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Abstract

In this paper, we present an effective prismatic mesh generation method for viscous
flow simulations. To address the prismatic mesh collisions in recessed cavities or slit
areas, we exploit 3D tensors controlled anisotropic volume harmonic field to generate
prismatic meshes. Specially, a well-fitting tetrahedral mesh is first constructed to serve
as the discrete computation domain of volume harmonic fields. Then, 3D tensors are
exploited to control the volume harmonic field that better fits the shape geometry.
From the topological perspective, the generation of the prismatic mesh can be treated
as a topology-preserved morphing of the viscous wall. Therefore, iso-surfaces in the
volume harmonic field should be homeomorphic to the viscous wall while fitting its
shapes. Finally, a full prismatic mesh can be induced by estimating the forward
directions and visible regions in the volume harmonic field. Moreover, to be
compatible with different simulation situations, the thickness of prismatic meshes
should be variable. Our approach provides local adjustable thickness of prismatic
meshes, which can be achieved by controlling local 3D tensors. The proposed
anisotropic volume harmonic field based prismatic meshes are efficient and robust,
and a full prismatic mesh can be guaranteed without low quality collisions. Various
experiments have shown that our proposed prismatic meshes have obvious
advantages in terms of efficiency and effectiveness.

Keywords: Mesh generation, Prismatic mesh, Volume harmonic field, 3D tensor,
Minkouski sum

1 Introduction
Mesh generation is fundamental to physical simulation and plays a critical role in modern
industry, especially in the aerospace field. The shape design of aircraft’s major compo-
nents, such as wings, emages, engine inlet, etc., requires numerical simulation tools to
determine the aerodynamic force and torque for them [1]. As a discretized computational
domain in Computational Fluid Dynamics (CFD), the quality of mesh directly affects the
calculation accuracy and convergence rate of the numerical simulation. For the complex
geometries, it is still a significant challenge to generate high-quality Reynolds-Averaged
Navier–Stokes (RANS) mesh due to the existence of recessed cavities or slit areas [2].
The prismatic mesh generation can be treated as surface offset or morphing of original

meshes, how to control the directions and movement distances of front nodes are the key
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parts. During the aerodynamic simulation of high Reynolds number flow, it is essential
to adopt layered anisotropic prisms perpendicular to the object to capture the boundary
layer near the viscous wall. Most researches are mainly devoted to advancing front meth-
ods [3–13] and a few approaches focus on solving the partial differential equation (PDE)
[12–23]. Recently, the prismatic hybrid mesh is a prevailing grid type for constructing the
external flow field because of its good performance in the balance of precision and effi-
ciency [3, 4, 14, 24–27]. The central idea of front methods is to march outward along the
weighted normal of each front node until it terminates when the current front node col-
lides with another front node. It should be noted that a large amount of self-intersection
detection and optimization are required to preserve mesh quality, the advancing front
methods are difficult to meet the application requirements to some extent, especially
for complex models. The PDE based methods generally solve the PDEs, such as Laplace
equation [22] or Eikonal equation [17, 28], as the governing equation, and assign the
gradient of solutions to the marching directions. Generally, the PDE-based methods are
time-consuming [16–18, 22, 28], but the directions of front nodes are smoother and the
possible global collision positions could be directly figured out [14, 16]. In this approach,
our method is inspired by the above PDE-based methods, and we are working to promote
efficiency and mesh quality.
From the perspective of topology, prismatic mesh generation is equivalent to a special

topology-preserved morphing of the viscous wall. A full prismatic mesh can be obtained
if there is a family of offset surfaces that are homeomorphic to the viscous wall. Similarly,
if the iso-surfaces of volume harmonic filed satisfy the above conditions, we can generate
a full prismatic mesh. Therefore, how to find a rational volume harmonic field [29, 30]
in the background mesh is the key. The layer thicknesses of prismatic meshes are related
to the adjacent iso-surfaces of the corresponding volume harmonic field. To make the
prismatic mesh thickness controllable, inspired by the research of [31], we introduce 3D
tensors as constraints to locally adjust the volume harmonic field anisotropically without
bringing in the saddle points. The anisotropic harmonic field presented in this approach is
a general method that can be extended to different situations. For example, for two objects
close to each other, anisotropic tensor constraints can be applied to delay the occurrence
of self-intersection. Moreover, different from the traditional PDE-based methods, we do
not directly adopt the solution gradient as the marching direction, but to be the initial
direction. The iso-surfaces of volume harmonic field and visible regions [10, 11] are con-
sidered as the constraints of marching distance and direction for front nodes severally.
These strategies ensure the effectiveness of prismatic mesh generation and establish the
connection between the mesh quality and the volume harmonic field.
In addition, the background mesh used to calculate volume harmonic field also has an

effect on prismatic mesh quality. If the topology of the envelope surface and the viscous
wall are inconsistent, the volume harmonic field inevitably has saddle points, where the
topological transformation will occur between different iso-surfaces. To avoid the prob-
lem of saddle points, we exploit a Minkowski Sum boundary surface [32] as the envelope
surface. There is always a Minkowski Sum boundary surface that has the same topol-
ogy as the viscous wall, and the boundary surface and the viscous wall will be infinitely
close in extreme cases. Compared to the ball or box, the backgroundmesh constructed by
Minkowski Sum not only preserves the topology, but also eliminates vast redundant cells,
which greatly improves the efficiency of calculation and reduces memory consumption.
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In practice, the construction of unstructured tetrahedral meshes is accomplished by
TETGEN software [33], which provides a strong foundation for the practicability of our
algorithm with its comprehensive functions and robustness.
The remaining part of the paper proceeds as follows. Section 2 presents an overview

of the proposed pipeline. Section 3 briefly introduces the theory-background of
the anisotropic volume harmonic field and the corresponding discretization formula.
Section 4 expands the implementation details, such as the construction of the Minkowski
Sum boundary surface, the computation of the tensor constraints, and the generation of
anisotropic volume harmonic filed and prismatic mesh. The prismatic mesh generation
process of our samples with varying degrees of complexity is demonstrated in Section 5.
Section 6 is dedicated to the outcomes of the study.

2 Overview of proposed framework
2.1 Algorithm inputs

Our algorithm supports discrete tessellation surfaces as data inputs, including triangular
meshes and quadrilateral meshes, and the final outputs correspond to tri-prism meshes
and hexahedral meshes, respectively. In our framework, the input surface is taken as the
viscous wall.
The parameter input contains :

1 Layers number = n, the required number of prismatic mesh layers.
2 First layer thickness = h1, the thickness of first layer mesh closest to the viscous

wall.
3 Stretch = α, the stretch factor between the thickness of the k layer and the k + 1

layer, k = 1, 2, ..., n − 1.

Given the above parameters, the thickness of each layer can be calculated. We select
appropriate vertices on the viscous wall and trace them to the envelope surface along
the gradient of the volume harmonic field. Then, according to the thickness hi, we
calculate the sampling energy ei along the trajectories, which will be used to com-
pute the iso-surfaces. This strategy establishes a relation between the thicknesses of
mesh layers and iso-surfaces of volume harmonic field. Due to the characteristics of
the volume harmonic field, the generated prismatic mesh remains smooth, avoiding the
inevitable collision when the front nodes advance equidistantly at the concave. More-
over, the local thickness can be adjusted directly by locally controlling the shape of the
iso-surfaces.

2.2 Algorithm framework

The framework of the entire algorithm is presented in Fig. 1.
The main steps of prismatic mesh generation based on the anisotropic volume har-

monic field are outlined as follows:

1 Calculating the expected thickness hi, i = 1, · · · , n according to the input
parameters.

2 Computing the spacing between the envelope mesh and the viscous wall,
formulated as he = t ∗ (

∑n−1
i=0 αi ∗ h1), which is t times the overall height of the

prismatic mesh. The scaling factor t is a number not less than 1 (t = 1.1 by default).
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Fig. 1 Prismatic mesh generation framework

3 Setting he to be the radius of a ball in the calculation of Minkowski Sum boundary
surface, which is the envelope surface. The envelope surface may have inferior
quality cells, which need to be improved by Laplace smooth.

4 Generating a background tetrahedral mesh between the envelope surface and the
viscous wall by TETGEN software with a tessellation coefficient d (d = 1.1 by
default for a balance between accuracy and efficiency).

5 Constructing tensor constraints according to the input parameters. There is a 3D
tensor for each point, and it can be used to control the harmonic field locally.

6 Calculating an anisotropic volume harmonic field by optimizing the Laplace
equation using iteration method. Here, the energy of vertices on envelope surface is
set to 0 and the energy of viscous wall vertices is set to 1.

7 Calculating the sampling energy ei according to the expected thickness hi.
8 Computing the marching directions and distances of front nodes, and constructing

the final prismatic mesh.

3 Anisotropic volume harmonic field
Given a viscous wall, there is an appropriate boundary constraint so that a volume har-
monic field without saddle points can be constructed. Then, the iso-surfaces can induce
a generation of full prismatic mesh. Generally, it is easy to construct a volume harmonic
field, and induce a prismatic mesh with smooth layer thickness. However, the local con-
trol of layer thickness is necessary to better fit the shape and applications, therefore, a
local controllable anisotropic volume harmonic field is needed. In this section, the theory
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involved in the anisotropic volume harmonic field is explained, and the implementation
is detailed in Section 4.1.

3.1 Volume harmonic field

In this subsection we will briefly introduce the traditional volume harmonic field, which
can be treated as a steady-state heat conduction in a three-dimensional manifold. In
mathematics, a volume harmonic field H : V �→ R is a scalar field defined on the vol-
umetric mesh M, where V represents the vertex set of M. H is a solution of Laplace
equation

�H = div(∇H) = 0, (1)

subject to Dirichlet boundary conditions

H(vi) = ci, vi ∈ VB ⊆ V , (2)

where ci is a constant and VB is denoted as the set of sources and sinks. The harmonic field
construction can be regarded as a heat distribution when the heat diffuses from sources
to sinks until it reaches a steady-state. To solve the Laplace equation in a discretized
computational domain, the piece-wise linear Laplace operator is expressed as

�H(vi) = ∑

vj∈N(vi)
W (eij)(H(vi) − H(vj)), (3)

where N(vi) is the neighborhood of vi, W (eij) is a scalar weight assigned to the edge eij.
Then, the discrete formulation of Laplace Eq. 1 can be written into a sparse linear system

LH = 0, (4)

where L is a matrix that expresses the discrete Laplace-Beltrami operator

Lij =

⎧
⎪⎪⎨

⎪⎪⎩

∑

vk∈N(vi)
W (eik) i = j,

−W (eij) vj ∈ N(vi),
0 otherwise.

(5)

The weighting coefficientW (eij) commonly uses the standard cotangent scheme [29]. It
is noteworthy that different weight schemes and Dirichlet conditions will lead to different
harmonic fields. In the following section, we focus on this perspective and expand the
description of the anisotropic volume harmonic field construction.

3.2 Anisotropic volume harmonic field with tensor constraints

The harmonic field can be treated as a heat diffusion, which can be obtained by solving an
elliptic PDE with the constraint of the heat sources and boundaries. From the viewpoint
of geometry, the harmonic field has some good properties, such as no-curl, no-divergence
and smoothness, and they can be exploited to tackle lots of graphic issues. Most of the
PDE-based methods only take into account the isotropy. For clarity, the isotropy men-
tioned here is used for the construction of traditional PDE equation without anisotropic
constraints. However, the local layer thickness of prismatic mesh induced by the isotropic
harmonic field lacks control. Normally, it is possible to change the boundary constraints
to control the layer thickness globally, but still difficult to local layer thickness. To cope
with the control of local layer thickness andmore actual demands, we propose a 3D tensor
guided anisotropic volume harmonic field.
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A 3D tensor is defined on each vertex in a three-dimensional manifold, and the tensor
can be represented by a normalized orthogonal frame [ x1, x2, x3] and the corresponding
scalar factors [ γ1, γ2, γ3]

T(vi) = γ1x1x1T + γ2x2x2T + γ3x3x3T . (6)

T(vi) is a 3 × 3 symmetric matrix, and the Laplace Eq. 4 with tensor constraints can be
reformulated as

L̃H̃ = 0, (7)

where

L̃ij =

⎧
⎪⎪⎨

⎪⎪⎩

∑

vk∈N(vi)
W̃ (eik) i = j,

−W̃ (eij) vj ∈ N(vi),
0 otherwise,

(8)

and

W̃ (eij) = exp
( (

(vi−vj)T
‖vi−vj‖ (T(vi) + T(vj))

(vi−vj)
‖vi−vj‖

)

/ δ

)

.

Where δ is a penalty factor to characterize the influence of the tensor field on the har-
monic field. The anisotropic harmonic field H̃ is the solution of the Laplace Eq. 7 under
the Dirichlet boundary conditions (H̃(vi) = ci, vi ∈ VB).

4 Prismatic mesh generation framework
4.1 Construction of anisotropic volume harmonic field

This section presents the implementation details of constructing an anisotropic vol-
ume harmonic field, including the generation of the envelope surface, the tetrahedral
background mesh and the tensor constraints.

4.1.1 Minkowski Sum boundary surfaces

PDE-based methods need to construct background grids as the calculation domain. Gen-
erally, the viscous wall corresponds to the inner boundary of the background mesh, and
the envelope surface corresponds to the outer boundary. Ellipsoids and cubes are com-
monly used to be the envelope surfaces in traditional researches. However, there may
be large distortions of iso-surfaces if the inner boundary and the outer boundary have
big shape differences, especially for the topology changes. The distorted iso-surfaces will
induce low quality of layer meshes, resulting in non-full prismatic meshes. Therefore, a
proper outer boundary that better fits the shape and topology of the viscous wall is nec-
essary. In this approach, we exploit Minkowski Sum to obtain the outer boundary surface,
which can be guaranteed to maintain the topological consistency of the inner boundary
surface, enabling us to avoid the negative effects of saddle points in the harmonic field.
Moreover, the background mesh generated by the proposed Minkowski Sum boundary
surface has fewer redundant tetrahedral cells, which also improves calculation efficiency
and reduces memory consumption.
Given two polyhedral grids P and Q, the Minkowski Sum of them is defined as

P ⊕ Q = {p + q|p ∈ P, q ∈ Q}, (9)

the Minkowski Sum boundary is represented as ∂(P ⊕ Q). Since the calculation of a
volume harmonic field on the background mesh is not sensitive to the accuracy of the
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outer boundary surface, we adopt an efficient and robust convolution approach proposed
in [32] to extract the Minkowski Sum boundary surface. Also, a Laplace smoothing is
utilized to improve the quality of the obtained surface.
Given a viscous wall and a sphere mesh, the Minkowski Sum boundary surface of them

is related to the radius of the sphere. In our framework, the sphere radius is formulated as

re = ∑n−1
i=0 αi ∗ h1, (10)

where n, h1 and α are the number of layers, the first layer thickness and the stretch fac-
tor, respectively. Note that a preliminary judgment on the topology change between the
Minkowski Sum boundary surface and the viscous wall is implemented. If there are topol-
ogy changes, we reduce the sphere radius locally to preserve the topological consistency.
We demonstrate the Minkowski Sum boundary surface of a plane model and a sphere
mesh, as shown in Fig. 2.
After obtaining the boundary surfaces, we will construct the background meshes for

the calculation of volume harmonic fields. Here, TetGen [33] is exploited to generate the
tetrahedral background mesh, because it is a highly mature tetrahedral mesh generation
software that can produce high quality geometry-aware tetrahedral mesh with local tes-
sellation controllable. To balance the accuracy and efficiency, the density coefficient is set
to 1.1 in all our experiments.

4.1.2 Anisotropic volume harmonic field

A proper anisotropic volume harmonic field can be used to generate a prismatic mesh
that better fits the geometry and topology of viscous wall in the background mesh. The
iso-surfaces of the harmonic field determine the layer thickness and quality of prismatic
meshes. Therefore, 3D tensors are exploited to control volume harmonic field locally, and

Fig. 2 Illustration of the Minkowski Sum boundary surface (envelope surface). (a) The original surface mesh
(viscous wall). (b) The Minkowski Sum boundary surface. (c) The combination of the Minkowski Sum
boundary surface and the original surface
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theymake the prismatic mesh generationmore flexible and controllable to tackle complex
requirements. This subsection elaborates on the construction of an anisotropic harmonic
field.
Construction of 3D tensors
In our method, the 3D tensors are constructed to control the variation rate of the

harmonic field gradient. Essentially, the gradient variation rate in a standard volume har-
monic field could characterize the geometric and topological changes between the viscous
wall and envelope surface. The 3D tensors are derived from the standard volume har-
monic field, and then used to guide an anisotropic volume harmonic field that can avoid
collisions and reduce mesh distortion.
A 3D tensor can be constructed for each vertex in the background mesh

T(vi) = ∑N(vi)
j=1 eλjeijeijT/||eijeijT ||, (11)

where N(vi) is the neighborhood vertex set of vi, λj = (eijT∇H(vi)eij)β , eij is the edge
vector from vi to vj, ∇H(vi) is the gradient at vertex vi in the isotropic volume harmonic
field H obtained by directly computing the Laplace equation with common cotangent
weight, β is a regulating factor ( −1 by default).
Compared with the standard volume harmonic field, the one constructed with the pro-

posed tensors can better control the anisotropic iso-surfaces that result in high-quality
and easy-controllable prismatic meshes. Three models with different types of features are
tested to illustrate the validity, as shown in Fig. 3.

Fig. 3 Illustration of the anisotropic volume harmonic field. (a) The original models with Minkowski Sum
boundary surfaces; (b) The section of iso-surfaces induced by standard volume harmonic field; (c) The section
of iso-surfaces induced by the proposed anisotropic volume harmonic field
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Discrete calculation of anisotropic volume harmonic field
In our method, the tetrahedral background mesh serves as the discrete computational

domain. The projection of 3D tensors on edges is treated as the edge weight to calcu-
late the anisotropic volume harmonic field. Also, to improve the calculation efficiency
as well as reduce memory consumption, we exploit the iteration method to obtain an
approximate solution of the Laplace Eq. 7 instead of directly solving a huge sparse linear
system.
Given boundary conditions, H̃(vp) = 1, vp ∈ Vinner and H̃(vq) = 0, vq ∈ Vouter , where

Vinner , Vouter are vertices on the viscous wall and envelope surface, respectively. Based on
previous work [29], we define harmonic energy with tensor constraints as

K(H̃) =
∑

eij∈E
W̃ (eij)

(
H̃(vi) − H̃(vj)

)2 , (12)

where

W̃ (eij) = exp( T(eij) / δ ), (13)

where T(eij) is the projection of the corresponding tensorT(vi) on edge eij used to control
diffusion velocity along eij.
The process of minimizing the energy presented in Formula 12 is to make H̃ harmonic,

which is equivalent to updating H̃(vi) iteratively to achieve �H̃(vi) = 0. In this sense,
each iteration of updating H̃(vi) can be treated as the energy at vertex vi spread to vertices
in N(vi) with the diffusion velocity T. Hence, the formula for H̃(vi) can be written as

H̃(vi) =
∑

vj∈N(vi)
W̃ (eij)H̃(vj)

∑

vj∈N(vi)
W̃ (eij)

. (14)

The detailed implementation of anisotropic harmonic field is described in Algorithm 1.

Algorithm 1: Construction of Anisotropic Volume Harmonic Field
Input: triangular/quad mesh S; energy difference threshold δK .
Output: anisotropic volume harmonic field H̃ .

1 Constructing a Minkowski Sum boundary to be the envelope surface;
2 Generating a tetrahedral background meshM;
3 Computing 3D tensors T ;
4 Setting Dirichlet boundary conditions H̃(vp) = 1, H̃(vq) = 0, vp ∈ Vinner , vq ∈ Vouter ;
5 Initializing the harmonic energy K by formula 12 and set K to 0;
6 while ‖K − K‖ < δK do
7 K = K ;
8 Updating H̃(vj) by formula 14, where vj ∈ V\VB;
9 Recomputing the new harmonic energy and assign it to K.

10 Return H̃ .

4.2 Generation of prismatic meshes

Prismatic meshes can be generated by researching the marching direction and marching
distance of front nodes in the volume harmonic field.
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Marching directions
The marching directions can be obtained by calculating the gradients in the anisotropic

volume harmonic field. Most PDE-based methods directly adopt gradients as the march-
ing directions so that the generatedmeshes have pretty orthogonality. However, due to the
discrete gradient computation, the gradients at the steep concave parts are usually inac-
curate and even have a large deviation. If the gradients are directly taken as the marching
directions, then low-quality cells will be introduced. As a piecewise linear representation,
each tetrahedral cell of the background mesh is a linear space. If the scalar values of four
cell vertices are not equal to each other in the harmonic field, there is a unique iso-surface
whose normal is the gradient of harmonic field. Therefore, we first calculate iso-surfaces
whose normal is the gradient of harmonic field. Then, a smooth operation is executed on
the iso-surfaces to improve the gradient collisions, especially at the concave parts. Finally,
the modified gradients used to be the marching directions can be calculated from the
iso-surfaces. Note that we need to restrict the marching direction to the visible cone to
prevent from bringing negative volume cells straightly.
Marching distances
In our method, the marching distance depends on the distance between adjacent iso-

surfaces. Due to the complex geometries, the marching distances in the same layer might
not be consistent, especially for steep concave parts and slit features. Therefore, we adjust
the iso-surfaces to better fit the expected marching distances. The expected marching
distance of each layer can be formulated as

hi = α ∗ hi−1 i = 2, · · · , n. (15)

We establish a connection between the marching distances and the iso-surfaces. Given
a vertex vk ∈ Vinner , there is a gradient line from the current vertex to the envelope

Fig. 4 Illustration of the prismatic meshes. (a) The prismatic meshes induced by standard volume harmonic
field; (b) The prismatic meshes induced by the proposed anisotropic volume harmonic field
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surface. According to {hi} on the gradient line, we can extract a set of corresponding
sampling energy {ej}, j = 1, · · · , n. Then, each sampling energy ei will guide a corre-
sponding iso-surface. Finally, the combination of gradient lines and iso-surfaces yields
a high-quality prismatic mesh. Due to the high local-controllability of anisotropic har-
monic field, the prismatic meshes could well fit the geometry at complex parts, such as
at steep concave parts and slit features. As shown in Fig. 4, the prismatic meshes induced
by anisotropic harmonic field have higher quality and better flexibility than the meshes
induced by standard harmonic field.

Fig. 5 Comparison of prismatic meshes. (a) The original surface and envelope surface; (b) and (c) The
iso-surfaces and prismatic meshess generated using the standard harmonic field and the proposed
anisotropic harmonic field, respectively
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5 Numerical experiment and discussion
In this section, we briefly illustrate the experimental results. All the experiments were
conducted on a PC with 1.60GHz Intel(R) core(TM) i5-8520U CPU, 16 GB RAM and
64-bit Windows 10 operating system. To describe the effectiveness, we applied our algo-
rithm to various models with complex geometric information. Also, the comparisons of
prismatic meshes obtained between the standard harmonic field based method and the
proposed method are demonstrated.

5.1 General models with complex geometry

The missile model is a closed genus 0 surface with sharp angles and concave edges.
The original surface with its envelope surface is demonstrated in Fig. 5a. A high-quality
prismatic mesh requires the initial mesh layer should be close to the viscous wall as homo-
geneous as possible, especially at steep concave parts. The marching distances of front
nodes induced by the iso-surfaces in traditional standard harmonic field are much larger
at the concave parts, as shown in Fig. 5b. In our method, we automatically add local 3D

Fig. 6 Prismatic mesh of submarine model. (a) The original surface and envelope surface; (b) and (c) The
iso-surfaces and prismatic meshes generated using the standard harmonic field and the proposed
anisotropic harmonic field, respectively
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tensors to adjust the diffusion velocity at the concave regions, and obtain anisotropic iso-
surfaces that could better fit the viscous wall, as shown in Fig. 5c Left. Therefore, we could
obtain higher quality prismatic mesh than the one based on standard harmonic field,
as shown in Fig. 5c Right. Moreover, the prismatic mesh obtained using the proposed
method is a full prismatic mesh that contains 650,010 prisms grids.
We also test our method on more models, as shown in Figs. 6 and 7. The submarine is a

closed genus 0 model with concave parts. The unmanned aerial vehicle is a closed genus
0 model with concave parts and narrow slits. We can see that our method generates full
prismatic meshes with higher quality, especially for the complex parts, such as concave
parts and narrow slits.
The proposed method can be treated as a glorified normal smoothing approach, but it

also works well for models with the concave corner less than 90 degrees. One of the lead-
ing factors is that the controllable anisotropic volume harmonic field can provide a larger
space for marching directions. Figure 8 demonstrates the applicability of our proposed
approach to models with small-angle concave features.

Fig. 7 Prismatic mesh of unmanned aerial vehicle model. (a) The original surface and envelope surface; (b)
and (c) The iso-surfaces and prismatic meshes generated using the standard harmonic field and the
proposed anisotropic harmonic field, respectively
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Fig. 8 Prismatic mesh of a model with the concave corner less than 90 degrees. It is a full prismatic mesh
without collisions

Fig. 9 Prismatic mesh of plane model with complex geometries and genus. (a) The original surface and
envelope surface; (b) and (c) The iso-surfaces and prismatic meshes generated using the standard harmonic
field and the proposed anisotropic harmonic field, respectively
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5.2 Complex models with genus

The proposed framework can also be applied to complex models with complex geome-
tries and genus. As shown in Fig. 9, the plane is a closed genus 2 model with concave
parts and circular ring structures. Due to the Minkowski Sum based envelope surface,
the topology of the obtained prismatic mesh coincides with that of the original models.
Therefore, our proposed framework avoids complex segmentation and merging oper-
ations for high-genus models. Moreover, due to the local controllability of anisotropic
volume harmonic field, our method can also deal much better with the parts with com-
plex geometries. In all our experiments, our proposed framework generates high-quality
full prismatic meshes automatically.

6 Conclusion
Our work, by automatically adding local tensors to adjust the harmonic field, provides
more freedom for the mesh generation based on the traditional PDE methods. The thick-
ness of mesh induced by standard harmonic field can only be regulated globally. But the
control and flexibility of local mesh are low, which makes the prisms at concave edges
and narrow slits inevitably distort too much. Anisotropic harmonic field, to a certain
extent, makes up for the defects of the traditional PDE-method and matches well with the
prismatic grid generation task. The standard harmonic field can provide mass informa-
tion, and we utilize it to automate the addition of local tensor constraints. Although the
time-consuming is high under this strategy, it is easy to find parallel solutions to improve
efficiency.
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