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China had received little attention compared with the widely-studied linear instabilities. In
this work, the oblique-mode breakdown, as one of the most available transition
mechanisms, is studied using the nonlinear parabolized stability equations (NPSE) with
consideration of the thermal-chemical non-equilibrium effects. The flow over a blunt
cone is computed at a free-stream Mach-number of 15. The rope-like structures and
the spontaneous radiation of sound waves are observed in the schlieren-like picture. It
is also illustrated that the disturbances of the species mass and vibrational temperature
near the wall are mainly generated by the product term of the wall-normal velocity
disturbance and the mean-flow gradient. In comparison to the CPG flow, the TCNE
effects destabilize the second mode and push upstream the N factor envelope. The
higher growth rate of the oblique wave leads to stronger growth of the streamwise
vortices and harmonic waves.
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1 Introduction

The accurate prediction and effective control of the boundary-layer transition are espe-
cially helpful in designing thermal protection and engine intake systems for high-speed
vehicles. However, this transition process is extremely complicated due to its high non-
linearity and sensitivity to many factors [1]. For hypersonic and high-enthalpy boundary
layers, the flow transition is even more complex with the appearance of “high-temperature
effects” [2]. New gas models are developed, instead of the calorically perfect gas (CPG)
assumption, to describe the thermal-chemical non-equilibrium (TCNE) processes [3].
Nevertheless, the influences remain unresolved of high-temperature effects on the
boundary-layer instability and transition.

In flight where the free stream is usually “quiet’, the natural transition is the most
likely route to turbulence [4]. The linear mechanisms are mainly responsible for the
quick amplification of the initial disturbances, which are well-described by the lin-
ear stability theory (LST) [5]. The LST results show that multiple unstable modes
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exist in hypersonic boundary layers where the second-mode instability has the largest
growth rate [6]. The most unstable second-mode wave is two-dimensional. When this
two-dimensional wave is linearly amplified to sufficiently high amplitude, nonlinear inter-
action comes into play through a sequence of secondary instabilities [7]. Besides, as the
oblique second-mode at small wave angles are almost as amplified as two-dimensional
waves, the oblique-mode breakdown is also a viable path to turbulence with initially
only a pair of oblique waves [8, 9]. Many numerical and experimental researches were
conducted on the cone boundary-layers with free-stream Mach numbers of 6 and
8 [8, 10-12]. Their results indicated that the fundamental and oblique-mode break-
down were the two most possible transition mechanisms. Furthermore, Chen et al. [13]
revealed the important role of the combination resonance where the low-frequency
first and Gortler modes were heavily amplified through the interaction with the second
mode.

For high-enthalpy boundary layers, the linear instability characteristics were heav-
ily studied using LST and linear parabolized stability equations (PSE) [14—16]. It was
found that the second mode became destabilized with higher frequency as the TCNE
boundary layer became cooler and thinner. On the other hand, the relaxation pro-
cesses and endothermic reactions can have damping effects on the second-mode dis-
turbances depending on the Damkhother number, which is defined as the time-scale
ratio between the flow and the TCNE process. Based on these linear results, the eV
method can be applied for the transition prediction [17]. In contrast, the nonlinear
stages in high-enthalpy boundary layers received much less attention. Marxen et al.
[18] performed the direct numerical simulation (DNS) for the case of the fundamen-
tal resonance over a flat-plate of Mach 10. They concluded that chemical reactions
indirectly affected the secondary growth rates through the change of the primary insta-
bility behaviors. The secondary instabilities were further analyzed by the present authors
[19] by using the nonlinear PSE and Floquet analysis. The fundamental resonance was
found to dominate over the subharmonic resonance. However, the oblique-mode break-
down in high-enthalpy boundary layers hasn’t been explored and its mechanism is still
unclear.

This work aims to investigate the oblique-mode breakdown in hypersonic and high-
enthalpy boundary layers with thermal-chemical non-equilibrium effects. The flow con-
sidered is over a blunt cone with zero angle-of-attack and a free-stream Mach-number of
15. The tools of NPSE are employed to study the disturbance evolution and flow struc-
tures. The problem formulation is provided in Section 2 and the simulation setup is given
in Section 3. Section 4 shows the linear instability analyses and the nonlinear stages are
discussed in Section 5. The effects of TCNE are investigated in Section 6, and the work is

concluded in Section 7.

2 Formulations

2.1 Governing equations

At the temperature lower than 9000 K, ionization and electronic processes are usually
insignificant. Air can be treated as a mixture of five species (N3, Oz, NO, N, O). The
governing Navier-Stokes equation for TCNE flows in Cartesian coordinates is written in
Eq. 1. It contains extra conservations of species mass and vibrational energy as compared
with that for CPG flows.
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Here the subscript s € [2,5] is the species index; p, u;, p and E respectively density,
velocities, pressure and specific total energy. The two-temperature model by Park [20] is
employed, which consists of translational/rotational temperature 7" and vibrational tem-
perature T,. The mixture’s specific total enthalpy H and vibrational energy e, are weighted
by the mass fraction Yy = ps/p. 7; is the viscous stress, while « and «, are the conductiv-
ity coefficients. The term dy; stands for the species mass diffusion. The two TCNE source
terms, Q;—, and wj, are introduced to describe respectively the translational-vibrational
energy relaxation and the finite-rate chemical reactions. The details of the adopted TCNE
models can be found in the authors’ previous works [21, 22].

A laminar mean flow is needed first for stability analyses. For two-dimensional or
axisymmetric mean flows, Eq. 1 is solved through a 5th-order shock-fitting solver [22].

2.2 Parabolized stability analysis

The implementation of the NPSE analysis is briefly described here with more details
found in Ref. [23]. The physical quantity q is decomposed into a steady part g and a dis-
turbed part q. g = [,5, uv,w,T,Ys, TV] (s €[2,5]) is the laminar mean-flow solution
while g = [,5, i, 0, w, T, ¥, TV] the disturbance. After substituting the decomposition into
Eq. 1, the governing equation for disturbances is written in the cylindrical coordinate

(x-y-0) as,
0q g ag Cag a%q 8%q
Fo+A-+B-+- 4+ Djg=Hy— +H,—
e T T T e TPIT Mg T o
H,, %G 3’q H,, 3’ H,, 3G
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where F, A, B, C, D and H are all 10 x 10 matrices, related only to g and N represents
non-linear terms; r = r (x, y) the coordinate radius. The following Fourier decomposition
is introduced for the disturbance:

G®,0,8) = Gy (x,7) exp [i ( f

mn 0

X

Uy (%) dx + nk.6 — ma)t>1| (3)

where w and k are respectively the specified minimum circular frequency and azimuthal
wavenumber. Here k; is related to the azimuthal wavelength through Xy = 27r/k,. q,,,
is the disturbance shape function and o, = ®upr + i, the complex streamwise
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wavenumber. Phase speed is defined as ¢y, = mw/ay,. As a result, the parabolized
stability equation for each component is written as:

A .~ 0q . g n 32q . [
Dyind iy + Amn a;ml + By a;nn + Con Bygm = Ny exp | —i /;CO o dx (4)
The wall-normal discretization employs the Chebyshev collocation point method and the
streamwise one adopts a backward Euler scheme.
For boundary conditions, the disturbance at the wall satisfies

ﬂmn = f’mn = ﬁ’mn = j\—vmn = %V,mn = 5’s,mn =0 at y= 0 (5)

Nevertheless, for steady modes the wall boundary conditions take the same form as those
for laminar flows (no-slip, isothermal and non-catalytic). In the far-field, the boundary
is coupled with the shock oscillation to account for shock-disturbance interactions [24].
Verification of the present solver is provided in Ref. [19].

3 Laminar flow field

The geometry considered is a blunt cone with a nose radius of 5 mm and a half-angle of
7°. The free-stream conditions are listed in Table 1, which correspond to the altitude of
25 km. The wall temperature is fixed at 1000 K over most of the cone surface. However, a
radiative wall-boundary condition is employed on the nose sphere region to allow higher
wall temperature because of the high local heat fluxes [25].

The laminar mean flow is depicted in Fig. 1. The high free-stream Mach-number leads
to a thin shock layer. The distance between the shock and the wall is only 55 mm at x of
2 m. Figure 1(b) provides a close-up view of the flow around the nose region. Owing to
the extremely high temperature behind the bow shock, the vibrational energy is highly
excited and the oxygen is almost dissociated near the wall. In the following, the local
surface coordinate (s-y-0) is used for convenience with the origin of s at the stagnation
point, as sketched in the figure.

The boundary layer profiles are shown in Fig. 2 at two streamwise locations of 0.4 m
and 1.6 m. The pressure in the wall-normal direction remains almost constant across the
boundary layer and slightly decreases outside. The maximum temperature in the bound-
ary layer is 2790 K at s of 0.4 m and falls to 2130 K at 1.6 m. The gaps between T and T,
are around 700 K, indicating that the flow is in thermal non-equilibrium. From the species
fraction profiles, the flow tends to be chemical equilibrium further downstream. At the
location of 1.6 m, the maximum mass fractions of NO and O are less than 0.5 %.

4 Linear stability results

The linear instability behaviors are analyzed first using LST to determine the parameters
for nonlinear calculations. Figure 3(a) gives the neutral curves for axisymmetric distur-
bance waves. Owing to the relatively low wall temperature, the first mode instability is not
observed within the computational domain. The second mode has the highest growth rate

Table 1 Free-stream conditions for the Mach 15 flow over a blunt cone
My Poo (Pa) Too (K) U (m/s) Res, (/m) YNz,oo Tw (K)
15 2549.2 221.55 4475.8 1.265 x 107 0.767 1000
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Fig. 1 Laminar flow contours of (a) the whole computational domain and (b) the nose region (left:
vibrational temperature T, (K), right: mass fraction of O;)

with a frequency range of 310 kHz to 750 kHz down to s = 2 m. In contrast, the instabil-
ity region of the third mode appears further downstream and at a higher frequency range
of 780 kHz to 1080 kHz. The variation of the growth rate with the azimuthal wavenumber
k. is shown in Fig. 3(b) at s = 1.6 m. The second mode is most unstable when axisymmet-
ric, and becomes stable at k. larger than 237. In contrast, the most unstable first mode
is three-dimensional. The instability region of the first mode appears at k. ranging from
44 to 117, but its growth rate is much smaller as compared with the second mode.

The eigenvectors of the axisymmetric and oblique second-mode disturbances are dis-
played in Fig. 4 with the frequency of 500kHz at s of 1 m. Here all the curves are
normalized based on the pressure disturbance at the wall. The three selected azimuthal
wavenumbers are 0, 75 and 150, respectively. The corresponding wave angles ¢ =
arctan (8/a) (where 8 = k./r) for the latter two waves are 39.0° and 58.8°. Because of the
high free-stream Mach-number, the amplitude of the temperature disturbance ‘ T/Two ‘ is
nearly 20 times the velocity disturbance. The disturbance near the critical layer (where
U = c,) is mostly affected by k. due to inviscid singularity [6]. With the increase of k.,
peaks appear around the critical layer for all the quantities in the figure except for p and
v. The shapes of the latter two are nearly unchanged across the boundary layer.

The N factors for axisymmetric waves are plotted in Fig. 5 with different frequencies.
The contributions to the N factors here are from the second-mode waves. For the curve
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Fig. 2 Laminar boundary-layer profiles of (a) the pressure at s = 0.4 m, (b) the streamwise velocity,
temperature and mass fraction at s of 0.4m and 1.6 m
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Fig. 4 Eigenvectors of the second-mode disturbance with different azimuthal wavenumbers at s of 1 m. The

disturbance frequency is 500 kHz. The subfigures are the disturbance curves of (a) pressure, (b-d) velocities,
(e) temperature and (f) mass fraction of O,

with f = 400 kHz, the maximum N factor is over 14. The transition onset location can be
determined from the eN method after a correlation to experimental results.

5 Nonlinear results

5.1 Oblique-wave parameters

The oblique-mode breakdown is initiated by a symmetric pair of oblique waves (1,£1).

Here the notation (m, n) represents the wave with the frequency of mf and the azimuthal

wavenumber of k.. The oblique-wave parameters f and k., need to be determined first.
The oblique-wave frequency is determined from the N factor curves in Fig. 5. Malik

[26] provided an estimation of the transition N factor to be between 9.5 to 12 based on

the flight data with free-stream Mach-numbers of over 20. The experiments in the HIEST

facility gave a value of 8 [27]. Therefore, the disturbance frequency f is selected to be

500 kHz, which corresponds to a maximum N factor of around 9.

14 \
2l 650 kHz i
——600 kHz
10 550 kHz 4
- —500 kHz
% 8 r 450 kHz i
S | —400 kHz . |
> 6 ——— envelop
4 - .
2 - .
O |-
s (m)
Fig. 5 N factor curves of axisymmetric second-mode waves for the disturbances with different frequencies
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The azimuthal wavenumber is obtained through a parameter study. At k. = 10, the
streamwise development of representative waves is displayed in Fig. 6(a). Here the ampli-
tudes of different modes are measured by the root mean square of the streamwise-velocity
disturbance #;ms, normalized by the free-stream velocity Uso. The initial amplitude A1)
is 0.05 %. The linear evolution of mode (1, 1) is also plotted for reference. As can be seen,
mode (1, 1) in the nonlinear calculation follows the linear growth downstream until it
reaches the amplitude of O(0.1) at s of 0.98 m and begins to decay. The axisymmetric
wave (2, 0) and the streamwise-vortex mode (0, 2) are generated through the interaction
between (1,£1). Mode (0, 2) exceeds (1, 1) in amplitude at s of 1 m to become the domi-
nant one. Zhang [28] showed that this rapid growth of the streamwise-vortex mode was
determined by the characteristics of the governing linear operator. Mode (0, 4) also expe-
riences quick amplification, whose amplitude increases by over 8 orders of magnitude in
the figure.

A series of simulations are performed for a range of k. from 5 to 30 in increments of
Ak, = 5. The amplitudes of modes (1, 1), (0, 2) and (0, 4) are compared in Fig. 6(b) at
s = 1.02 m. For convenience in comparison, the amplitudes are normalized using the ones
at k. = 5. The amplitude ratio of mode (1, 1) decreases with k., which is consistent with
that in Fig. 3. For the two steady modes, however, the changes are not monotonous. The
case of k, = 20 has the largest amplitudes of both (0, 2) and (0, 4). Therefore, the k. of 20 is
selected for further calculations. Note that at k. of 20, the azimuthal wavenumbers for the
two steady modes are 40 and 80. This range matches the azimuthal wavenumber of the
most unstable first mode in Fig. 3 with consideration of the body divergence of the cone
geometry. This body divergence leads to the increase of k. with s at a fixed wave angle .

5.2 Disturbance evolution and flow structures

The streamwise development of multiple waves is plotted in Fig. 7(a) with initial modes
(1,£1). The waves with higher frequencies and azimuthal wavenumbers are generated
in sequence and quickly amplified through nonlinear interactions. The amplitudes of
all the waves displayed exceeds 1073 at s of 0.99 m. Further downstream, the three
streamwise-vortex modes all have larger amplitudes than mode (1, 1). To determine the
state of the flow, the development of the averaged skin friction is shown in Fig. 7(b).

(B) s ‘
A-(0,4)  pemm A
-e-(0,2) N
3 =o-(1, 1) '/'/ \\
e R}
Are) A P N \,
A 2 // ‘/, e~\\‘\
~ (5) s Sy
ey — (1, 1) linear| ] i e
—(1, 1) /;{/ h:N
108k —0,2) ] 18— N
eo 4 | 7T RCEEY S S
— 0.4 T
10—]0 L L L L i
0.7 0.8 0.9 1 5 10 15 20 25 30
N (m) ke
Fig. 6 Streamwise development of representative waves in the oblique-mode breakdown with f = 500 kHz:
(a) wave amplitudes with k. = 10 and (b) amplitude ratios at s = 1.02 m with k. variation
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Fig. 7 Streamwise development of (a) the amplitudes of multiple waves and (b) the averaged skin friction in
the oblique-mode breakdown with f = 500 kHz and k. = 20

Here the Reynolds-averaged (time- and azimuthal-averaged) skin friction coefficient Cr
is calculated as

0
<Mau|y=0>
Cr = oo 6)

1 2
E'OOOUOO

where (-) denotes the Reynolds-average operator. The onset of transition is defined here
as the location where Cy reaches 5 % deviation from the laminar value, which is evaluated
to be 0.973 m. This transition onset is exactly the location where mode (1, 1) departs
from its linear trace. This correlation was also reported in the study on the fundamental
breakdown [10, 19].

To study the role of the streamwise-vortex modes, the flow is time-averaged to rule
out unsteady modes. Figure 8(a) depicts the contours of the averaged streamwise velocity
within one azimuthal period of mode (1, 1). The disturbance streamlines in the y—6 plane
show pairs of counter-rotating streamwise vortices. These vortices promote the exchange
of mass, momentum and energy between the fluids with low and high speeds [23]. The
wall-normal gradient of the temperature at the wall is plotted in Fig. 8(b). This quantity
is directly related to the local heat flux. Upstream s of 0.98 m, the heat flux is uniform
in the azimuthal direction under the contour levels. Further downstream, six strips are
visible with high heat-fluxes. The highest heat-flux appears in the region at around k. of
4.5° and 13.5°, where the high-speed fluids are heavily driven towards the wall owing to
the streamwise vortices.
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Fig. 8 Contours of the time-averaged flow: () the streamwise velocity U/Ux at s = 1.05 m with the black
lines the disturbance streamlines in the y — 6 plane and (b) the wall-normal gradient a7 /(T dy) at the wall

Figure 9(a) depicts the contours of the instantaneous streamwise velocity in the
s — 6 plane near the critical layer. In the upstream region, the contours are in the
staggered pattern resulting from the initial oblique waves. Further downstream four
high-speed streaks are visible, as that in Fig. 8. Between the streaks are the low-speed
regions whose shape evolves from “dumbbells” into “swallow”. The wall-normal gradi-
ent of the density is displayed in Fig. 9(b) to give a schlieren-like picture. The typical
“rope-like” structures are observed near the boundary-layer edge, as revealed in the
previous experimental and numerical researches [8, 29]. These structures are associ-
ated with the second mode because their wavelengths are nearly equal to that of mode
(1, 1) (Ax ~ 8 mm). They are distorted downstream s of 1 m with the amplification of
other waves. Meanwhile, acoustic waves are spontaneously radiated away from the wall,
which is owing to the synchronization between the second mode and the slow acoustic
branch [30].

The shape functions T, and ¥; are further analyzed in this high-enthalpy flow. The
results in Refs. [21, 31] showed that the linear disturbance was more thermal-chemical
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Fig. 9 Contours of the instantaneous flow: (a) the streamwise velocity u/Ux aty = 1.4mm in the s — 6
plane and (b) the wall-normal gradient of the density dp /(000 dy) in the s — y plane

frozen than the mean flow. As a result, the approximate relations of T, and ¥ were
provided:

5 x i(DyT,) ¥ o i(DyYs) v -
"o (Ufe—1)f S om (Ufe—1)f

Here D, = d/dy. This relation is derived from the inviscid Rayleigh equation and by
neglecting the disturbances of the TCNE source terms. It shows that T, and ¥; are mainly
generated by the wall-normal velocity disturbance ¥ along with the wall-normal gradi-
ent of the mean flow. The approximation of Eq. 7 for mode (1, 1) is verified in Fig. 10,
where the two selected locations are in the linear (s = 0.90 m) and nonlinear (s = 1.03 m)
stages, respectively. At s = 0.90 m, the shape functions T, and ¥; from NPSE are well-
approximated by the simple relations of Eq. 7. The only differences are around the critical
layer where the denominators of Eq. 7 tend to zero. Going downstream into the nonlin-
ear region, the near-wall structures in Fig. 10(b) are still well-approximated. However, the
peaks in NPSE are lifted higher than the critical layer, which is associated with the increase
of the boundary layer thickness. This indicates that the near-wall structures of T, and ¥,
are still dominated by the convective process as described in Eq. 7, while the disturbances
near the boundary layer edge are mainly influenced by the nonlinear interactions.

6 Effects of thermal-chemical non-equilibrium

For comparison, the laminar flow and instability results are also calculated within the
CPG assumption. The same air composition and transport models (instead of Suther-
land’s law) are employed for consistency. As is shown in Fig. 11, the second mode is
destabilized and the frequency corresponding to the most unstable one increases in the
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Fig. 10 Eigenvectors of mode (1, 1) given by NPSE and approximated by Eq. 7 at (@) s = 0.90 m and (b)
s=1.03m

TCNE flow as the boundary layer becomes cooler and thinner. Therefore, the maximum
growth rate in the TCNE case is 16 % higher with f = 500 kHz and the peak location is
shifted downstream. Seen from Fig. 11(c), the differences between the maximum N fac-

tors at these frequencies are ranging from 1.3 to 2.4. As a result, the envelop of the N

factors in the TCNE flow moves upstream in the regime from 0.14 m to 0.25 m.
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Fig. 11 Comparisons of (a) the laminar flow profile at s = 0.4 m, (b) the growth rate curves with f of 500 kHz
and (c) the N factor curves between the TCNE and CPG cases
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Fig. 12 Growth rate contours (—e;,1/m) with the azimuthal wavenumber for the TCNE and CPG cases at
s=1.6m

The effects of TCNE on the three-dimensional waves are shown in Fig. 12 at s =
1.6 m [see Fig. 3]. The regions of the unstable first and second modes both enlarge in
the TCNE case in the frequency-azimuthal-wavenumber plane. As a result, the opti-
mal oblique-wave parameters, as is evaluated in Section 5.1, are different in the CPG
case. For comparison, the same parameters as those in the TCNE case are adopted, with
f = 500kHz and k, = 20 for mode (1, 1), to operate the oblique-breakdown calcula-
tion for CPG. The comparisons of the streamwise evolution of the representative waves
between the TCNE and CPG cases are displayed in Fig. 13. The growth rate of mode
(1, 1) in the TCNE case is higher with this frequency, so mode (1, 1) reaches its maximum
amplitude further upstream. Furthermore, modes (0, 2), (2, 0), (0, 4) all grow faster than

107! -
77\ 4
FAY:
10—3 _______ J
'ﬁfrms
5 J
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(1, 1) ===== (1,1
—(0,2) ==~ 0,2)
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10-7 (07 4’) o (07 4)A
0.7 1
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Fig. 13 Streamwise development of representative waves in the oblique-mode breakdown with
f = 500 kHz and k. = 20 for the TCNE and CPG cases
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those in the CPG case to trigger the strong nonlinear interactions because the growth
rates of the harmonic waves are strongly related to the amplitude of mode (1, 1). Fur-
ther comparisons of the flow structures indicate that the oblique breakdown process in
TCNE flows bears a strong resemblance to that in CPG flows. Nevertheless, the TCNE
effects have non-negligible first-order impacts on the waves’ growth rates and optimal

wave parameters.

7 Conclusion

In this work, the oblique-mode breakdown in the hypersonic and high-enthalpy boundary
layers is studied using NPSE with consideration of the TCNE effects. The flow over a blunt
cone is computed at a free-stream Mach-number of 15. The frequencies of the oblique
second-mode waves are 500 kHz determined from the N factor curves. The azimuthal
wavenumber is 20 through a parameter study. It is found that the transition onset (from
the skin friction curve) is at the location where mode (1, 1) departs from its linear trace,
the same as that in the fundamental breakdown. The streamwise-vortex modes have the
largest amplitude downstream s of 0.99 m (see Fig. 7). These vortices lead to the genera-
tion of streaks with high local heat fluxes. The rope-like structures and the spontaneous
radiation of sound waves are observed in the schlieren-like (3p/dy) picture (see Fig. 9). In
the nonlinear stages, the near-wall shapes of mode (1, 1) are proportional to the product
of the wall-normal velocity disturbance and the mean-flow gradients. The disturbances
near the boundary-layer edge are mainly generated through nonlinear interactions. In
comparison to the CPG flow, the TCNE effects destabilize the second mode due to cooler
and thinner boundary layers. Therefore, the N factor envelope is pushed upstream by
0.14m to 0.25 m. The higher growth rate of mode (1, 1) leads to stronger growth of the
streamwise vortices and harmonic waves, all of which contribute to the strong nonlinear
interactions in the transitional regime. The findings in this work can help model the tran-
sition physics by focusing on the characteristic flow structures and time-spatial scales of
disturbances.
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