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Abstract

Flow between rotating concentric cylinders, or the Taylor Couette flow, has been
studied extensively because of its rich physics, ranging from axisymmetric steady
laminar flow, to fully developed turbulent flow. In the present study, we advocate
the use of this problem as a benchmark case for scale-resolving simulation, such as
large eddy simulation (LES) and direct numerical simulation (DNS). The problem is
attractive because of its simple geometry, simple boundary conditions, and complex
physics involving wall-shear induced and centrifugal instability. Unlike the well-
known fully developed channel flow, this problem has a curved wall boundary, and
it is unnecessary to add a source term to the governing equations to sustain the
fully developed turbulent flow. A p-refinement study for Re = 4000 is performed first
to establish DNS data, including the time history of enstrophy, which can be used as
an accuracy and resolution indicator to evaluate numerical methods, and is orders of
magnitude faster than using the mean flow quantities and Reynolds stresses to
evaluate solution quality. Finally, an hp-refinement study is performed to establish
the relative accuracy and efficiency of high-order schemes of various accuracy.

Keywords: Large eddy simulation, Direct numerical simulation, High-order methods,
Navier-Stokes, Taylor Couette flow

1 Introduction
Scale-resolving simulations (SRS) such as large eddy simulation (LES) [1] and direct

numerical simulation [2] have been used extensively to study fundamental turbulent

flow physics at relatively low Reynolds numbers. Because of the disparate length and

time scales in a turbulent flow, the spectral method has been the method of choice for

earlier DNS studies involving relatively simple geometries, such as fully developed

channel flow [3], and the Taylor Couette flow [4].

In order to make LES feasible for real-world applications, it is necessary to develop

high-order numerical methods capable of handling complex geometries. The last two

decades saw significant development efforts in the CFD community for such methods

[5–9]. Multiple international workshops on high-order CFD methods [10] have been

organized to evaluate high-order methods on a wide variety of benchmark problems,

from simple 2D flow problems to fully turbulent 3D problems involving complex

geometries.
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The research effort developing LES tools got a huge boost from NASA’s CFD Vision

2030 Study [11], which states

“The use of CFD in the aerospace design process is severely limited by the inability

to accurately and reliably predict turbulent flows with significant regions of separ-

ation. Advances in Reynolds-averaged Navier-Stokes (RANS) modeling alone are

unlikely to overcome this deficiency, while the use of Large-eddy simulation (LES)

methods will remain impractical for various important applications for the foresee-

able future, barring any radical advances in algorithmic technology. Hybrid RANS-

LES and wall-modeled LES offer the best prospects …”

With the recent development in high-order numerical methods and computer hard-

ware, especially GPU architectures, LES has been increasingly used in industrial appli-

cations, especially in turbomachinery [12, 13], for mission-critical problems. Flow

problems with Reynolds numbers of several million have been tackled successfully.

With more LES applications in industry, the need to assess the solution error, mesh

resolution and numerical methods becomes more critical. However, it is hard to evalu-

ate numerical methods for LES because one needs to first establish a statistically steady

turbulent flow. After that, it is still necessary to continue the simulation for a significant

amount of time so that the mean flow and Reynolds stresses are sufficiently converged

in time. If h or p-refinement studies are desired, it is necessary to repeat this process

many times, making such evaluations very expensive.

Out of the many benchmark problems from the international high-order CFD work-

shops, the Green Taylor vortex problem [14] has become the most popular in evaluat-

ing numerical methods for SRS. There are several reasons for that popularity. First, the

problem has the simplest geometry of a Cartesian box. Any numerical methods, based

on any grids, structured or unstructured, can be easily evaluated with this case. Second,

the problem has a well-defined initial condition, which triggers flow transition to a fully

turbulent state through a well-known physical path of vortex stretching and eventual

breakdown, but not through roundoff errors in the computation. Third, the use of the

enstrophy history appears to distinguish the resolution capability of the numerical

methods very well. One can even compute the effective numerical viscosity in the

simulation.

The Green-Taylor vortex does have its deficiency. First and foremost, it does not

have any wall-boundaries. As a result, it cannot assess performance for shear-induced

turbulence. One could of course reuse the well-known fully developed turbulent chan-

nel flow problem. We did not select this case because of two reasons: the need to add a

source term in the momentum equation to sustain the fully developed turbulent flow,

and the wall is not curved. Curved wall boundaries can also be used to assess high-

order boundary representations.

Our search has led to the Taylor-Couette flow, which has a very simple geometry,

and curved wall boundaries, but very rich physics [15]. In addition, one can easily spe-

cify a computational mesh using one parameter, the mesh growth ratio in the radial

direction, since uniform meshes are used in the spanwise and azimuthal directions.

This is an important consideration because meshes in the same refinement family

should be used when different meshes are employed to evaluate numerical methods.
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The paper is organized as follows. In Section 2, we briefly review the numerical

method used in the present LES and DNS of the Taylor-Couette flow. After that, the

Taylor-Couette flow problem is described in Section 3. Section 4 presents the numer-

ical results from the LES and DNS, and a hp-refinement study to evaluate the relative

accuracy and efficiency of high-order schemes. The conclusions are summarized in Sec-

tion 5.

2 Numerical method
The Navier-Stokes solver is based on the flux reconstruction method originally devel-

oped by Huynh [16] for hyperbolic partial differential equations. This method was ex-

tended to mixed unstructured meshes in [17, 18]. Many further developments were

reviewed in [19]. This method belongs to discontinuous finite element methods, similar

to the discontinuous Galerkin (DG) [20] and spectral difference [21] methods. How-

ever, this method also has some unique advantages. Here we present a brief introduc-

tion of the method starting from a hyperbolic conservation law governing inviscid flow

∂U
∂t

þ ∇ � F Uð Þ ¼ 0; ð1Þ

with proper initial and boundary conditions, where the vector U consists of conserva-

tive variables, and F is the flux. By discretizing the computational domain with non-

overlapping elements, and introducing an arbitrary test function φ in each element, the

weighted residual formulation of Eq. (1) on element Vi can be expressed as

Z
V i

∂U
∂t

þ ∇ � F Uð Þ
� �

φdΩ ¼ 0: ð2Þ

The conservative variables inside one element are assumed to be polynomials, and

expressed by nodal values at certain points called solution points (SPs). After applying

integration by parts to the divergence of flux, replacing the normal flux term with a

common Riemann flux Fn
com and integrating back by parts, we obtain

Z
V i

∂Ui

∂t
φdΩþ

Z
V i

φ∇ � F Uið ÞdΩþ
Z

∂V i

φ Fn
com−F

n Uið Þ� �
dS ¼ 0: ð3Þ

Here, the common Riemann flux is computed with a Riemann solver

Fn
com ¼ Fn

com Ui;Uiþ;nð Þ; ð4Þ

where Ui+ stands for the solution outside the current element, and n denotes the out-

ward normal direction of the interface. The normal flux at the interface is:

Fn Uið Þ ¼ F Uið Þ � n: ð5Þ

Note that if the face integral in Eq. (3) can be transformed into an element integral

then the test function will be eliminated. In order to do so, a “correction field” δi is de-

fined in each element as
Z

V i

φδidΩ ¼
Z

∂V i

φ½Fn�dS; ð6Þ

where ½Fn� ¼ ½Fn
com−F

nðUiÞ� is the normal flux jump. Eqs. (3) and (6) result in
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Z
V i

∂Ui

∂t
þ ∇ � F Uið Þ þ δi

� �
φdΩ ¼ 0: ð7Þ

The final formulation for each solution point j is

∂Ui; j

∂t
þΠ j ∇ � F Uið Þ½ � þ δi; j ¼ 0; ð8Þ

where Πj denotes a projection to the polynomial space, and the subscript j denotes the

j-th solution point in a certain element.

For the viscous fluxes involving the gradient of conservative variables, we use the

Bassi-Rebay 2 scheme [22]. No sub-scale stress models are used. Therefore, the present

simulations are called implicit LES (ILES) or DNS when the simulation captures all

relevant scales. For time integration, we employ the three-stage SSP Runge-Kutta

scheme [23].

3 The setup of the Taylor Couette flow
Taylor-Couette (TC) flow, the name given to the flow between two coaxial co- or

counter-rotating cylinders, is one of the classical problems used to study the physics of

fluids. The problem carries the name of G.I. Taylor because of his landmark analysis of

the instability and the discovery of the counter-rotating Taylor vortices when the Reyn-

olds number is sufficiently large [15]. Theoretical, experimental and computational

studies have been performed for the TC flow for many decades and interested readers

can refer to a recent review article [24] for details.

In the present study, we assume that the inner cylinder rotates with an angular vel-

ocity of ω, while the outer cylinder is stationary, as shown in Fig. 1. The geometry of

the flow is characterized by the radius ratio, η = ri/ro, with ri and ro being the inner and

outer cylinder radiuses respectively. The wall velocity of the inner cylinder is U = ωri.

Let’s first assume that the flow is incompressible with density ρ, dynamic viscosity of μ,

and kinematic viscosity ν = μ/ρ. The width of the annulus is d = ro – ri. The Reynolds

number is defined as

Re ¼ Ud
ν

: ð9Þ

Fig. 1 Schematic of the Taylor-Couette flow
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Instead of using the Reynolds number, one can alternatively characterize the driving

of TC flow by the Taylor number

Ta ¼ 1þ ηð Þ4
64η2

d2 ri þ roð Þ2ω2

ν2
¼ 1þ ηð Þ6

64η4
Re2: ð10Þ

Another important geometric parameter is the aspect ratio, which is defined as

Γ ¼ L
d

ð11Þ

where L is the length of the cylinder. In the present study, Γ is selected to be 2π based

on an earlier DNS study [4] and our own tests. Since d is chosen as the primary length

scale of the TC flow, other parameters such as the radius ratio and the aspect ratio de-

termine the computational cost once the Reynolds number is specified. The domain

size in the azimuthal direction is roughly π(ri + ro), which can be expressed as πdð1þηÞ
1−η . It

is easy to see that when η goes to 1, the domain size (with respect to d) approaches in-

finity. In other words, a narrower gap width incurs higher computational cost assuming

the same Reynolds number. In the present study, we consider the wide gap case with

η = ½. There have been many existing experimental and computational studies of this

geometry [4].

When the Reynolds number is sufficiently low, an axisymmetric steady laminar solu-

tion exists. In fact, for an incompressible flow, the analytical velocity field in a polar co-

ordinate system can be written as:

ur ¼ 0 ð12Þ

uθ ¼ Ar þ B
r

ð13Þ

with

A ¼ −
ωη2

1−η2

B ¼ ωr2i
1−η2

:

The momentum equation reduces to

dp
dr

¼ ρu2θ
r

ð14Þ

A simple integration yields the following formula

p rð Þ ¼ ρ
1
2
A2r2 þ 2ABln rð Þ−

1
2
B2

r2

2
64

3
75þ C ð15Þ

where C is an arbitrary constant. In the case of compressible flow, such simple analyt-

ical solutions have not been found. However, we could assume a low Mach number to

approximate an incompressible flow. In addition, we need to fix at least the

temperature or pressure of one wall to make the problem well-posed. Let’s assume the

inner wall temperature is T (with a Prandtl number of 0.71), with a local speed of
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sound of c ¼ ffiffiffiffiffiffiffiffiffi
γRT

p
, where γ is the ratio of specific heats, and R the gas constant. The

inner wall Mach number is

M ¼ U
c
: ð16Þ

The outer wall is assumed adiabatic. To approximate an incompressible flow, we as-

sume M = 0.1. It is well known that the flow is fully turbulent when Re > 3000. In the

present study, we select a Reynolds number of 4000 to make the computational cost

reasonable for benchmark studies. In the axial direction (or spanwise direction), we em-

ploy a periodic boundary condition to approximate infinite cylinder length. The TC

flow has no inlet or exit. Therefore, the mean density remains a constant forever. A

fixed wall temperature will also fix the pressure at the inner wall, given the density.

In summary, we compute the laminar low Mach compressible TC flow in the follow-

ing manner. Given a constant density, the wall temperature and Mach number, we can

obtain the inner wall velocity U, and the angular velocity. In addition, the wall pressure

is computed from the ideal gas law. From the wall pressure, we can determine C in

(15). After that the pressure in the entire domain is known. Given density and pressure,

we can compute the temperature. The velocity field is computed from (12) and (13). Fi-

nally, the viscosity is computed from (9).

The inner wall velocity can be used to define a time scale

t� ¼ d
U
; ð17Þ

which is used to non-dimensionalize the physical time, i.e., t̂ ¼ t
t�.

We can of course start a LES/DNS from this laminar initial condition with no vari-

ation in the axial direction, and no radial flow velocity. The interactions between the

round-off error, the truncation error and the physical instabilities at Re = 4000 will trig-

ger the eventual transition from a laminar flow to a fully turbulent one. Once the flow

becomes fully developed, we can extract mean forces, Reynolds stresses, and power

spectral densities of certain flow variables to evaluate solution accuracy. Unfortunately,

this approach is expensive, and often has uncertainty associated with the convergence

of time-averaging.

Here is what we can learn from the popular Green-Taylor vortex problem. A well-

defined initial condition appears to drive the transition process following a physical

path of vortex stretching, tilting and breakdown. This process appears to severely test

the resolution of the numerical methods. After some trial and error, we employ the fol-

lowing initial condition by adding variations to the steady laminar flow in all three di-

rections, i.e.,

u�θ ¼ uθ þ εUsin θð Þ sin r−rið Þπ
ri

sin
z
d

� �
ð18Þ

u�r ¼ εUcos θð Þ sin r−rið Þπ
ri

sin
z
d

� �
ð19Þ

u�z ¼ 0 ð20Þ

p� ¼ p rð Þ þ 0:5�ρ εUð Þ2 cos 2θð Þ sin 2 r−rið Þπ
ri

sin
2z
d

ð21Þ
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ρ� ¼ ρ; ð22Þ

with ε = 0.1. We have assumed that z varies between 0 and L. The time histories of sev-

eral global integral variables can be used for benchmarking purpose. The most used are

the kinetic energy and enstrophy, defined for incompressible flow as

E ¼
Z

Ω
v!� v!dV ; ð23Þ

ℰ ¼
Z

Ω
ω!� ω!dV ; ð24Þ

where v! is the velocity vector, and ω!¼ ∇� v!: If the domain is periodic, one can de-

rive the following well-known identity [25–27].

dE
dt

¼ −νℰ: ð25Þ

From the kinetic energy dissipation rate, we can estimate the Kolmogorov scale

λ ¼ ν3

ϵ

	 
1=4

; ð26Þ

where ϵ is the dissipation rate of the turbulent kinetic energy, which can be computed

as

ϵ ¼ −
1
2Ω

dE
dt

: ð27Þ

In (27), the overbar denotes time-averaging. The friction torque generated by the

inner cylinder, Ti, is computed according to

Ti ¼ 2πr2i Lτi; ð28Þ

with τi the skin friction at the inner wall. The torque coefficient is defined as

CT ¼ Ti

0:5πρU2r2i L
: ð29Þ

For a fully developed TC flow, the total kinetic energy approaches a constant because

of the work done by the inner cylinder, ωTi. The effective dissipation rate becomes

ϵ ¼ ωTi

2ρΩ
: ð30Þ

For the present benchmark problem, non-dimensional quantities are preferred. In

addition, we include the density to take into account the density variation. The quan-

tities with a hat denote non-dimensional quantities, i.e.,

Ê ¼ 1

ρΩU2

Z
Ω
ρ v!� v!dV ð31Þ

ℰ̂ ¼ d2

ρΩU2

Z
Ω
ρω!� ω!dV ; ð32Þ

where ρ is the average density. Then identities (25) become
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dÊ

dt̂
¼ −

1
Re

ℰ̂: ð33Þ

If we express the Kolmogorov scale in a non-dimensional form, we obtain

λ
d
¼ 4 1þ ηð Þ

ηCT Re3

	 
1=4

: ð34Þ

4 Numerical results and discussions
4.1 P-refinement study

We first conduct a p-refinement study to establish the resolution for DNS. The compu-

tational mesh is shown in Fig. 2, which has 64, 80 and 20 elements in the axial, azi-

muthal and radial directions respectively, resulting in a total of 102,400 elements. The

mesh is uniform in the axial and azimuthal directions, and clustered in the radial direc-

tion with a minimum element size of 0.007d, and a growth ratio of 1.5 near the wall.

A p-refinement study is then performed with p = 2 to 5. The numbers of DOFs per

equation for p = 2, 3, 4, 5 (or p2, p3, et al) are 2.8 M, 6.6M, 12.8M, 22.1M respectively.

The histories of the non-dimensional kinetic energy and enstrophy are displayed in

Fig. 3. Except p2, the kinetic energy predicted by all other schemes agrees very well

until t = 40. After that, even the p4 and p5 predictions have visible differences, indicat-

ing that the flow has become chaotic and turbulent by that time. On the other hand,

the enstrophy histories show significant differences after t = 20, especially for p2 and

p3. It is obvious that the enstrophy histories are approaching p-independence, and the

difference between the p4 and p5 results is very small before t = 25. The p4 and p5

enstrophy histories have two distinctive peaks and one valley between t = 20 and 30.

The first peak is at t1 = 22.058, and the first valley is at t2 = 24.016, and the second peak

is at t3 = 27.200.

Since there is a small difference between the p4 and p5 enstrophy histories in the

neighborhood of t3, a finer mesh with 227,136 elements is used for a p5 simulation.

Fig. 2 Computational mesh for the p-refinement study for the Taylor-Couette flow
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The enstrophy histories on the base and the finer meshes are displayed in Fig. 4. Note

that there is an excellent agreement between the results until t4 = 33.5. After t4, the dif-

ference in the enstrophy histories is significant, indicating the flow has become irregu-

lar and turbulent.

Based on the enstrophy histories in the hp-refinement study, we can conclude that

the flow appears to follow a definitive path from a smooth initial condition to a fully

Fig. 3 Histories of kinetic energy and enstrophy for the p-refinement study
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turbulent state. From t = 0 to t1, the enstrophy grows by more than an order of magni-

tude, indicating a strong vortex stretching/tilting process, which is a severe test for the

resolution of numerical methods. To visualize the process, the distributions of the vor-

ticity magnitude at t1 from p2 to p5 simulations on the r-z plane (x = 0 cutting plane)

are displayed in Fig. 5. Clearly thin shear layers are generated near the cylinder walls,

and inside the flow field, indicating strong vortex stretching/tilting. Note that the flow

Fig. 4 Histories of enstrophy for two p = 5 simulations on the base and finer meshes

Fig. 5 The vorticity distributions at t1 computed with different schemes
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field displays strong symmetric patterns, which indicate a laminar flow field at t1. It is

obvious that the p2 and p3 simulations are not capable of fully resolving the thin vortex

sheets, while the p4 and p5 simulations produce p-independent results.

Between t1 and t2, the enstrophy decreases, signaling a breakdown of vortex sheets

into smaller eddies. Because of the close agreement between the p4 and p5 (on both

the base and finer meshes) enstrophy histories until t2, we believe that the flow is still

largely laminar at t2. To verify this claim, the distributions of the vorticity magnitude at

t2 from p2 to p5 simulations are displayed in Fig. 6. The strong symmetry in the distri-

bution of vorticity magnitude suggests indeed a laminar flow at t2. One can clearly see

the breakdown of the vortex sheets into smaller vortices. After the vortex breakdown,

we expect the flow to transition into a turbulent one soon.

The increase in enstrophy after t2 is a surprise because the phenomenon did not ap-

pear in the Green-Taylor vortex flow. We do have the following explanation. Soon after

t2, the flow starts to transition into a nonsymmetric and chaotic state. The boundary

layers near the inner and outer cylinders also start to transition into a turbulent one,

creating strong shear layers which briefly drive up the enstrophy until t3. The distribu-

tions of the vorticity magnitude at t3 from p2 to p5 simulations are presented in Fig. 7.

We indeed see more clearly the stronger shear layer generated near the outer cylinder

wall at t3 than at t2. Note that nonsymmetric flow patterns start to appear, indicating

transition to a chaotic and turbulent flow. It is obvious that vortex breakdown con-

tinues between t2 and t3 inside the flow domain, and visible differences appear between

the p4 and p5 results.

After the second enstrophy peak at t3, the flow becomes more and more chaotic and

turbulent. However, the enstrophy histories between the two p5 simulations on the

Fig. 6 The vorticity distributions at t2 computed with different schemes
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base and finer meshes remain quite close until t4. After that, we believe the flow be-

comes very irregular, and it is meaningless to compare instantaneous states. The distri-

butions of the vorticity magnitude at t4 from p2 to p5 simulations are displayed in

Fig. 8. Note clearly that the flow has become non-symmetric, irregular, and the flow

patterns are very different for all schemes.

We now suggest the following parameters to compare for this scale-resolving bench-

mark problem:

� Set the initial condition according to (18)–(21)

� Run the simulation until t = t4 = 33.5.

� Compare the enstrophy history with the DNS result at p5.

� Compare the distribution of the vorticity magnitude with the DNS p5 result at t =

t2.

After the establishment of the p5 simulation on the base mesh as a DNS, we contin-

ued the simulation for another 1400 time units. The histories of kinetic energy, enstro-

phy, and inner wall torque coefficient are displayed in Fig. 9. Although the enstrophy

and torque appear to reach a statistically steady turbulent state around t = 100, it takes

another 500 time units for the kinetic energy to reach a fully developed state. One can

also estimate the Kolmogorov scale to be λ = 0.011d. The minimum element size in the

wall normal direction is 0.007d. At this resolution for p = 5, there are roughly 10 DOFs

per Kolmogorov scale, clearly enough to capture the smallest turbulent scale.

Fig. 7 The vorticity distributions at t3 computed with different schemes
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Fig. 8 The vorticity distributions at t4 computed with different schemes
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Fig. 9 Histories of non-dimensional kinetic energy, enstrophy and torque coefficient in a long-term simulation
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To illustrate the flow vortical structures, the instantaneous and mean velocity vectors

are plotted in Fig. 10. From the mean velocity vector plot, we clearly see six vortices (or

three pairs), with each vortex having an aspect ratio close to 1. A similar vortical struc-

ture was also observed for Reynolds number of 8000 in [4]. This indicates that the

shape and size of the vortices are not strongly dependent on the Reynolds number.

Note that many smaller vortices exist in the instantaneous velocity plot, highlighting

the chaotic and turbulent nature of the flow field.

4.2 HP-refinement studies

In this subsection, we perform h and p refinement studies to evaluate the relative ac-

curacy and efficiency between different solution polynomial orders. We employ the

enstrophy history until t = t4 as the resolution/accuracy indicator. In order to guarantee

that all the meshes are in the same refinement family, the finer meshes are generated

through uniform refinements of the coarser meshes. The coarsest mesh has 12,800 ele-

ments (with 10 elements in the wall normal, 40 elements in the azimuthal and 32 in

the axial direction respectively), as shown in Fig. 11. The mesh has a minimum element

size of 0.032d in the wall normal direction with a growth ratio of 1.8. The coarsest

mesh is called the level 1 mesh. Uniform refinements are then used to generate three

extra levels of finer meshes. Therefore, the level 2 mesh has 102,400 elements, the level

3 mesh has 819,200 elements, while the level 4 mesh has 6,553,600 elements.

We then perform a p1 simulation on the level 4 mesh. The total number of DOFs

per equation for this simulation is roughly 52.4M. Based on earlier benchmark results

[10], the resolution of this simulation is similar to a 2nd-order FV simulation with 52.4

M control volumes. After that, we perform higher p simulations on the coarser meshes

to obtain enstrophy histories to estimate the solution resolution and accuracy. The

Fig. 10 Instantaneous and mean velocity vector plots on the y = 0 plane
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computed enstrophy histories are compared with the DNS result in Fig. 12. Note that

the p2 simulation on the level 2 mesh has higher resolution than the p1 simulation on

the Level 4 mesh. The p2 simulation has a total of 2.76M DOFs, which is roughly 1/19

of the DOFs in the p1 simulation. It is interesting to see that the p3 simulation on the

level 1 mesh is comparable to the p2 simulation on the level 2 mesh. The number of

DOFs in the p3 simulation is only 0.82M, which is 1/64 of that in the p1 simulation.

Fig. 11 Level 1 mesh for the hp-refinement study

Fig. 12 Histories of enstrophy in an hp-refinement study
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At p > 2, refining the mesh once produces results more accurate than by increas-

ing the order by 1. For example, the p3 (p4) simulation on the level 2 mesh is

more accurate than the p4 (p5) simulation on the level 1 mesh. We do note that

the p5 simulation on the level 1 mesh is more accurate than the p3 simulation on

the level 2 mesh. In other words, the p3 simulation with 2.4 times the DOFs of

the p5 simulation is less accurate than the p5 simulation. Summarizing all the re-

sults together, we can conclude that the p5 simulation with 1/150 the DOFs of the

p1 simulation is more accurate than the p1 simulation. To obtain the DNS reso-

lution using the p1 simulation, at least 3.3 billion DOFs are needed for this rela-

tively simple benchmark problem.

5 Conclusions
In the present study, the Taylor-Couette flow at the Reynolds number of 4000 is

suggested as a benchmark test case for scale resolving simulation with curved wall

boundaries. Similar to the well-known Taylor Green vortex problem, the enstrophy

history is used as the resolution and accuracy indicator. The use of enstrophy can

dramatically reduce the cost of performing benchmark studies for LES and DNS.

The usual approach for such benchmarks involves comparing the mean flow and

Reynolds stresses, which are very time-consuming to obtain, and dependent on the

duration of the simulations. With a well-defined smooth initial condition, it ap-

pears a definitive path can be identified for the flow to undergo vortex stretching/

tilting, breakdown, and finally transition to a fully turbulent flow. Through a p-

refinement study, we have identified one such smooth initial condition, and the

resolution needed for DNS.

This benchmark is then used to perform an hp-refinement study to evaluate the rela-

tive accuracy and efficiency of FR/CPR schemes of various orders of accuracy. A family

of meshes generated through uniform refinements are used in this hp-refinement study.

It is shown that the p2 simulation on the level 2 mesh is more accurate than the p1

simulation (2nd order accurate) on the level 4 mesh. The total number of DOFs of the

p1 simulation on the level 4 mesh is roughly 19 times of that of the p2 simulation on

the level 2 mesh. It is also shown that the p3 simulation on the level 1 mesh has a simi-

lar accuracy as that of the p2 simulation on the level 2 mesh. In other words, to achieve

a similar accuracy as the p3 simulation, the p1 simulation should have at least 64 times

of the DOFs in a p3 simulation. Results at higher p orders indicate that the p1 simula-

tion needs at least 150 times the number of DOFs to achieve a similar accuracy to a p5

simulation. In other words, a p5 FR/CPR simulation on a mesh of 47,000 elements

should be more accurate than a 2nd-order FV simulation on a mesh of the same family

with 1.5 billion control volumes.
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