technical challenges and proposes orientations for future research.
Section 6 concludes the paper.

2 Related work
Parallel technology has been widely used in many fields of scientific research, including
visualization. Parallel rendering is a production of the combination of parallel technol-
ogy and visualization. As mentioned before, parallel rendering is classified as sort-first,
sort-middle and sort-last, where sort-last is the most popular for its well performance on
HPC systems [9]. In sort-last, each processor loads part of the dataset and renders into a
whole image, which means there is no communication between processors before image
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compositing. Given that each processor only has few blocks of the dataset, the time of
loading and rendering could be ignored. On the contrast, during the image composit-
ing each processor must communicate with other processors to produce the final image.
Therefore, the cost of communication is very expensive in the image compositing stage.
To solve this problem, several algorithms have been proposed for sort-last system.

2.1 Direct send

One of the most popular algorithms is Direct Send [10], which is intuitive and easy to
implement. In sort-last parallel rendering, how to control every processor to commu-
nicate with the other processors is the main problem. The simplest idea is that each
processor is responsible for a part of the whole image and that is what Direct Send
done. As shown in Fig. 1, in Direct Send, each processor is assigned a partial area of the
final image before the image compositing. Then each processor requires to receive data
belonging to itself from the other processors, and send data that it is not responsible to
corresponding processor. With the completion of sending and receiving, each processor
has the final image that it is responsible for. At last, Direct Send collects the image in
order to produce the final whole image. Direct Send performs well on small scale or under
some specific situation. For example, when the pixels are concentrated relatively, each
processor owns the most pixels of its responsibility, which means there is no need to com-
municate with all of the other processors to get the final image. However, it still has the
problem of communication between processors. In the worst situation, Direct Send needs
N(N − 1) communications to finish the composition, where N is the number of proces-
sors. To minimize the communication cost of Direct Send, SLIC [11] (Scheduled Linear
Image Composition) algorithm uses a compositing schedule to control the image com-
positing step. Besides, pixels are classified into three categories: background pixels, pixels
in the non-overlapping areas, and pixels in the overlapping areas. Only the second case
requires image compositing. By pixels classifying, SLIC could reduce the number of pix-
els communicating between processors. So SLIC is essentially a highly optimized Direct
Send algorithm. There is another reason that Direct Send is still keep alive nowadays. In
Direct Send, the process of communication and computing could be parallel completely,
which could reduce the time of image compositing further more.

2.2 Parallel pipeline

Parallel Pipeline [12] is another kind of image compositing algorithm, which is used sel-
dom in practice. Different from Direct Send, processors are organized on a circular ring
in Parallel Pipeline, and every processor will send data to the next processor, and receive
data from the previous processor. Besides the whole image is divided intoN pieces, where
N is the number of processors. Each processor is responsible for one piece at a stage, but
different stages mean different pieces. After round N − 1, collection is also required just
like Direct Send to produce the final image. Parallel Pipeline is also suitable for small scale
of processors, because more processors lead to more communication. Based on Paral-
lel Pipeline, there are several optimal algorithms proposed to improve the performance.
PPB (Parallel Pipeline using a Bounding Box) selects active pixels by a bounding box to
avoid sending inactive pixels. In sparse image, active pixels tend to stay together, which
could be contained in a bounding box to reduce the number of pixels when communi-
cating. DPF (Direct Pixel Forwarding) assigns fixed areas for each processor to avoid link
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Fig. 1 Direct send. For example, there are four processors involved in image compositing progress. In each
processor the data is divided into four parts. The one marked in blue indicates the part that the processor is
responsible for. At each stage, processors swap data with each other as framed by red dotted line

contention just like Direct Send. The difference is DPF still organizes processors as a
circular ring to exchange data. DPFL (DPF with Static Load Balancing) is an advanced
optimization of DPF, which assigns horizontal lines among the processors in an inter-
leaved fashion to keep tasks balanced. DPFS (DPF with Task Scheduling) avoids waiting
among processors by adding a task schedule, which is caused by rendering out of sync. For
the reason that all these algorithms only perform well on small scale, they are not widely
used as the others.

2.3 Tree

Last but not least, there are lots of algorithms based on tree, which are popular nowadays.
Binary Tree is the basic image compositing algorithm in this category. In Binary Tree, all
processors are grouped, and each group has two processors. The key point is one proces-
sor sends all data to the other one in the same group to composite in a stage, which means
the processor sending data will be idle in the next stage. It could manage all processors
better than before, but the idle processors lead to reduce performance to a certain extent.
Binary Swap [13], as a well-known algorithm, solves this problem by changing the com-
positing step. In each stage, one processor sends half of the data to the other processor,
and receives the rest from the other one. Then each processor will have half composited
image. After logN stages, each processor owns 1/N images and collects to one processor
finally. By splitting data, Binary Swap improves the utilization of processors. Meanwhile
the splitting data also leads to the communication problem mentioned before. Consid-
ering that both in Binary Tree and Binary Swap, processors are grouped into two, the
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number of processors must be power-of-two. For supporting arbitrary number of proces-
sors, 2-3 Swap [14] groups processors into two or three instead of two only. It is based on
that any integer can be expressed as the sum of a sequence of integers consisting of 2 and
3. What should be noted is that the image in processors is not aligned when image com-
positing between groups. Besides Direct Send is adopted to composite image within and
between groups. Radix-k [15] is the result of the generalization of Binary Swap and Direct
Send. The number of processors N is factored in r factors so that k is a vector where k =
[k1, k2, . . . , kr]. In each stage, processors are grouped according to k which is the number
of processors in each group. However, k is related to the network topology and to physical
placement of processes onto that topology, which means there is no clear method to get
the k value [16]. The same as 2-3 Swap, Direct Send is used to composite image within and
between processors. Given that Binary Swap performs well when the number of proces-
sors is power-of-two, 2-3-4 Decomposition [17, 18] is proposed to make sure the number
of groups is power-of-two so that Binary Swap could be used between groups.

2.4 The others

What’s more, there are still some image compositing algorithms, which are optimized in
special environments based on the algorithms mentioned before.
All the image compositing algorithms perform well in the case of uniform pixels distri-

bution, which is called dense image. However, there are all kinds of possibilities in reality.
In some images, pixels may lie in a concentrated area called sparse image [19], which leads
to not all of the pixels need to be composited. For example, if active pixels lie in the cen-
ter of the whole image, it is wasting time to composite the other area of the whole image.
To settle the problem, several solutions have been proposed. Bounding box [20] is one of
them, which selects the active area using a bounding box to reduce the scale of compo-
sition. Interlacing algorithm [21] is another solution, which keeps the load-balancing by
interlacing assignment.
Besides, Shift-based [22] image compositing method using shift permutation is based

on Infiniband Fat-Tree interconnection network. Multi-Step [23] image compositing
approach minimizes undesirable performance degradation to achieve scalability. TOD-
Tree [24] (Task-Overlapped Direct send Tree) image compositing algorithm combines
Direct Send and k-ary Tree to improve the entire performance based on hybrid MPI
parallelism. Larsen et al. [25] optimizes for multi-image sort-last parallel rendering.
Aly et al. [26] proposes the Distributed kd-trees for retrieval. After that, Zhang et al.
[27] designs dynamic load balancing based on constrained K-D tree for parallel parti-
cle tracing. Cavin et al. [28] designs a sort-last parallel rendering system based on COTS
Cluster. There are also several applications implemented by sort-last parallel rendering
[29–32].
Existing image compositing algorithms tend to performwell in some specific situations,

which means in most cases, algorithms are not at the best point or even lower the aver-
age. The scale of processors is one of the most important factors. With the increasing of
processors, the performance of parallel rendering has begun to raise because of the high
parallelism. However, once the number of processors reaches a certain value, the per-
formance won’t improve again or even decline which is called performance degradation.
That is the communication between processors affects the performance. Most algo-
rithms prefer to keep processors busy to increase the utilization. However high utilization
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causes frequent communication between processors. Considering that parallel rendering
is a communication-intensive approach, this case will lead to performance degradation.
Besides that, more processors mean more pieces of image in some image compositing
algorithms, which leads to such a phenomenon that each processor is responsible for a
few pixels. That will waste the performance of processors. At last, there is an additional
image collection step at the end of image composition in most image compositing algo-
rithms. When the image is divided into multiple pieces, the image collection would take
a lot of time besides the waste of performance according to [21], which is the next largest
time-consume in parallel rendering.
In this paper, we propose a new image compositing algorithm named mSwap, which is

also based on tree using the best scale of processors to make sure its performance at the
best. The details will be discussed in the next section.

3 Methodology
In this section, we will introduce our mSwap algorithm in detail. At the beginning of
the compositing step, each processor has an image rendered from partial blocks of the
dataset, which has both RGBA value and depth information. All images will be compos-
ited into one final image according to the depth information with the image compositing
algorithm. Before the description of mSwap, there are some definitions need to be
known:

• N : the number of processors.
• k : the number of processors in each group.
• m : the number of processors in subgroup of each group.

To describe mSwap in detail, this section is divided into three sections according to the
different steps of mSwap algorithm. The strategy of grouping introduces the strategy of
grouping. In the second section, image compositing based on m-ary tree will be displayed
in detail, and the last Section explains the method for avoiding image collection. The
entire process of mSwap is shown in Fig. 2.

3.1 The strategy of grouping

As most of the existing image compositing algorithms do, grouping is also required in
our algorithm. The independence of dataset makes it possible to group processors. On
the other hand, grouping could reduce the scale of processors for easy management. The
improvement of performance depends on the grouping situation. So in mSwap, we group
processors using the optimal (m, k) table.
In the classic Binary Swap algorithm, every two nodes are grouped together for data

exchanging. However, it is different from that in mSwap. As mentioned before, existing
algorithms always perform well in specific case, but in common their behavior is at the
average or even under the average, which limits these algorithms greatly. For avoiding this
problem, mSwap groups all processors according to the optimal (m, k) table, which makes
sure that each group could run at the best situation. There is a point that the performance
of every image compositing algorithm is changed with the different scale of processors. At
the beginning, with the increase of processors, the advantage of parallel rendering starts
to reflect. But there is a threshold. Once the number of processors is beyond the thresh-
old, the performance of algorithms will decline. Considering that parallel rendering is a
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Fig. 2 mSwap contains three steps to finish the image compositing process. Step 1 : all processors are
grouped according to the optimal (m, k) table. Step 2 : image compositing with m-ary tree in each group.
Step 3 : image compositing with Binary Tree between groups

communication intensive approach, the increasing communication between processors
due to the increasing processors could be the main reason of performance degradation.
It is easy to understand that the performance will decline when the number of proces-

sors is too large. An extreme situation is that each processor is only responsible for one
pixel, but it needs to communicate with the other processors to produce the final image.
In that case, so many processors lead to huge communication pressure instead of the
performance improvement in parallel rendering. For avoiding performance degradation,
mSwap limits the number of processors in each group, and that is what optimal (m, k)
table done.
The optimal (m, k) table is the key of grouping in mSwap, which indicates the best scale

of processors. In the table, m is the number of processors in subgroup of each group.
k is the number of processors of each group, which is also the best scale of processors
according tom. Since mSwap is based on m-ary tree, there is such a relationship between
m and k :

n = logmk (1)

where n is a positive integer, andm could be any positive integer. Given that in subgroup
of each group Direct Send is adopted to composite image which will be introduced in
the next section, the value ofm should be small to guarantee the performance. Especially
whenm equals two, then k is the best point of Binary Tree.
As shown in Fig. 3, the optimal (m, k) table contains two combinations of m and k.

In each column, there is a combination of m and k, which indicates the best value of k
when m is settled. For example, when m = 3, the best scale of processors k is 9, which
means the performance will decline when k increases or decreases. On the other hand,
the column with m = 3 is to the left of m = 2. That is because the image compositing
time ofm = 3, k = 9 is shorter than that whenm = 2, k = 4. Figure 3 shows the grouping
of 13 processors. At first, 13 is both larger than 9 and 4, so we group processors 0-8 into
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Fig. 3 Grouping according to the optimal (m, k) table. In the optimal (m, k) table, the combination ofm = 3,
k = 9 is better thanm = 2, k = 4. mSwap assigns processors 0 to 8 into the group 1 in priority, and the rest is
grouped into group 2

group 1. As there are only 4 processors left, which is not enough for 9, processors 9-12
are grouped into group 2.
In the optimal (m, k) table, the performance of combination is decreasing gradually

from left to right, whichmeans the combination on the left is better than that on the right.
So, we may consider using the combination in priority to composite image. However, if
we keep assigning the previous combination of m and k in advance, the next combina-
tion of m and k may not be used forever when the previous k is small. For avoiding this
case, except for the priority need to be noted, we also consider the number of the rest
of processors, which should be as small as possible to improve the performance of image
compositing.
In mSwap, the combination on the left is chosen in priority, and then the next com-

bination (m, k) is considered. After traversing the whole table, almost all processors are
grouped according to the best scale. Considering that there may be several processors left
because of no enough processors for grouping, we assign the left processors to step three
in mSwap.

3.2 Image compositing with m-ary tree

After grouping, each group will composite image by using m-ary tree to manage pro-
cessors. The design of mSwap is different from the existing algorithms, which makes it
reduce the communication between processors efficiently.
In each group, there are still a lot of processors need to be controlled for image com-

positing. Thus, the processors in the same group will be grouped again according to m,
which is the number of processors in subgroup of each group. After the second group-
ing, each subgroup owns m processors and Direct Send is adopted to composite a whole
image among these processors. We still consider some of the other image compositing
algorithms, but as shown in [10], Direct Send performs better than others on small scale.
Then the rest of processors continue to group according tom until there is only one pro-
cessor on m-ary tree. When step two is done, each group will keep one processor to store
the compositing result of the entire group. Although after image compositing by m-ary
tree, there are some processors out of computing, the communication between processors
reduces efficiently, which is also adopted in other algorithms like 2-3-4 Decomposition.
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Fig. 4 Comparison of Binary Tree and Binary Swap. The cost of communication in Binary Tree is smaller than
that in Binary Swap when the number of processors is smaller than 256

mSwap is also based on tree to composite image, which makes it easy to manage
processors. Whenm = 2, the grouping is just like Binary Tree. The reason that we choose
Binary Tree instead of Binary Swap is that the number of pieces keeps growing with the
scale increasing in Binary Swap, which leads to two potential problems. One is that the
greater the number of pieces is, the more time image collection will take. The other is the
increasing pieces result in huge communication between processors, which is the most
expensive cost in parallel rendering. As shown in Fig. 4, the cost of communication in
Binary Tree is smaller than that in Binary Swap when the number of processors is smaller
than 256. Considering that the value of k won’t be large, mSwap uses one processor to
store the result of each subgroup image compositing, which means in the next stage, each
node owns a whole image like the first stage. The details are displayed in Fig. 5.

Fig. 5 Image compositing with m-ary tree. In group 1, image compositing with 3-ary tree, and in group 2,
image compositing with 2-ary tree, which is also called binary tree
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There is another reason that we use m-ary tree to composite image, instead of binary
tree in Binary Swap. It is obviously that the number of stages begins to decrease with the
growth ofm. However, the communication time in each stage will be longer. To settle the
problem, we have compared the cost of image compositing time under different combina-
tions of m and k. And it turns out that different image resolutions have different optimal
combinations.
In step two of mSwap, m-ary tree is adopted to composite image, which means there

will be n m-ary trees, where n is the number of groups in step one. Direct Send could
parallel the process of computing and communicating as mentioned before. However,
image compositing algorithms based on tree couldn’t parallel the both completely. The
next stage of image compositing can only continue until the previous stage is finished. In
mSwap, nm-ary trees are mutually independent, which is better than those based on one
image compositing tree in the other algorithms.

3.3 Binary tree for avoiding image collection

At the last step of mSwap, the sub-images in n processors need to be composited into one
final image, where n is the number of groups in step one. Considering Binary Tree is the
only one algorithm that does not need image collection at the end of image compositing,
mSwap uses Binary Tree to avoid image collection.
In parallel rendering, the image composition time accounts for the vast majority, and

the image collection time accounts for the majority of the rest [21]. Besides the time for
loading image data and writing into a file takes up the remaining part. So the total time of
parallel rendering should be like this :

ttotal = tload + tcomposite + tcollect + twrite (2)

With the increasing of processors, the image collection time keeps growing, which
effects overall performance in parallel rendering. Considering that tload and twrite are
far less than tcomposite or tcollect , ttotal is mainly decided by tcomposite and tcollect . mSwap
reduces the tcomposite by step two using m-ary tree, which is most of the total time. Besides
mSwap reduces the tcollect using Binary Tree in step three, which will further increase
performance.
Binary Tree is the original image compositing algorithm based on tree, and it is the only

algorithm that does not need image collection. In Binary Tree, processors are grouped like
Binary Swap. Each group owns two processors. The difference is one processor will send
all its data to the other one in the same group to produce the composite image. Although
Binary Tree does not perform as good as the other image compositing algorithms on large
scale for its lower processor utilization, it is superior on small scale for its no image col-
lection. This is the reason that mSwap chooses Binary Tree finally. After the composition
based on m-ary tree in step two, the number of nodes reduces to a small scale, which fits
the characteristic of Binary Tree very well.

4 Experimental results
Wehave implemented the proposedmSwap image compositing algorithm using C++ pro-
gramming language together with VTK [33, 34] (Visualization Toolkit) based on Tianhe-3
prototype. For proving the performance ofmSwap algorithm, we obtain the optimal (m, k)
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table by testing compositing time at different image resolutions. Besides we also com-
pared our algorithm against Direct Send, Binary Swap, Radix-k and 2-3-4 Decomposition,
which are also designed based on VTK. As for 2-3 Swap, considering that Radix-k is a
more general result of 2-3 Swap, we choose Radix-k for testing.

4.1 Tianhe-3 prototype

Tianhe-3 prototype has a high-performance cluster environment, which is designed for
high-performance computing and massive data processing. It provides two kinds of
CPUs, including Phytium MT2000+ and Phytium FT2000+. Tianhe-3 prototype owns
512 boards with three PhytiumMT2000+ CPUs on each board, and 128 boards with four
Phytium FT2000+ CPUs on each board. Each PhytiumMT2000+ CPU is divided into four
nodes, which owns 32 cores and 16GB RAM. Each Phytium FT2000+ CPU owns 64 cores
and 64GB RAM. Besides, the floating-point computing performance of Tianhe-3 proto-
type could reach 3.146PFlops. The capacity of total parallel storage is 1PB, which could
meet the needs of users.

4.2 The optimal (m, k) table

In sort-last system, each processor owns a full image information before image composit-
ing, whichmeans the resolution of image decides the pressure of communication between
processors. Therefore, different resolutions mean different optimal combination ofm and
k. We firstly select the image resolution to 300 ∗ 300 to test the optimal combination,
which is the default window size in VTK. Besides the resolution of image, the relationship
betweenm and k also needs to be considered. When testing, we must make sure that k is
the power ofm as mentioned before.
In order to get the optimal (m, k) table, we introduce the performance curves of (m, k)

first. Theoretically, the time of image compositing will decline as the number of pro-
cessors grows due to its high parallelism. Once the number of processors is beyond a
threshold, the time of image compositing has begun to increase because of its over-
blocking. However, as shown in Fig. 6, there is a little different in reality. Considering the
cost of communication between processors, the time of image compositing keeps grow-
ing at the beginning. As the number of processors continues to increase, the advantages
of parallelism have appeared, which would cause a rapid decline in the growth rate of
image compositing time. And this is the point that we are looking for. To find the point,
we define the growth rate of image compositing time :

v = δt/δk (3)

Where δt is the change of time and δk is the change of number of processors. At the
beginning, the time of image compositing grows quickly because of the need of parallel
rendering, which means v is a large value. After that, v has begun to slow down, which
means the time of rendering is also stable. To make sure the proper k value, we select the
smallest v as the best point, which is also the best point of k. For example, when m = 2,
the value of k could be 2, 4, 8, . . . , 1024 and so on. We have recorded the time of image
compositing under different combinations. Then we calculated the growth rate of two
adjacent combinations separately to determine the best combination.
Another important thing is to choose the k value in Radix-k algorithm. In [15], it is

mentioned that there is no exact way to get the appropriate k value, but when fairly large



Hou et al. Advances in Aerodynamics             (2021) 3:3 Page 12 of 17

Fig. 6 Performance curves of (m, k) with a resolution of 300 ∗ 300 and 1024 ∗ 1024. The performance curves
of (m, k) are used to locate the best point of m-ary tree. With the number of processors increasing,
compositing time also rises until the number of processors reaches a threshold

radices such as 32 or 16 appear in the k vector, the performance will improve to a certain
degree. So in Radix-k based on VTK, we prefer to choose 32 and 16 as the k value.
Figure 6a shows the optimal (m, k) table and the performance of each combination of

m and k. After that, the larger resolution of image needs to be considered. So, we also
test the performance when compositing images of sizes 1024 ∗ 1024. Figure 6b shows the
optimal (m, k) table under different image sizes.
The optimal (m, k) table is the key to the mSwap algorithm, which indicates the process

of grouping. Considering that Direct Send is used in each subgroup of each group, the
value of m is set from 1 to 9, where 1 is for the rest of processors that are not grouped.
In the best situation, the number of ungrouped processors is zero, which means all of
the processors are grouped according to the best point. Although, it is possible that there
are unassigned processors left, which is sent to step three for Binary Tree compositing,
mSwap still performs well under most circumstances. After m-ary tree compositing in
step two, the number of processors has declined to a smaller scale, which is suitable for
Binary Tree. So, the performance of mSwap won’t fall under any conditions.

4.3 The performance of mSwap

We also execute our mSwap algorithm based on the optimal (m, k) table mentioned
before. Since existing algorithms were implemented based on VTK, we compared our
algorithm with the other image compositing algorithms in the same situation.
There are two factors that affect the performance of image compositing. One is the res-

olution of image, which affects the optimal (m, k) table directly. We use the default size of
image (300 ∗ 300) to test first. After that, to prove the effectiveness on larger resolution,
we also test the image size of 1024∗1024 and 2048∗2048. The other is the number of pro-
cessors. mSwap algorithm supports any number of processors, so we still comparemSwap
with the other algorithms when the number of processor is non power-of-two. However,
Binary Swap is not tested because it does not support the case where the number of
processors is non power-of two.
Figure 7 shows the different performance curves of different algorithms when the image

size is 300∗300, Fig. 8 is the result with a resolution of 1024∗1024, and Fig. 9 is the result
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Fig. 7 Performance curves of different algorithms with a resolution of 300 ∗ 300. a is the compositing time
when the number of processors is power-of-two. b is the compositing time when the number of processors
is non power-of-two without Binary Swap

with a resolution of 2048 ∗ 2048. From the result, we could see that mSwap is better than
the other algorithms no matter the number of processors is power-of-two or not.
The performance of mSwap is well under most situations. When the number of pro-

cessors has begun to grow, the compositing time increases quickly like the other image
compositing algorithms. However, the upper limit of time in mSwap is lower than other
algorithms for its well performance. Direct Send is popular for its simplicity and aban-
doned for its bad behavior on large scale. Thus, Direct Send is more appropriate for
mixing with the other algorithms, which could provide better environment for Direct
Send. Although Binary Swap has been proposed for so many years, it is also popular when
the number of processors is power-of-two. It couldmake full use of processors to compos-
ite image, which leads to performance improvement. 2-3-4 Decomposition algorithm is
based on Binary Swap, which adds pre-processing to make sure any number of processors
could use Binary Swap to composite image. Therefore, when the number of processors is
power-of-two, its performance is slightly worse than Binary Swap on large scale because
of the pre-processing progress. What’s more, Radix-k is the combination of Direct Send
and Binary Swap, which is affected by the value of k greatly. Although we choose appro-
priate k value, it is a little worse than Binary Swap and 2-3-4 Decomposition. Compared to
these image compositing algorithms, mSwap shows its advantages both on small or large
scale. On the one hand, the optimal (m, k) table provides the best situation when using m-
ary tree to composite image, which could keep the processors at the best point or above

Fig. 8 Performance curves of different algorithms with a resolution of 1024 ∗ 1024. a is the compositing time
when the number of processors is power-of-two. b is the compositing time when the number of processors
is non power-of-two without Binary Swap
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Fig. 9 Performance curves of different algorithms with a resolution of 2048 ∗ 2048. a is the compositing time
when the number of processors is power-of-two. b is the compositing time when the number of processors
is non power-of-two without Binary Swap

the average. On the other hand, mSwap composites image by m-ary tree, which reduces
the communication between processors. For example, if m = 2 is the best combination
in the optimal (m, k) table, mSwap prefers to use Binary Tree for image compositing. It
means that mSwap improves the performance of each group by using the optimal (m, k)
table to perform better than other algorithms.
Besides the performance, the scalability of mSwap is better than other image composit-

ing algorithms. When the number of processors keeps growing, mSwap adjusts the result
of grouping according to the optimal (m, k) table, which could resize the scale of each
group for performance improving. However, the other image compositing algorithms
can not adjust grouping flexibly. In Direct Send, the communication between processors
increases rapidly with the increasing number of processors, which causes worse perfor-
mance than the others. Binary Swap performs well when the number of processors is
power-of-two, but it can not support the other situations. As an improved algorithm of
Binary Swap, 2-3-4 Decomposition shows its well scalability. By pre-processing, it makes
sure the number of processors is power-of-two. Then Binary Swap is adopted to get high
performance. Radix-k is a configurable image compositing algorithm, and the value of k
is the key to the performance. Radix-k uses the vector k to group in each stage, which is
a bit like mSwap. The difference is Radix-k could only group according to each k value,
but mSwap could adjust the grouping according to the optimal (m, k) table. It is like
that Radix-k owns a dynamic vector k, which indicates the best grouping under different
numbers of processors. Figure 10 shows the rendering result of the wing model.

5 Challenges
In this section, several possible research challenges will be introduced.
With the developing of HPC, there are various of environments both in hardware and

software. Special optimization for different environments becomes a challenge gradually,
such as Shift-based image composition, Multi-Step image composition, TOD-Tree image
composition and so on. Considering that parallel rendering has a variety of application
environments, it is important to improve image compositing algorithms based on the
specific environments.
For scientific analysis, especially that involved real-time data, the efficiency of visualiza-

tion is very important. To improve the speed of visualization, the utilization of processors
needs to be increased, the communication between processors needs to be reduced and
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Fig. 10 Rendering result of the wing model

the performance of processors needs to be kept above the average at least. To solve this
problem, one method named in-situ visualization was mentioned. By in-situ visualiza-
tion, researchers will visualize the intermediate data in situ for avoiding data movement,
which could improve the efficiency of scientific research in some way. However, there are
still a lot of problems need to be done in in-situ visualization [35, 36].

6 Conclusions
In this paper, we propose an image compositing algorithm called mSwap, which aims to
find the best case of processors according to the performance curves.
In the past two decades, various of image compositing algorithms have been proposed

to improve the performance of parallel rendering by increasing the utilization of proces-
sors. Most of them are designed based on tree for its high parallelism, and their sort-last
system could provide load-balancing. However, existing algorithms perform well only in
some specific situations, which means algorithms are at the average or even under the
average in most cases.
mSwap is proposed to settle this problem. Firstly, mSwap groups all the processors

according to the optimal (m, k) table for making full use of every processor. Considering
that each algorithm has its own characteristic, we make sure processors running at their
best point by using the table containing the best scale of processors which is obtained by
testing. Secondly, instead of using the existing image compositing algorithms, we com-
posite image based on m-ary tree in group, which reduces the communication between
processors. Finally, Binary Tree is used to composite images in the third phase because of
its high performance on small scale and no image collection which is different from the
other image compositing algorithms. Furthermore, it is proved that mSwap performs bet-
ter than the other image compositing algorithms in a large-scale situation. Future work
includes the further optimization for mSwap based on current challenges, which makes
mSwap adapt to special environments easily.
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