
Advances in AerodynamicsWeng et al. Advances in Aerodynamics (2021) 3:21
https://doi.org/10.1186/s42774-021-00073-y

RESEARCH Open Access

Effects of mesh loop modes on
performance of unstructured finite volume
GPU simulations
Yue Weng1, Xi Zhang1* , Xiaohu Guo2, Xianwei Zhang1, Yutong Lu1 and Yang Liu3

*Correspondence:
zhangx299@mail.sysu.edu.cn
1School of Computer Science and
Engineering, Sun Yat-sen University,
Guangzhou, China
Full list of author information is
available at the end of the article

Abstract

In unstructured finite volume method, loop on different mesh components such as
cells, faces, nodes, etc is used widely for the traversal of data. Mesh loop results in direct
or indirect data access that affects data locality significantly. By loop on mesh, many
threads accessing the same data lead to data dependence. Both data locality and data
dependence play an important part in the performance of GPU simulations. For
optimizing a GPU-accelerated unstructured finite volume Computational Fluid
Dynamics (CFD) program, the performance of hot spots under different loops on cells,
faces, and nodes is evaluated on Nvidia Tesla V100 and K80. Numerical tests under
different mesh scales show that the effects of mesh loop modes are different on data
locality and data dependence. Specifically, face loop makes the best data locality, so
long as access to face data exists in kernels. Cell loop brings the smallest overheads due
to non-coalescing data access, when both cell and node data are used in computing
without face data. Cell loop owns the best performance in the condition that only
indirect access of cell data exists in kernels. Atomic operations reduced the performance
of kernels largely in K80, which is not obvious on V100. With the suitable mesh loop
mode in all kernels, the overall performance of GPU simulations can be increased by
15%-20%. Finally, the program on a single GPU V100 can achieve maximum 21.7 and
average 14.1 speed up compared with 28 MPI tasks on two Intel CPUs Xeon Gold 6132.

Keywords: GPU, CFD, Finite volume, Unstructured mesh, Mesh loop modes, Data
locality, Data dependence

1 Introduction
CFD plays an important part in the design of aircraft [1], which is applied in many scenar-
ios including predicting aerodynamics of wing [2], analyzing combustion in engine [3],
and so on. More and more computing resources are required, for high precision analysis.
For example, high resolution mesh should be used in Large Eddy Simulation (LES) [4] and
Direct Numerical Simulation (DNS) [5]. Thus, many CFD simulations [6] must be per-
formed in high performance computing (HPC) systems from clusters to supercomputers.
With the development of computing technology, the General Purpose Graphics Process-
ing Unit (GPGPU) [7] has played a more and more important role in HPC system [8], due

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42774-021-00073-y&domain=pdf
http://orcid.org/0000-0002-1196-0176
mailto: zhangx299@mail.sysu.edu.cn
http://creativecommons.org/licenses/by/4.0/

Weng et al. Advances in Aerodynamics (2021) 3:21 Page 2 of 23

to low energy consumption and high computing efficiency. Many mesh based CFD codes
[9] have been ported and optimized on GPU.
Unstructuredmesh is used widely in CFD for aeronautics and astronautics applications.

That’s because the construction of unstructured mesh is much easier for the computa-
tional domain with complex geometry [10] owned by aircraft. Furthermore, unstructured
mesh is adopted by many CFD software or computational frameworks including FUN3D
[11], OpenFOAM [12], SU2 [13], Fluidity [14], NNW-PHengLEI [15], and so on. How-
ever, compared with GPU simulations on structured mesh [16], it is difficult to get high
computational performance by unstructured mesh-based GPU simulations, due to severe
data locality problem [17].
Data locality affects the performance significantly of GPU computing. Specifically, on

the unstructured mesh, data storage is irregular. Indirect data access results in non-
coalescing load or store of data on device memory. Overheads due to non-coalescing data
load and storage are aggravated by multi-thread access data mode on GPU [18]. High
memory bandwidth can be obtained in some compact algorithms such as high-order Dis-
continuous Galerkin (DG) [19] methods and Flux Reconstruction (FR) [20]. However, it
is still difficult to improve the data locality of the second-order Finite Volume (FV) [21]
method. In order to reduce the overheads of memory indirect access, reorder of cell index
or face index can be used [22]. However, for complex geometry, the effects of reordering
are weak [23]. Some researchers studied the influence of SOA and AOS data layout on
data locality [24]. However, indirect memory access still exists in different data layouts. In
fact, data array index sorting can be adjusted by different mesh loops. It is significant to
investigate the effects of mesh loop modes on data locality of GPU computing.
Data dependence also influences the performance remarkably on GPU. The race con-

dition is often induced by multi-threading updating the same global memory or shared
memory, which can be resolved by hardware based method or software based method.
Thread lock on GPU can be used to make sure that data is only updated by one thread.
The overheads of thread lock have been reduced since Nvidia Kepler architecture [25].
Graph coloring method [26] can also be applied to guarantee that data in one color group
is accessed by different threads. It is found that thread lock is more efficient than graph
coloringmethod [27] onNvidia Tesla V100. By adjustingmesh loopmode, race conditions
can be eliminated as well.
In this paper, the effects of different mesh loops on GPU computing are investigated.

Several GPU kernels are studied in a second-order finite volume CFD solver. Those GPU
kernels are all hot spots, which account for more than 70% executing time on both GPU
Tesla V100 and K80. Furthermore, only face loop is used in those kernels. Considering
both data locality and dependence, the performances of those hot spots are evaluated and
analyzed for different mesh loop modes. Specifically, according to performance compari-
son, it is found that in the kernel for interpolation data from cells to nodes, cell loop can
achieve the best performance comparing with face loop and node loop. Besides interpo-
lation, mesh loop modes for local maximum & minimum pressure are studied as well. It
also indicates that cell loop is more efficient than face loop. The remaining paper is orga-
nized as follows: Section 2 introduces the mathematical model and mesh loop modes.
Section 3 gives algorithms under different mesh loops and is followed by Section 4 for
performance optimization and analysis. Finally, the paper presents conclusions and future
work in Section 5.

Weng et al. Advances in Aerodynamics (2021) 3:21 Page 3 of 23

2 Mathematical model
2.1 Governing equations and finite volume discretization

PHengLEI has been developed by China Aerodynamics Research and Development
Center [15] for simulating high speed and compressible flow. The governing equations
are Navier-Stokes (NS) Equations described in a small three-dimensional control volume
� with boundary d�, shown by Eq. 1,

∂

∂t

∫
�

�qd� +
∮

∂�

(�Fc − �Fv
)
dS = 0 (1)

where �q containing 5 unknowns are described in Eq. 2, including density ρ, velocity
components u, v, w, and internal energy e.

�Fc and �Fv are convective flux and viscous flux respectively, described in Eq. 3 and
Eq. 4. Specifically, �Fc is related with 5 unknowns and V on d�. V is obtained by V =
nxu+nyv+nzw. nx, ny, and nz are components of normal vector on d�. �Fv is related with
normal vector, viscous stress tensor with components from τxx to τzz, and energy dissipa-
tion terms including θx, θy, and θz. Both viscous stress and energy dissipation terms are
related with gradient of �q and some physical coefficients on d�.

�Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

ρ

ρu
ρv
ρw
ρe

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

�Fc =

⎡
⎢⎢⎢⎢⎢⎢⎣

ρV
ρuV + nxp
ρvV + nyp
ρwV + nzp

ρV (e + u2+v2+w2

2 + p
ρ
)

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

�Fv =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
nxτxx + nyτxy + nzτxz
nxτyx + nyτyy + nzτyz
nxτzx + nyτzy + nzτzz
nxθx + nyθy + nzθz

⎤
⎥⎥⎥⎥⎥⎥⎦

(4)

In the cell-centered finite volume method, the physical domain is discretized into a
number of control volumes (also called cells). The boundary of volumes is called faces. If
a particular cell �vol owns NF faces with area Sm, NS equations can be discretized as:

��qvol
�t

= − 1
�vol

[NF∑
m=1

(�Fc − �Fv
)
m
Sm

]
(5)

Weng et al. Advances in Aerodynamics (2021) 3:21 Page 4 of 23

The calculation of both �Fc and �Fv requires gradient of �qvol with components including
∂�qvol
∂x , ∂�qvol

∂y , and ∂�qvol
∂z . The gradient of �qvol can be obtained by Gauss-Green theory, as

∂�qvol
∂x = 1

�vol

[
NF∑
m=1

(
1
NN

NN∑
n=1

�qn
)

m
nxSm

]

∂�qvol
∂y = 1

�vol

[
NF∑
m=1

(
1
NN

NN∑
n=1

�qn
)

m
nySm

]

∂�qvol
∂z = 1

�vol

[
NF∑
m=1

(
1
NN

NN∑
n=1

�qn
)

m
nzSm

]
(6)

where �qn is an unknown independent vector on faces’ nodes and NN is the total number
of nodes on a face.
By the average of �qvol on total NC cells that share the same node, �qn on the node is

obtained by

�qn = 1
NC

[NC∑
c=1

(�qvol)c
]

(7)

The reconstruction of �qvol from cell center to faces is required for computing �Fc.The
reconstruction term �qm can be described by �qm = �qvol + φ(

∂�qvol
∂x lmx + ∂�qvol

∂y lmy + ∂�qvol
∂z lmz).

lmx, lmy, and lmz are components of vector from cell center to face center. φ is the limiter
to avoid physical oscillation, which is described by

φ = 1
η−

[
η+2η− + 2η−2η+

η+2 + 2η+η− + η−2

]

η+ =
{
pmax
vol − pvol

pmin
vol − pvol

η− = ∂�qvol
∂x

lmx + ∂�qvol
∂y

lmy + ∂�qvol
∂z

lmz

(8)

where pvol is one component of �qvol, which is the pressure located on the cell center. pmax
vol

and pmin
vol are the local maximum and minimum pressure on the volume.

The convective flux �Fc is calculated by the Roe scheme and the viscous flux �Fv is dis-
cretized by the central scheme. The computing process of the turbulence model is similar
to NS equations, which are not described in detail. Spalart-Allmaras turbulence model
is applied for turbulence effects. Iteration is required to guarantee that residuals of NS
equations and the turbulence equation on each cell are small enough. In every iteration
step, the explicit two order Runge Kutta method is applied to discretize the unsteady term
in Eq. 5.

2.2 Mesh and data storage

In the Finite Volume method, the computing domain must be discretized in advance.
Mesh is formed by a number of non-overlapping arbitrary polyhedral control volumes
that fulfill the computing domain, shown in Fig. 1a. The boundary of control volume (cell)
is called faces. The connection of the face edge is called nodes. Three-dimensional mesh’s
cells, faces, and nodes are shown in Fig. 1b. Here, for simplification, hexahedral cells are
used for describing mesh loop modes. In fact, most cells in Fig. 1a are tetrahedral. Each
cell, face, and node have their own unique index. Due to unstructured property, cells,

Weng et al. Advances in Aerodynamics (2021) 3:21 Page 5 of 23

Fig. 1 Cells, faces, nodes of mesh in cell-centered FV discretization

Weng et al. Advances in Aerodynamics (2021) 3:21 Page 6 of 23

faces, or nodes with adjacent indexes do not mean connectivity in the physical domain.
Hence, physical connectivity between cells, faces, and nodes is defined by index reflection.
In order to better explain the data structure and storage method, we stipulate that the

name of the scalar will be in normal style, and the name of the array will be in italics.
Face-node connectivity is defined by faceNodes and nodeFaces. faceNodes is a one-

dimensional array which focuses on faces and stores the nodes they connect with. As
shown in Fig. 1b, face fi has four nodes including ne, nf , ng and nh (indexes order:
ne < nf < ng < nh), which means the numNodesInFace of fi is 4. The nodes’
indexes will be stored in faceNodes through ascending order. For example, faceN-
odes[nodeOfFaceStart[fi]]=ne, faceNodes[nodeOfFaceStart[fi]+1]=nf , where the nodeOf-
FaceStart is an array that points out the index offset for a face. On the contrary, the
nodeFaces stores the connective faces of different nodes in a similar manner, with the help
of numFacesInNode and faceOfNodeStart.
Cell-face connectivity is defined by owner, neighbor, and cellFaces. Cell index is stored

in owner and neighbor, by the order of face index. The cell with smaller index sharing the
same face is stored in owner, while the larger one is stored in neighbor. In Fig. 1b, cell O
and cell P (O < P) share the same face fi. Their face-cell connectivities can be described by
owner[fi]=O and neighbor[fi]=P. Similarly, face indexes are stored in cellFaces, equipped
with numFacesInCell and faceOfCellStart.
Cell-node connectivity is defined by cellNodes and nodeCells in a similar manner as

described in the face-node connectivity.
Based on the mesh, Eq. 1 can be approximately changed into Eq. 5 through numerical

methods. Apart from cell data q, the surface integral in Eq. 5 contains fluxes (�Fc and �Fv)
crossing faces of control volumes. Those fluxes are stored on face centers. In the comput-
ing of face data flux, many data on faces are needed. Besides cell data and face data, qNode
stored on nodes of mesh is also required by Eq. 6. As a result, the access of cell data, face
data and node data is performance critical for an unstructured finite volume mesh (see
Fig. 1b).
Structure of Array (SOA) data layout is used for cell data, face data, and node data

in host memory and device memory. Thus, cell data, face data, and node data can
be accessed directly by cell index, face index, and node index respectively. Because of
the topological connectivity definition, the indirect data accessed problem cannot be
avoided in some kernels that are computed with cell, face and node data. For exam-
ple, node data can be accessed indirectly based on the faceNodes, numNodesInFace, and
nodeOfFaceStart.

2.3 Mesh loopmodes

In the unstructured finite volume CFD program, a loop on mesh components is used for
the traversal of data located on the mesh. With different data types, direct or indirect
data access can be induced by different mesh loop modes. Obviously, data on cells, faces,
and nodes can be directly accessed by the corresponding loop on cells, faces, and nodes
respectively. However, more than one type of data is used in most kernels, which induces
indirect data access problem in mesh loop.
Taking the gradient of q for instance (the part in square brackets of Eq. 6), where cell

data, face data, and node data all exist in computing. In PHengLEI code (CPU version),
face loop from index 0 to numTotalFaces-1 is applied in Algorithm 1. Thus, face data

Weng et al. Advances in Aerodynamics (2021) 3:21 Page 7 of 23

Algorithm 1 Computing gradient of q by face loop (CPU)
1: for faceID = 0 to numTotalFaces do
2: ownCellID ← owner[faceID]
3: ngbCellID ← neighbor[faceID]
4: qfc ← 0.0
5: nodeStart← nodeOfFaceStart[faceID]
6: for offset = 0 to numNodeInFace[faceID]-1 do
7: nodeID ← faceNodes[nodeStart+offset]
8: qfc += qNode[equationID*nTotalNode+nodeID]
9: end for

10: qfc / = numNodeInFace[faceID]
11: areaFace ← area[faceID]
12: qfcnx←qfc*nxs[faceID]*areaFace
13: qfcny←qfc*nys[faceID]*areaFace
14: qfcnz←qfc*nzs[faceID]*areaFace
15: dqdx[ownCellID]+=qfcnx
16: dqdy[ownCellID]+=qfcny
17: dqdz[ownCellID]+=qfcnz
18: dqdx[ngbCellID]+=-qfcnx
19: dqdy[ngbCellID]+=-qfcny
20: dqdz[ngbCellID]+=-qfcnz
21: end for

including normal vector (nxs, nys, nzs) and area area are loaded directly by face index
(Line 11-14). On the contrary, the gradient of q including dqdx, dqdy, and dqdz located
on cells is stored indirectly due to the cell-face connectivity information like owner and
neighbor (Line 15-20).
The face loop for the gradient of q is ported to GPU, described in Algorithm 5. It should

be noted that all of the data used in GPU is allocated in global memory, with the same
name used in CPU. The indirect access of cell data and node data by face loop leads to
non-coalescing global memory load and store which brings great latency troubles.
Besides face loop, there are two more loop modes, cell loop and node loop, which can

be applied for computing gradient of q (described in Algorithms 6 and 7). Although the
indirect data access problem is inevitable in different mesh loops, the loop with bet-
ter data locality and less latency overhead should be considered firstly for performance
optimization.
Besides data locality, it can be observed that, in Algorithm 5 (Line 16-21) and Algo-

rithm 7 (Line 14-19), atomic operations are used for resolving race condition. To illustrate,
in both node loop and face loop, several threads may update the same cell data. The data
dependence should be guaranteed by atomic operations. Overheads induced by those
atomic operations should be put into consideration as well.

2.4 Hot spot analysis

Most functions in the unstructured FVM CFD program PHengLEI have been already
ported on GPU V100. The mesh loop modes used in GPU kernels have the same imple-
ment in corresponding CPU functions. Through profiling [28], there are 6 kernels that

Weng et al. Advances in Aerodynamics (2021) 3:21 Page 8 of 23

Table 1 Description of GPU kernels

face data NO kernel name description cell data face data node data mesh loopmode

GQ GPUGradientQ compute
gradient of q

yes yes yes face loop

NV GPUNodeValue interpolate q
from cells
into nodes

yes no yes face loop

VF GPUViscousFlux compute
viscous flux

yes yes no face loop

FS GPUFluxSum compute
sum of flux

yes yes no face loop

FV GPUFaceValue update
independent
variables

yes yes no face loop

LMM GPULocalMinMax compute
local
max&min
pressure

yes no no face loop

account for around 75% of executing time in total, as mesh scale varies from 1 million
to 9 million. Those kernels’ function and data type are described in Table 1. The execu-
tion time proportion of 6 hot spots (GPU kernels) is shown in Table 2. Furthermore, the
speedup of those kernels running on a single GPU compared with CPU code on one core
is described in Table 3. The speedup of 4 kernels including GPUGradientQ, GPUNode-
Value, GPUFluxSum and GPULocalMinMax is always smaller than the average value in
different mesh scales. Hence, it is significant to optimize those 4 kernels in the next stage.
In Table 1, face loop is used in all hot spots kernels. However, not all the kernel contains

face data, for example, GPUNodeValue only uses cell data and node data. Face loop may
aggravate non-coalescing of data access. Therefore, the performance of different mesh
loop modes should be investigated and the suitable mesh loop mode should be applied.

3 Algorithms for different mesh loopmodes
Algorithms for four computing procedures including interpolating and gradient of q,
sum of flux, local maximum and minimum pressure determination are described in this
section. For each procedure, GPU kernels by face loop will be introduced, while the face
loop or node loop will be proposed depending on the data type.

3.1 Interpolating q

Interpolating q from cells to nodes is described in Eq. 7. The computing can be ported to
GPU under different loop modes.

Table 2 Executing time proportion of GPU kernels

Mesh size 1 million 2 million 4 million 6 million 9 million

GPUGradientQ 27.7% 27.8% 27.8% 27.3% 27.3%

GPUNodeValue 12.9% 13.8% 14.8% 15.8% 19.1%

GPUViscousFlux 12.4% 12.2% 12.1% 12.3% 12.1%

GPUFluxSum 7.9% 8.3% 8.5% 8.5% 8.1%

GPUFaceValue 7.8% 7.9% 7.9% 7.9% 7.8%

GPULocalMinMax 2.9% 3.0% 3.1% 3.1% 3.3%

Total 71.6% 73% 74.2% 74.9% 77.7%

Weng et al. Advances in Aerodynamics (2021) 3:21 Page 9 of 23

Table 3 Speedup of GPU kernels

Mesh size 1 million 2 million 4 million 6 million 9 million

GPUGradientQ 128.9 159.4 165.1 149.8 118.4

GPUNodeValue 58.4 57.4 60.8 48.1 32.7

GPUViscousFlux 468.5 443.1 455.1 393.4 295.1

GPUFluxSum 141 142.1 161.3 141.7 108.7

GPUFaceValue 350.2 346.9 320.5 280.1 218.7

GPULocalMinMax 187.4 190.2 201.3 176.8 127.8

Average 222.4 223.1 227.3 198.3 150.2

Algorithm 2 (NV-F) shows the interpolation of q by face loop on GPU. For each face,
qNode is located on nodes to be accessed. Cell data q on both face’s owner and neighbor
cells is added into qNode. Similarly, cell data t is added into tNode. Node data nCount
gets how many cells are contributed to each node. Atomic operation is used to avoid race
conditions that may be induced by updating qNode on the same node belonging to faces
computed by different threads.

Algorithm 2 Interpolating q by face loop (NV-F)
1: <GPU kernel Begin>

2: faceID←threadIdx.x+blockIdx.x*blockDim.x
3: ownCellID ← owner[faceID]
4: ngbCellID ← neighbor[faceID]
5: nodeStart← nodeOfFaceStart[faceID]
6: for offset = 0 to numNodeInFace[faceID]-1 do
7: nodeID ← faceNodes[nodeStart+offset]
8: for equationID = 0 to numEquations-1 do
9: atomicAdd(qNode[equationID*numTotalNode+nodeID],

q[ownCellID+equationID*numTotalCell])
10: end for
11: atomicAdd(tNode[nodeID], t[ownCellID])
12: atomicAdd(nCount[nodeID], 1)
13: for equationID = 0 to numEquations-1 do
14: atomicAdd(qNode[equationID*numTotalNode+nodeID],

q[ngbCellID+equationID*numTotalCell])
15: end for
16: atomicAdd(tNode[nodeID], t[ngbCellID])
17: atomicAdd(nCount[nodeID], 1)
18: end for
19: <GPU kernel End>

Algorithm 3 (NV-C) describes the kernel by cell loopmode for interpolation of q. GPU
threads are assigned according to cells. In one cell, the traversal of nodes is performed so
that cell data q and t can be added into qNode and tNode respectively. Atomic operation
is also necessary to resolve race conditions.
Algorithm 4 (NV-N) introduces the use of node loop for interpolation of q. GPU

threads’ calculation is based on nodes. For each node, the traversal of cells that own the

Weng et al. Advances in Aerodynamics (2021) 3:21 Page 10 of 23

Algorithm 3 Interpolating q by cell loop (NV-C)
1: <GPU kernel Begin>

2: cellID←threadIdx.x+blockIdx.x*blockDim.x
3: nodeStart ← nodeOfCellStart[cellID]
4: for offset = 0 to numNodeInCell[cellID]-1 do
5: nodeID ← cellNodes[nodeStart+offset]
6: for equationID = 0 to numEquations-1 do
7: atomicAdd(qNode[equationID*numTotalNode+nodeID],

q[cellID+equationID*numTotalCell])
8: end for
9: atomicAdd(tNode[nodeID], t[cellID])

10: atomicAdd(nCount[nodeID], 1)
11: end for
12: <GPU kernel End>

same node is done for adding cell data q into qNode. Race conditions can be avoided by
the node loop mode. Atomic operation is not necessary.

Algorithm 4 Interpolating q by node loop (NV-N)
1: <GPU kernel Begin>

2: nodeID←threadIdx.x+blockIdx.x*blockDim.x
3: cellStart ← cellOfNodeStart[cellID]
4: for offset = 0 to numCellInNode[nodeID]-1 do
5: cellID ← nodeCells[cellStart+offset]
6: for equationID = 0 to numEquations-1 do
7: qNode[equationID*numTotalNode+nodeID]+=

q[cellID+equationID*numTotalCell]
8: end for
9: tNode[nodeID] += t[cellID]

10: nCount[nodeID] += 1
11: end for
12: <GPU kernel End>

3.2 Gradient of q

The gradient of q is computed according to Eq. 6. As �vol is a constant value in each
cell, the part in square brackets of Eq. 6 should be paid more attention. GPU kernels with
different loop modes implement can achieve the same requirement.
Algorithm 5 (GQ-F) describes the GPU kernel for the gradient of q by face loop. For

each face, the average of qNode on nodes is stored in qfc temporarily. Then, face data
including area area and normal vector (nxs, nys, nzs) are multiplied with qfc. Finally, tem-
porary face variables including qfcnx, qfcny, and qfcnz are added into dqdx, dqdy, and
dqdz respectively on both neighbor and owner cell. Race conditions may be induced as
several GPU threads write into the same cell data. Therefore, the atomic operation is
required.

Weng et al. Advances in Aerodynamics (2021) 3:21 Page 11 of 23

Algorithm 5 Computing gradient of q by face loop (GQ-F)
1: <GPU kernel Begin>

2: faceID←threadIdx.x+blockIdx.x*blockDim.x
3: ownCellID ← owner[faceID]
4: ngbCellID ← neighbor[faceID]
5: qfc ← 0.0
6: nodeStart← nodeOfFaceStart[faceID]
7: for offset = 0 to numNodeInFace[faceID]-1 do
8: nodeID ← faceNodes[nodeStart+offset]
9: qfc += qNode[equationID*nTotalNode+nodeID]

10: end for
11: qfc / = numNodeInFace[faceID]
12: areaFace ← area[faceID]
13: qfcnx←qfc*nxs[faceID]*areaFace
14: qfcny←qfc*nys[faceID]*areaFace
15: qfcnz←qfc*nzs[faceID]*areaFace
16: atomicAdd(dqdx[ownCellID], qfcnx)
17: atomicAdd(dqdy[ownCellID], qfcny)
18: atomicAdd(dqdz[ownCellID], qfcnz)
19: atomicAdd(dqdx[ngbCellID], -qfcnx)
20: atomicAdd(dqdy[ngbCellID], -qfcny)
21: atomicAdd(dqdz[ngbCellID], -qfcnz)
22: <GPU kernel End>

Algorithm 6 (GQ-C) expounds the application of cell loop on gradient of q. GPU
threads are assigned to cells. As to a cell, the traversal of faces is performed to get the face
data including area, nxs, nys, and, nzs. For each face, node data qNode on the face’s nodes
is loaded for the average qfc. Finally, cell data including dqdx, dqdy, and dqdz are stored
by temporary face data including qfcnx, qfcny, and qfcnz. The contributions of faces to
owner cell and neighbor cell are distinguished by leftRightFace.
Algorithm 7 (GQ-N) indicates how the node loop is used for the gradient of q in a GPU

kernel. For each node, the node data qNode is loaded for the average qfc. The traversal of
faces that own the same node is performed to get the face data including area and normal
vector. The atomic operation should be used for adding qfcnx, qfcny, and qfcnz to dqdx,
dqdy, and dqdz respectively, because many threads may write to the same cell data.

3.3 Summation of flux

In Eq. 5, summation of flux res on faces of each cell is required for computing convective
flux �Fc and viscous flux �Fv. Both face loop and cell loop can be applied.
Algorithm 8 (SF-F) describes summation of flux by face loop on GPU. On a face, flux

located on faces is loaded. Then, flux is added to res on both the owner cell and neighbor
cell.
Algorithm 9 (SF-C) shows the application of cell loop for summation of flux. GPU

threads are assigned to cells. In a cell, face data flux is loaded by a traversal of faces. Then,
flux is added to the cell data res. ownNgbFace is used for distinguishing neighbor or owner
cell sharing the same face.

Weng et al. Advances in Aerodynamics (2021) 3:21 Page 12 of 23

Algorithm 6 Computing gradient of q by cell loop (GQ-C)
1: <GPU kernel Begin>

2: cellID←threadIdx.x+blockIdx.x*blockDim.x
3: (qfcnx, qfcny, qfcnz) ← 0.0
4: faceStart← faceOfCellStart[cellID]
5: for offset = 0 to numFaceInCell[cellID]-1 do
6: faceID ← cellFaces[faceStart+offset]
7: ownNgb ← ownNgbFace[faceStart+offset]
8: nodeStart← nodeOfFaceStart[faceID]
9: areaFace← area[faceID]

10: qfc ← 0.0
11: for offset = 0 to numNodeInFace[faceID]-1 do
12: nodeID ← faceNodes[nodeStart+offset]
13: qfc += qNode[equationID*nTotalNode+nodeID]
14: end for
15: qfc /= numNodeInFace[faceID]
16: qfcnx+=qfc*nxs[faceID]*areaFace*ownNgb
17: qfcny+=qfc*nys[faceID]*areaFace*ownNgb
18: qfcnz+=qfc*nzs[faceID]*areaFace*ownNgb
19: end for
20: dqdx[cellID] ← qfcnx
21: dqdy[cellID] ← qfcny
22: dqdz[cellID] ← qfcnz
23: <GPU kernel End>

3.4 Computing local maximum andminimum pressure

Local maximum and minimum pressure pmax
vol and pmin

vol in Eq. 8 are computed by
comparing pressure pvol on one cell with pressure on the cell’s neighbor cells.
Algorithm 10 (LM-F) describes the determination of local maximum and minimum

pressure by face loop. For each face, by comparing pressure and dMin on cells sharing the
same face, the smaller one is stored into dMin. Similarly, comparing pressure and dMax
on cells sharing the same face, the larger one is stored into dMax. Finally, the traversal of
faces makes pressure on each cell compared with the surrounding neighbor cells.
Algorithm 11 (LM-C) shows how to obtain each cell’s local maximum and minimum

pressure by cell loop. For each cell, by looping on its boundary faces, pressure on the cell’s
surrounding neighbor cells can be loaded and compared with that on the cell. After the
comparison, the local maximum and minimum pressure is stored into dMax and dMin
on the cell, respectively.

4 Performance analysis
4.1 Performance test and computing environment

The performance benchmark is the simulation of transonic flow over an ONERA M6
wing. Unstructured mesh is used in our evaluations. The three-dimensional computa-
tional domain is filled by hexahedral and tetrahedral hybrid cells, shown in Fig. 1a. The
topology connectivity in the mesh is general in CFD so that the results of the performance

Weng et al. Advances in Aerodynamics (2021) 3:21 Page 13 of 23

Algorithm 7 Computing gradient of q by node loop (GQ-N)
1: <GPU kernel Begin>

2: nodeID←threadIdx.x+blockIdx.x*blockDim.x
3: faceStart ← faceOfNodeStart[nodeID]
4: for offset = 0 to numFaceInNode[nodeID]-1 do
5: faceID ← nodeFaces[faceStart+offset]
6: numNodes ← numNodeInFace[faceStart+offset]
7: areaFace← area[faceID]
8: ownCellID ← owner[faceID]
9: ngbCellID ← neighbor[faceID]

10: qfc ← qNode[equationID*nTotalNode + nodeID]/numNodes
11: qfcnx←qfc*nxs[faceID]*areaFace
12: qfcny←qfc*nys[faceID]*areaFace
13: qfcnz←qfc*nzs[faceID]*areaFace
14: atomicAdd(dqdx[ownCellID], qfcnx)
15: atomicAdd(dqdy[ownCellID], qfcny)
16: atomicAdd(dqdz[ownCellID], qfcnz)
17: atomicAdd(dqdx[ngbCellID], -qfcnx)
18: atomicAdd(dqdy[ngbCellID], -qfcny)
19: atomicAdd(dqdz[ngbCellID], -qfcnz)
20: end for
21: <GPU kernel End>

test are generalized for unstructured CFD applications. Five meshes used in performance
evaluation are described in Table 4. 9 million mesh is used in numerical experiments,
which is close to the maximum mesh scale computed by PHengLEI GPU version on a
single GPU V100.
All of the algorithms in Section 3 are implemented by CUDA C language. Both Nvidia

Tesla K80 and V100 are used in performance tests for investigating the influence of Kepler
architecture and Volta architecture. CUDA 8.0 and CUDA 10.0 are used as drivers for

Algorithm 8 Summation of Flux by face loop (SF-F)
1: <GPU kernel Begin>

2: faceID←threadIdx.x+blockIdx.x*blockDim.x
3: ownCellID ← owner[faceID]
4: ngbCellID ← neighbor[faceID]
5: for equationID = 0 to numEquations-1 do
6: atomicAdd(

res[equationID*numTotalCell+ownCellID],
flux[equationID*nTotalFace+faceID])

7: atomicAdd(
res[equationID*numTotalCell+ngbCellID],
flux[equationID*nTotalFace+faceID])

8: end for
9: <GPU kernel End>

Weng et al. Advances in Aerodynamics (2021) 3:21 Page 14 of 23

Algorithm 9 Summation of Flux by cell loop (SF-C)
1: <GPU kernel Begin>

2: cellID←threadIdx.x+blockIdx.x*blockDim.x
3: faceStart ← faceOfCellStart[nodeID]
4: for offset = 0 to numFaceInCell[cellID]-1 do
5: faceID ← cellFaces[faceStart+offset]
6: ownNgb ← ownNgbFace[faceStart+offset]
7: for equationID = 0 to numEquations-1 do
8: res[equationID*numTotalCell+cellID]

+= flux[equationID*nTotalFace+faceID]*ownNgb
9: end for

10: end for
11: <GPU kernel End>

Algorithm 10 Local maximum & minimum pressure computing by face loop (LM-F)
1: <GPU kernel Begin>

2: faceID←threadIdx.x+blockIdx.x*blockDim.x
3: ownCellID ← owner[faceID]
4: ngbCellID ← neighbor[faceID]
5: atomicMin(dMin[ownCellID], pressure[ngbCellID])
6: atomicMax(dMax[ownCellID], pressure[ngbCellID])
7: atomicMin(dMin[ngbCellID], pressure[ownCellID])
8: atomicMax(dMax[ngbCellID], pressure[ownCellID])
9: <GPU kernel End>

Algorithm 11 Local maximum & minimum pressure computing by cell loop (LM-C)
1: <GPU kernel Begin>

2: cellID←threadIdx.x+blockIdx.x*blockDim.x
3: faceStart ← faceOfCellStart[nodeID]
4: for offset = 0 to numFaceInCell[cellID]-1 do
5: faceID ← cellFaces[faceStart+offset]
6: ownCellID ← owner[faceID]
7: ngbCellID ← neighbor[faceID]
8: if ngbCellID equal to cellID then
9: atomicMin(dMin[cellID], pressure[ownCellID])

10: atomicMax(dMax[cellID], pressure[ownCellID])
11: else
12: atomicMin(dMin[cellID], pressure[ngbCellID])
13: atomicMax(dMax[cellID], pressure[ngbCellID])
14: end if
15: end for
16: <GPU kernel End>

Weng et al. Advances in Aerodynamics (2021) 3:21 Page 15 of 23

Table 4 Five different meshes generated for benchmark tests (million)

Mesh size Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5

cell 1.05 2.26 3.97 6.30 8.78

face 2.32 5.02 8.83 14.07 20.68

node 0.31 0.71 1.23 2.00 3.50

K80 and V100, respectively. Every GPU kernel is repeated 100 times on a single GPU and
the total executing time is recorded in Table 5 and Table 6.

4.2 Validation of GPU simulations

For validating GPU simulations, an ONERA M6 in a transonic uniform flow is simulated
by GPU and CPU respectively. Specifically, the inflow velocity is set by Mach number of
0.8395 at the attack angle of 3.06 rad and the sideslip angle of 0 deg. Firstly, the aerody-
namic coefficients including drag coefficient and lift coefficient are compared between
GPU and CPU. Figure 2a and b show that the difference of aerodynamic coefficients
between CPU and GPU is very small. For evaluating the difference of aerodynamic coef-
ficients between CPU and GPU, it is defined by error = Cgpu − Ccpu. From Fig. 2c and
d, it can be seen that the error is around 10−12 during 2 × 105 iteration steps. Compared
with the order of aerodynamic coefficients, the small error can be ignored. Secondly, the
pressure coefficient (Cp) contour on the wing surface is also compared between GPU and
CPU. Figure 3 shows that the difference of pressure coefficient is subtle on both front
and back surfaces. The validation indicates that GPU simulation results are precise with
guarantee.

4.3 Interpolation of q

Face loop, cell loop, and node loop are used in kernels NV-F, NV-C, and NV-N respec-
tively, for computing the interpolation of q. In those mesh loop modes, data locality is
completely different. Specifically, the load of cell data is only coalescing in the cell loop.
Face loop and node loop make the access of cell data indirect, which leads to much more
overheads. Similarly, the store of node data is coalesced only in the node loop. Face loop
and cell loop induce indirect access of node data, which aggravates the latency of updat-
ing global memory. Besides data locality, atomic operations are necessary for the face loop
and cell loop. The implicit synchronization induced by atomic operations may reduce the

Table 5 Execution time(s) of GPU kernels with different mesh loop modes on V100

Kernels Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5

NV-F 0.460 1.307 3.048 5.758 16.940

NV-C 0.122 0.480 1.243 2.462 6.613

NV-N 0.393 0.976 1.867 3.005 5.047

GQ-F 0.061 0.154 0.308 0.537 1.209

GQ-C 0.134 0.326 0.639 1.102 2.198

GQ-N 1.361 3.354 6.812 10.579 19.151

SF-F 0.099 0.252 0.513 0.898 1.983

SF-C 0.149 0.343 0.638 1.057 1.856

LM-F 0.050 0.116 0.229 0.389 0.834

LM-C 0.020 0.048 0.094 0.170 0.362

Weng et al. Advances in Aerodynamics (2021) 3:21 Page 16 of 23

Table 6 Execution time(s) of GPU kernels with different mesh loop modes on K80

Kernels Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5

NV-F 7.076 17.257 33.440 50.384 98.201

NV-C 2.252 5.273 10.150 17.339 32.403

NV-N 1.818 4.386 8.056 12.588 20.729

GQ-F 0.603 1.362 2.503 3.974 7.694

GQ-C 0.820 1.935 3.689 7.111 12.197

GQ-N 6.496 15.970 30.262 45.027 79.358

SF-F 0.840 1.825 3.443 5.703 9.890

SF-C 0.618 1.440 2.656 4.400 7.580

LM-F 0.338 0.751 1.371 2.241 4.553

LM-C 0.154 0.354 0.655 1.089 1.980

performance. Hence, the effects of different mesh loop modes on the interpolation of q
should be shown in data locality and atomic operations.
The executing time of NV-F, NV-C, and NV-N on V100 and K80 is all normalized by

that of NV-F. The comparison of performance is shown in Fig. 4. It indicates that on both
V100 and K80, the face loop in NV-F gets the worst performance. That’s because the face
loop makes both node data and cell data accessed indirectly, which leads to the terrible
latency. Furthermore, atomic operations are also one of the causes of poor results.
On V100, the cell loop consumes a smaller executing time than the node loop from

Mesh 1 to Mesh 4. The performance gap between the cell loop and node loop goes down
with the increase of mesh size. On the largest mesh (Mesh 5 with 8.78 million cells and
3.50 million nodes), the node loop is even better than the cell loop. On the contrary, on

Fig. 2 Comparison of Cd and Cl between CPU and GPU

Weng et al. Advances in Aerodynamics (2021) 3:21 Page 17 of 23

Fig. 3 Comparison of pressure coefficient between CPU and GPU

K80, the performance of the node loop is always better than that of the cell loop from
Mesh 1 to Mesh 5. Considering the same topology information in mesh, overheads due to
data locality should be similar. Hence, the reverse performance on V100 and K80 may be
related to atomic operations. Effects of atomic operations on cell loop should be further
investigated.
Cell loop without atomic operations is applied based on kernel NV-C. It is easy to

directly get rid of atomic operations in Algorithm 3, regardless of the simulation results.
The executing time of the cell loop without atomic operations on V100 and K80 is shown
in Table. 7. Normalized by cell loop with atomic operations, the comparison of cell loop
with and without atomic operations is shown in Fig. 5. It is found that atomic operations
bring negative effects on K80 while the influence is not significant on V100. There-
fore, on K80, latency due to atomic operations makes the cell loop worse than the node
loop. On V100, most overheads are induced by data locality, which makes the cell loop
better.

4.4 Gradient of q

Face loop, cell loop, and node loop can be used for the gradient of q in GPU kernels GQ-F,
GQ-C, and GQ-N, respectively. In gradient of q, face data, cell data, and node data are all
used. Hence, one loop mode can guarantee only one type of data to be accessed directly,
as the other two types of data are accessed indirectly. Besides, due to the store of cell data,
atomic operations are required in both face loop and node loop, and data locality and

Weng et al. Advances in Aerodynamics (2021) 3:21 Page 18 of 23

Fig. 4 Performance of GPU kernels for interpolating q by face loop, cell loop, and node loop

atomic operations should be considered simultaneously for the performance in different
loop modes.
In order to compare the performance of different loopmodes, the executing time of face

loop is used as a denominator for normalizing. The normalized executing time is shown
in Fig. 6.
Compared with face loop, node loop is more than 10 times and 15 times slower on K80

and V100 respectively. So, the overheads of non-coalescing access to cell data and face
data are the most significant by node loop. Cell loop consumes more than 2 times exe-
cuting time on V100 and around 1.5 times on K80 than face loop. It means that although
atomic operations can be avoided in cell loop, latency from indirectly accessing face and
node data is still much more serious than node loop.

Table 7 Execution time(s) of cell loop (NV-C) without atomic operations

GPU Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5

V100 0.138 0.504 1.288 2.477 6.613

K80 1.324 5.273 10.152 17.339 32.403

Weng et al. Advances in Aerodynamics (2021) 3:21 Page 19 of 23

Fig. 5 Performance comparison of cell loop with and without atomic operations

4.5 Summation of flux

In summation of flux, both cell data and face data can be used. Face loop and cell loop
are applied in GPU kernels SF-F and SF-C, respectively. In face loop, cell data is accessed
indirectly. Furthermore, atomic operations are required to address race conditions. In cell
loop, indirect access to face data exists. Thus, performance is affected by indirect data
access and atomic operations in different loop modes.

Fig. 6 Performance of GPU kernels for gradient of q by face loop, cell loop, and node loop

Weng et al. Advances in Aerodynamics (2021) 3:21 Page 20 of 23

To compare performance between face loop and cell loop, executing time of GPU
kernels is normalized by that of SF-F as shown in Fig. 7.
On V100, face loop outperforms cell loop fromMesh 1 toMesh 4. Though atomic oper-

ations are not used in cell loop, the performance of face loop is better. Thus, overheads
due to non-coalescing access of face data in cell loop are much larger than that induced
by cell data indirect access in face loop. The performance gap between face loop and cell
loop decreases with the increase of mesh size. Even on Mesh 5 with 8.78 million cells and
20.68 million faces, face loop consumes a little more executing time than cell loop.
On K80, cell loop’s performance is much better from Mesh 1 to Mesh 5. Considering

that the overheads due to non-coalescing in face loop are much less than that induced by
cell loop, atomic operations in face loop must make much more overheads. It shows again
that atomic operations make performance descend remarkably on K80.

4.6 Determination of local min andmax pressure

In the calculation of local min and max pressure, only cell data is used. Face loop is used
in CPU code. Both face loop and cell loop are considered in GPU kernels LM-F and LM-
C, respectively. In face loop, all of cell data is accessed indirectly. Furthermore, atomic
operations are required for resolving multi-thread on faces updating the same cell data.
On the other hand, in cell loop, dMin and dMax can be updated directly without atomic
operations. Indirect access to pressure still exists on each cell’s neighbor cells.
For comparing performance between face loop and cell loop, executing time of LM-F is

used for normalizing GPU kernels, described in Fig. 8.
It can be seen that on both V100 and K80, cell loop is more efficient than face loop. It

means that overheads due to non-coalescing data access by face loop are more than those
by indirect access to cell’s neighbor cell. On K80, cell loop’s execution time is less than
0.7 of face loop’s, compared with the time ratio close to 0.8 on V100. Obviously, atomic
operations make face loop’s performance even worse on K80.

4.7 Which loopmode should be used?

From the comparison of different mesh loop modes, it can be seen that mesh loop modes
affected GPU kernels’ performance significantly by data locality and data dependence
(race condition). The suitable mesh loop mode should have low latency of non-coalescing
global memory access and no race condition. However, in most conditions, the choice of
mesh loop depends on the trade-off between data locality and data dependence.

Fig. 7 Performance of GPU kernels for summation of flux by face loop and cell loop

Weng et al. Advances in Aerodynamics (2021) 3:21 Page 21 of 23

Fig. 8 Performance of GPU kernels for determining local maximum & minimum pressure by face loop and
cell loop

If only one type of data is used, the same type mesh loopmode should be used for better
data locality without a race condition. Take determination of local min and max pressure
for example, cell loop can make some cell data access coalesced and smaller overheads
induced by indirect access of neighbor cells’ data.
Face loop should better be used for the best data locality, as face data exist in com-

puting. Performance analysis of gradient of q and summation of flux in different mesh
modes show that overheads by face loop indirectly accessing cell data or node data are the
smallest.
When both cell data and node data are applied without face data, cell loop can gain

good data locality. Interpolation of q shows that overheads induced by cell loop indirect
access of node and cell data are the smallest.
Atomic operation’s consumption is significant on K80. The comparison of interpolating

q by cell loop with and without atomic operations shows that atomic operations make
performance reduce remarkably. On the contrary, atomic operations’ influence is little
on V100. Therefore, after Kepler’s architecture, data locality should be considered for
performance firstly. It is shown by summation of flux, face loop with atomic operations is
superior to cell loop with no race condition on V100.

4.8 The overall performance after optimization

All of the computing produces are offloaded on GPU. Data transfer between host and
device is only performed before and after the main time loop of simulation. The other
GPU kernels that are not discussed in this paper are also adjusted according to the
principles proposed above. Besides optimization of data transfer and loop modes, the
consumed time for creation and destruction of temporary variables in iterations is also
reduced remarkably. Those temporary variables are replaced by global variables that are
just created and destroyed once in the simulation.
The computing platform owns 4 GPUs (V100) and 2 CPUs (Intel Xeon Gold 6132).

Each CPU contains 14 cores so that 28 CPU cores can be used in the computing platform.
Executing time is recorded from the 100th iteration step to the 300th iteration step. The
ratio (speedup) of executing time between 28-MPI CPU simulation and 1 GPU simulation
is shown in Table 8 on different mesh scales. It indicates that average speedup of 14.1 and
maximum speedup of 21.7 can be achieved.

Weng et al. Advances in Aerodynamics (2021) 3:21 Page 22 of 23

Table 8 Speedup of single GPU code v.s. CPU code running with 28 MPI tasks

mesh size Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5

speedup 21.7 15.7 13.0 11.5 8.5

5 Conclusion and future works
In this paper, we apply different mesh loop modes on 4 hot spots of GPU kernels in the
unstructured FVMCFD program PHengLEI. The performances of those kernels are eval-
uated under 5 different mesh scales. The performance analysis shows that mesh loop
modes affect kernels’ performance significantly through data locality and data depen-
dence. It is concluded that as access to face data is required in kernels, face loop results in
the smallest overheads due to non-coalescing access, compared with cell loop and node
loop. Performance of gradient operation shows that face loop only consumes 1/2 time of
cell loop and 1/10 of node loop. Cell loop achieves the best data locality, when both cell
data and node data are accessed, but face data do not exist in kernels. Cell loop makes
the best performance, as non-data coalescing access is only induced by cell data. On GPU
K80, atomic operations induced remarkable overheads so that cell loop outperforms face
loop, though face loop owns better data locality. OnGPUV100, the effects of atomic oper-
ations are not obvious. In interpolation of data from cells to nodes, cell loop consumes
less time than node loop on V100. On the contrary, on K80, executing time of cell loop is
a little larger than that of face loop. Thus, it should be paid more attention to mesh loop
modes. Optimized by suitable mesh loop mode, the overall GPU V100 accelerated CFD
program can achieve maximum 21.7 (average 14.1) speedups vs. 28 MPI CPU implement.
In future work, reducing the overhead of indirect data assessment and data depen-

dence will be the principal target in research. More GPU architectures such as Nvidia
A100, AMD series GPU will be taken into consideration to investigate the effects of dif-
ferent loop modes and discover architecture features that are beneficial to performance
improvement.

Acknowledgements
The authors would like to thank the National Supercomputer Center in Guangzhou for providing development
environment and computing power support. We are also grateful to PHengLEI software group for development support
and mesh generation.

Authors’ contributions
YW helped in this manuscript writing, profiling and the development of algorithms (LM-F and LM-C). XZ is the
corresponding author of this paper who was responsible for writing, profiling and program development. XHG
participated in the discussion of ideas remotely. XWZ helped in profiling and performed the analysis of the program
bottleneck. YTL participated in the discussion and provided platform and computing power support. YL helped in
discussion. All authors read and approved the final manuscript.

Funding
This work is supported by National Numerical Wind tunnel project NNW2019ZT6-B18 and Guangdong Introducing
Innovative & Entrepreneurial Teams under Grant No.2016ZT06D211.

Availability of data andmaterials
The CUDA program and data can be downloaded from https://gitee.com/xfluidsolid/aialoop-mode.git. Mesh
connectivity information of 1 million cells is supplied. More data are available from the corresponding author upon
reasonable request. The related CPU code is in the computing framework NNW-PHengLEI, which can be found in http://
cardc.cn/nnw/Softs/PHengLEI/index.html.

Declarations

Competing interests
The authors declare that they have no competing interests.

https://gitee.com/xfluidsolid/aialoop-mode.git
http://cardc.cn/nnw/Softs/PHengLEI/index.html
http://cardc.cn/nnw/Softs/PHengLEI/index.html

Weng et al. Advances in Aerodynamics (2021) 3:21 Page 23 of 23

Author details
1School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China. 2Hartree Centre, STFC
Daresbury Laboratory, Warrington, UK. 3China Aerodynamics Research and Development Center, Mianyang, China.

Received: 9 April 2021 Accepted: 4 June 2021

References
1. Borrell R, Dosimont D, Garcia-Gasulla M, Houzeaux G, Lehmkuhl O, Mehta V, Owen H, Vazquez M, Oyarzun G (2020)

Heterogeneous CPU/GPU co-execution of CFD simulations on the POWER9 architecture: Application to airplane
aerodynamics. Futur Gener Comput Syst 107:31–48. https://doi.org/10.1016%2Fj.future.2020.01.045

2. Martins JRRA (2020) Perspectives on aerodynamic design optimization. In: AIAA SciTech Forum. AIAA, Orlando.
https://doi.org/10.2514/6.2020-0043

3. Synylo K, Krupko A, Zaporozhets O, Makarenko R (2020) CFD simulation of exhaust gases jet from aircraft engine.
Energy 213:118610. https://doi.org/10.1016%2Fj.energy.2020.118610

4. Misaka T, Holzaepfel F, Gerz T (2015) Large-eddy simulation of aircraft wake evolution from roll-up until vortex decay.
AIAA J 53(9):2646–2670. https://doi.org/10.2514%2F1.j053671

5. Hosseini SM, Vinuesa R, Schlatter P, Hanifi A, Henningson DS (2016) Direct numerical simulation of the flow around a
wing section at moderate Reynolds number. Int J Heat Fluid Flow 61:117–128

6. Liu X, Zhong Z, Xu K (2016) A hybrid solution method for CFD applications on GPU-accelerated hybrid HPC
platforms. Futur Gener Comput Syst 56:759–765. https://doi.org/10.1016%2Fj.future.2015.08.002

7. Aamodt TM, Fung W, Rogers TG (2018) General-purpose graphics processor architectures. Synth Lect Comput Archit
13:1–140

8. Hines J (2018) Stepping up to Summit. Comput Sci Eng 20(2):78–82
9. Slotnick J, Khodadoust A, Alonso J, Darmofal D, Gropp W, Lurie E, Mavriplis D (2013) CFD vision 2030 study: A path to

revolutionary computational aerosciences. NASA/CR-2014-218178
10. Park MA, Loseille A, Krakos J, Michal TR, Alonso JJ (2016) Unstructured grid adaptation: status, potential impacts, and

recommended investments towards CFD 2030. AIAA 2016-3323. https://doi.org/10.2514/6.2016-3323
11. Biedron RT, Carlson J-R, Derlaga JM, Gnoffo PA, Hammond DP, Jones WT, Kleb B, Lee-Rausch EM, Nielsen EJ, Park MA,

Rumsey CL, Thomas JL, Thompson KB, Wood WA (2019) FUN3D manual: 13.5. NASA/TM-2019-220271
12. Weller HG, Tabor G, Jasak H, Fureby C (1998) A tensorial approach to computational continuummechanics using

object-oriented techniques. Comput Phys 12(6):620–631. https://doi.org/10.1063/1.168744
13. Economon TD, Palacios F, Copeland SR, Lukaczyk TW, Alonso JJ (2016) SU2: An open-source suite for multiphysics

simulation and design. AIAA J 54(3):828–846. https://doi.org/10.2514/1.J053813
14. Imperial College London AMCG (2015) Fluidity manual v4.1.12. FigShare, London
15. He X, Zhao Z, Ma R, Wang N, Zhang L (2016) Validation of hyperflow in subsonic and transonic flow. Acta

Aerodynamica Sin 34(2):267–275
16. Zolfaghari H, Becsek B, Nestola M, Sawyer WB, Krause R, Obrist D (2019) High-order accurate simulation of

incompressible turbulent flows on many parallel GPUs of a hybrid-node supercomputer. Comput Phys Commun
244:132–142. https://doi.org/10.1016%2Fj.cpc.2019.06.012

17. Xu J, Fu H, Luk W, Gan L, Shi W, Xue W, Yang C, Jiang Y, He C, Yang G (2019) Optimizing finite volume method solvers
on Nvidia GPUs. IEEE Trans Parallel Distrib Syst 30(12):2790–2805. https://doi.org/10.1109/TPDS.2019.2926084

18. Corrigan A, Camelli FF, Lohner R, Wallin J (2011) Running unstructured grid-based CFD solvers on modern graphics
hardware. Int J Numer Methods Fluids 66(2):221–229

19. Lou J, Xia Y, Luo L, Luo H, Edwards J, Mueller F (2015) OpenACC-based GPU acceleration of a p-multigrid
discontinuous Galerkin method for compressible flows on 3D unstructured grids. https://doi.org/10.2514%2F6.
2015-0822

20. Romero J, Crabill J, Watkins JE, Witherden FD, Jameson A (2020) ZEFR: A GPU-accelerated high-order solver for
compressible viscous flows using the flux reconstruction method. Comput Phys Commun 250:107169. https://doi.
org/10.1016%2Fj.cpc.2020.107169

21. Vincent P, Witherden F, Vermeire B, Park JS, Iyer A (2016) Towards green aviation with python at petascale. In: SC ’16:
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis.
pp 1–11. https://doi.org/10.1109/SC.2016.1

22. Giuliani A, Krivodonova L (2017) Face coloring in unstructured CFD codes. Parallel Comput 63:17–37. https://doi.org/
10.1016/j.parco.2017.04.001

23. Lani A, Yalim MS, Poedts S (2014) A GPU-enabled finite volume solver for global magnetospheric simulations on
unstructured grids. Comput Phys Commun 185(10):2538–2557

24. Sulyok A, Balogh GD, Reguly IZ, Mudalige GR (2019) Locality optimized unstructured mesh algorithms on GPUs. J
Parallel Distrib Comput 134:50–64. https://doi.org/10.1016%2Fj.jpdc.2019.07.011

25. Dang HV, Schmidt B (2013) CUDA-enabled sparse matrix-vector multiplication on GPUs using atomic operations.
Parallel Comput 39(11):737–750

26. Rokos G, Gorman G, Kelly PHJ (2015) A fast and scalable graph coloring algorithm for multi-core and many-core
architectures. In: Träff JL, Hunold S, Versaci F (eds). Euro-Par 2015: Parallel Processing. Springer, Berlin. pp 414–425

27. Zhang X, Sun X, Guo X, Du Y, Lu Y, Liu Y (2020) Re-evaluation of atomic operations and graph coloring for
unstructured finite volume GPU simulations. In: 2020 IEEE 32nd International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD). pp 297–304. https://doi.org/10.1109/SBAC-PAD49847.2020.00048

28. NVIDIA nvprof. https://docs.nvidia.com/cuda/profiler-users-guide/index.html. Accessed 4 Apr 2021

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016%2Fj.future.2020.01.045
https://doi.org/10.2514/6.2020-0043
https://doi.org/10.1016%2Fj.energy.2020.118610
https://doi.org/10.2514%2F1.j053671
https://doi.org/10.1016%2Fj.future.2015.08.002
https://doi.org/10.2514/6.2016-3323
https://doi.org/10.1063/1.168744
https://doi.org/10.2514/1.J053813
https://doi.org/10.1016%2Fj.cpc.2019.06.012
https://doi.org/10.1109/TPDS.2019.2926084
https://doi.org/10.2514%2F6.2015-0822
https://doi.org/10.2514%2F6.2015-0822
https://doi.org/10.1016%2Fj.cpc.2020.107169
https://doi.org/10.1016%2Fj.cpc.2020.107169
https://doi.org/10.1109/SC.2016.1
https://doi.org/10.1016/j.parco.2017.04.001
https://doi.org/10.1016/j.parco.2017.04.001
https://doi.org/10.1016%2Fj.jpdc.2019.07.011
https://doi.org/10.1109/SBAC-PAD49847.2020.00048
https://docs.nvidia.com/cuda/profiler-users-guide/index.html

	Abstract
	Keywords

	Introduction
	Mathematical model
	Governing equations and finite volume discretization
	Mesh and data storage
	Mesh loop modes
	Hot spot analysis

	Algorithms for different mesh loop modes
	Interpolating q
	Gradient of q
	Summation of flux
	Computing local maximum and minimum pressure

	Performance analysis
	Performance test and computing environment
	Validation of GPU simulations
	Interpolation of q
	Gradient of q
	Summation of flux
	Determination of local min and max pressure
	Which loop mode should be used?
	The overall performance after optimization

	Conclusion and future works
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

