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Abstract

Understanding the generation mechanism of the heat flux is essential for the design
of hypersonic vehicles. We proposed a novel formula to decompose the heat flux
coefficient into the contributions of different terms by integrating the conservative
equation of the total energy. The reliability of the formula is well demonstrated by
the direct numerical simulation results of a hypersonic transitional boundary layer.
Through this formula, the exact process of the energy transport in the boundary
layer can be explained and the dominant contributors to the heat flux can be
explored, which are beneficial for the prediction of the heat and design of the
thermal protection devices.
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1 Introduction
The heat transfer prediction is of great importance for hypersonic vehicles. When the

transition or turbulence happens, the accurate prediction becomes even more challen-

ging. Therefore, exploring the generation mechanism of the heat flux has drawn wide

attention. Many efforts have been put into understanding the generation mechanism of

the heat flux, which provides important guidance for the design of the thermal protec-

tion system and the thermal management [1].

Some efforts took advantage of the similarities between the generation of friction

and heat flux, and constructed the Reynolds analogy [2] Ra = 2St/Cf to connect friction

with heat flux, where St is the Stanton number, Cf the skin friction coefficient. Hopkins

and Inouye [3] predicted the surface heat flux of the hypersonic boundary layer with

Ra = 1. However, the accuracy of this correlation decreases significantly on a cold wall

at high Mach numbers. More intrinsic mechanisms should be considered. Huang et al.

[4] derived the formula qw ¼ −ubτw by the assumption that the heat transfer into the

walls equals the total pressure work done across the channel. Chen et al. [5] estab-

lished the exact relations for the skin friction with other dynamic and kinetic quan-

tities, and they found these relations revealed that the skin friction is intrinsically

coupled with the surface temperature through the heat flux. Abe and Antonia [6] pro-

posed a simple relation between the scalar dissipation rate and the wall heat transfer

coefficient for the channel flow. Kim et al. [7] proposed a direct approach for the time-
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dependent heat flux by assuming the temperature approximated as a third-order poly-

nomial of position. Ebadi et al. [8] obtained the wall heat flux by a triple integration of

the Reynolds averaged energy equation for the two-dimensional incompressible turbu-

lent boundary layer. Fukagata et al. [9] studied the relationship of the wall heat flux and

the Nusselt number in the incompressible channel. And the similar relation was ob-

tained by Liu [10] when studying the compressible pipe flow. Ghosh [11] proposed that

the wall heat flux can be expressed by the sum of the integrations of different viscous

terms in the incompressible turbulent channel and pipe flow. Zhang and Xia [12] fur-

ther proposed a formula to assess the contributions of the viscous stresses to the heat

transfer in a turbulent channel flow by the method of Fukagata et al. [13], but the tur-

bulent stresses were missing in their expression due to the simplification assumptions

used in the channel flow.

Previous studies have not built the relation of the generation mechanism of the heat

flux to the dynamic energy transport of the compressible boundary layer. Therefore, a

more reliable and accurate method to gain insights into the generation mechanism

should be derived. In the paper, we propose a new decomposition formula for the wall

heat flux by integrating the conservation equation of total energy, which can explain

the energy transport process in the boundary layer and reveal the main factors affecting

the wall heat flux. As far as the authors’ knowledge, this is the first decomposition for-

mula proposed for the wall heat flux of the compressible boundary layer. The new for-

mula is derived by the method of Renard et al. [14], which is more physical and feasible

than those [11, 12] based on the method of Fukagata et al. [13] It serves an insight into

the complex transport processes of the wall heat flux, and helps us find the key factors.

The work of this paper is organized as follows. In section 2, we describe numerical

methods and case setup in brief. In section 3, the detailed derivation of the decompos-

ition formula is presented. In section 4, the validation of the DNS of a hypersonic tran-

sitional boundary layer is performed, and the proposed decomposition formula is

applied to analyze the heat flux. Finally, some conclusions are drawn in section 5.

2 Numerical methods and case setup
To analyze the heat flux decomposition of the hypersonic transitional boundary layer, a

direct numerical simulation is performed. The compressible Navier-Stokes equations in

the curvilinear coordinate are adopted as governing equations.

∂ρ
∂t

þ ∂ρuj

∂x j
¼ 0 ð1aÞ

∂ρui
∂t

þ ∂ρuiu j

∂x j
þ ∂pδij

∂x j
¼ ∂σ ij

∂x j
ð1bÞ

∂ρe
∂t

þ ∂uj ρeþ pð Þ
∂x j

¼ ∂ujσ ij
∂x j

þ ∂q j

∂x j
ð1cÞ

Where u1, u2 and u3 are streamwise, normal and spanwise velocities, respectively.

And p and ρ are pressure and density. The expressions of ρe, σij, and qj are defined as

ρe ¼ p
γ−1

þ 1
2
ρ u2 þ v2 þ w2
� � ð2Þ
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σ i j ¼ μ
Re∞

½ð∂ui
∂x j

þ ∂uj

∂xi
Þ− 2

3
δi j

∂uk
∂xk

� ð3Þ

q j ¼
μ

PrMa2∞Re∞ðγ−1Þ
∂T
∂x j

: ð4Þ

The usual indicial notation is used. Prandtl number Pr is set as 0.72 and the specific

heat ratio γ is 1.4. The dynamic viscosity μ is obtained by using Sutherland’s law. Ma∞
is the freestream Mach number and Re∞ is the Reynolds number. The working fluid is

air, and the gas model is assumed to be the perfect gas model.

An in-house code with high-order schemes is employed to perform the DNS.

This code has been applied in many DNS simulations of compressible turbulent

cases, including compressible homogeneous turbulence [15], turbulent boundary

layer [15] and shock wave/boundary layer interaction [16–18]. The accuracy and

robustness have been well validated. The hybrid optimized WENO scheme is

adopted to discretize the inviscid fluxes with a novel discontinuity detector [19]. In

the regions with discontinuities, a seventh-order WENO scheme [20] is activated

and in the smooth region, a fourth-order bandwidth-optimized upwind-biased

scheme [19] is used to resolve the small structures in the turbulent boundary layer.

The viscous terms are discretized by the fourth-order central scheme. The third-

order TVD Runge-Kutta method is adopted as the temporal algorithm. Ma∞ is set

as 6.0, and Re∞ is 12,000 which is based on the millimetre and freestream parame-

ters. The freestream temperature is 65 K and the wall temperature is 305 K. The

millimetre is adopted as the reference length.

The sketch of the computational domain is presented in Fig. 1. The lengths in

the streamwise, normal and spanwise direction are Lx = 416, Ly = 35 and Lz = 14, re-

spectively. The computational domain is discretized with Nx ×Ny ×Nz = 1151 ×

320 × 149 points. The grid points are equally spaced in the spanwise direction, and

clustered near the wall in the normal direction. The grid spacing normalized by

the wall unit in the three directions is dx+ = 7.9, dyþw ¼ 0:36 and dz+ = 3.4, respect-

ively. A hypersonic laminar profile is fixed at the inlet. The outlet boundary condi-

tion is a supersonic outflow with a sponge layer to further suppress the

disturbances originated from the outlet. The upper boundary is a non-reflective

condition. And an isothermal nonslip condition is applied at the wall. The period-

ical conditions are set on both sides in the spanwise direction. To trigger a bypass

transition, a blow and suction forcing method is employed, which sets a normal

Fig. 1 The sketch of the computational domain
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velocity disturbance vn = Af(x) cos (2πλz/Lz) at the wall, where f(x) is used to control

the streamwise extent of force [21], λz is the spanwise wavelength and is set as 4.0

in the present simulation. The forcing region ranges from x = 50 to x = 55.

3 Derivation of the decomposition formula
Under the assumption of homogeneity in the spanwise direction and nonslip condition

at the wall, the time-averaged conservative equations for the specific total energy can

be expressed as,

�ρ
D~E
Dt

þ ∂�p~uj

∂x j
¼ ∂

∂x j
ðqL; j þ qT ; j þ Dj þ T j þMSj þ RS jÞ ð5Þ

when ϕ is an arbitrary variable, �ϕ denotes Reynolds average, ~ϕ Favre average and ϕ′′ is

the fluctuations concerning the Favre average. ~E denotes the specific total energy, qL,j
the heat conduction, qT,j the turbulent transport of heat, Dj the molecular diffusion, Tj

the turbulent transport of turbulent kinetic energy (TKE), MSj work by the molecular

stresses and RSj work by Reynold stresses. In Table 1, the specific expressions of the

terms at the right hand of Eq. (5) are presented. More details about Eq. (5) can be

found in the book of Wilcox [22].

The work of Renard [14] and Li [23] about skin friction decomposition provides good

hints for building the integration relation of heat flux. In order to isolate the effects of

the energy transport terms, the absolute reference frame is employed. The reference ab-

solute frame is attained by assuming that the wall moves at the speed U∞. The expres-

sions of the time ta, coordinates xa, ya, velocities ua, va, pressure pa and the density ρa
in the reference absolute frame satisfy

ta ¼ t; xa ¼ x−U∞t; ya ¼ y;

ua ¼ u−U∞; va ¼ v;

pa ¼ p; ρa ¼ ρ

ð6Þ

where the subscript ‘a’ represents ‘absolute’ variables under the reference frame. By

substituting Eq. (6) into Eq. (5), Eq. (5) takes the form

Table 1 Expressions for the terms at the right hand of Eq. (5)

Heat conduction qL; j ¼ κ∂T=∂x j

Turbulent transport of heat qT ; j ¼ −ρu′′j h
′′

Molecular diffusion Dj ¼ u′′kσk j

Turbulent transport of TKE T j ¼ ρu′′j u
′′
ku

′′
k=2

Work by molecular stresses MSj ¼ ~ukσk; j

Work by Reynolds stresses RS j ¼ −~ukρu″ku
″
j
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�ρa
D~Ea

Dta
þ ∂ð�pa~uaÞ
∂ðxa þ U∞taÞ þ

∂ð�pa~vaÞ
∂ya

¼ ∂
∂ya

ðqL;y;a þ qT ;y;a þ Dy;a þ Ty;a þMSy;a þ RSy;aÞ

þ ∂
∂ðxa þU∞taÞ ðqL;x;a þ qT ;x;a þ Dx;a þ Tx;a þMSx;a þ RSx;aÞ

ð7Þ

By multiplying ~ua at both sides of Eq. (7), combining the continuity equation and

moving the heat fluxes in the normal direction to the left side and all the other terms

to the right, the following equation could be obtained,

~ua
∂
∂ya

ðqL;y;a þ qT ;y;aÞ

¼ ~ua�ρa
D~Ea

Dta
þ ~ua

∂ð�pa~uaÞ
∂ðxa þ U∞taÞ þ ~ua

∂ð�pa~vaÞ
∂ya

−~ua
∂
∂ya

ðDy;a þ Ty;a þMSy;a þ RSy;aÞ

−~ua
∂

∂ðxa þ U∞taÞ ðqL;x;a þ qT ;x;a þ Dx;a þ Tx;a þMSx;a þ RSx;aÞ

ð8Þ

Integrating Eq. (8) from the wall to the farfield, the heat flux on the wall (y = 0) can

be expressed as the following form.

qL;y;ajy¼0¼
1
U∞

Z ∞

0
½ðqL;y;a þ qT ;y;aÞ

∂~ua
∂ya

�dy

−
1
U∞

Z ∞

0
½~ua ∂
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ðDy;a þ Ty;a þMSy;a þ RSy;aÞ�dy

þ 1
U∞

Z ∞

0
½~ua�ρa

D~Ea

Dta
þ ~ua
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∂ð�pa~vaÞ
∂ya

�dy

−
1
U∞

Z ∞

0
½~ua ∂

∂ðxa þ U∞taÞ ðqL;x;a þ qT ;x;a þ Dx;a þ Tx;a þMSx;a þ RSx;aÞ�dy

ð9Þ

Finally, Eq. (9) can be transformed into the initial frame and the heat flux coefficient

is obtained by introducing the definition of the coefficient Ch ¼ 1
ρ∞U

3
∞
κ ∂T

∂y jy¼0
,

Ch;decomp ¼ 1

ρ∞U
4
∞

Z ∞

0
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ð10Þ

In Eq. (10), the heat flux coefficient Ch,decomp has been decomposed into seven parts,

i.e., Ch,1 to Ch,7. The first part Ch,1 represents the contribution of heat conduction, the
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second part Ch,2 the turbulent transport of heat, the third part Ch,3 the normal compo-

nent of the molecular diffusion, the fourth part Ch,4 the turbulent transport of turbulent

kinetic energy (TKE), the fifth part Ch,5 the work by the molecular stresses and the

sixth part Ch,6 the work by Reynolds stresses. And the last part Ch,7 contains the

streamwise heterogeneity, pressure work and the variation of the specific total energy

with time.

4 Decomposition results of the wall heat flux
In this section, the reliability and accuracy of the new decomposition formula will be

demonstrated by the DNS results of a hypersonic transitional boundary layer. The con-

tributions of different energy transport processes such as the heat conduction, the tur-

bulent transport of heat, the work done by molecular stresses will be calculated.

Moreover, the key normal locations where the structures impact the wall heat will be

assessed by the integrand functions of these contributions.

4.1 DNS results of the hypersonic transitional boundary layer

The instantaneous vortical structures displayed by Q criterion [24] are presented in

Fig. 2. The transition process can be observed. Three streamwise locations (P1, P2 and

P3) are chosen to validate the decomposition results, which are marked by shade

planes. In Fig. 3, the mean streamwise velocity after van Driest transformation at P3 is

presented and compared with DNS results of hypersonic results by Priebe [25]. Good

agreement is obtained. The discrepancy in the outer part of the boundary layer is

caused by the different friction velocity at the wall. In Fig. 4, the Reynolds stresses nor-

malized by the friction velocity are presented. Several supersonic and hypersonic results

[26–28] are also displayed. The information of the setup of reference simulations is

presented in Table 2, where δref is the nominal boundary layer thickness in the fully de-

veloped region. The present data generally agree with those in the reference results.

These comparisons demonstrate that the performance of our present direct simulation

is acceptable, and the obtained data can be used for decomposition analysis.

Fig. 2 The instantaneous magnitude of the vortical structures
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Fig. 3 van Driest transformed mean streamwise velocity

Fig. 4 Streamwise turbulent intensity normalized by Morkovin transformed velocity
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4.2 Contributions of different energy transport processes

The contributions of different energy transport processes to the wall heat flux at differ-

ent streamwise locations, e.g. P1-P3 are calculated according to Eq. (10). The ratios of

the contributions of the terms in Eq. (10) to the reconstructed heat flux coefficient

Ch,decom and the relative errors are presented in Table 3. The relative error is defined as

Error = (Ch,decom −Ch,0)/Ch,0 × 100%, where Ch,0 is the time-averaged heat flux coeffi-

cient. The relative errors are very small in both transitional and turbulent regions. In

Table 3, it is found that the work done by the molecular stresses (Ch,5) and Reynolds

stresses (Ch,6) plays dominant roles in heat production. The sum of the contributions

of these two terms takes over 2.7 times of Ch,0 in the transition region and 1.9 times in

the turbulent region. The contributions of the heat conduction (Ch,1) and the turbulent

transport of heat (Ch,2) are negative, which indicates both processes act as the trans-

porters of the heat and carry the extra heat to the outer regions of the boundary layer.

The magnitude of Ch,1 and Ch,5 gets greater in the turbulent region due to the large

gradient of the profiles. On the other hand, Ch,2 and Ch,6 in the transitional region are

much greater than those in the turbulent region, because of the quick nonlinear devel-

opment of the structures.

The trends of the contributions can be further assessed when more sample locations

are considered. The trends of the contributions in the transition process are presented

in Fig. 5. In addition, the instantaneous density gradient and the time-averaged heat

flux coefficient are also presented to show the overall evolution procedure. The sym-

bols in the line of Ch,i indicate different sample locations (from left to right labelled as

X0 to X10). The first sample point (X0) is located in the laminar region; therefore, the

work of the molecular stress and the heat conduction is the main factor affecting the

wall heat. After entering the transition region, the effects of the Reynold stresses be-

come dominant. Moreover, a rapid variation of Ch,6 is observed in the transition region

due to the nonlinear development of the coherent structures. While in the turbulent re-

gion, an equilibrium state is reached and a smooth variation is obtained. The trends of

contributions of the heat conduction Ch,1 and the molecular stresses Ch,5 are very

smooth in both transition and turbulent regions, which indicate they are not sensitive

to the change of the turbulent fluctuations. In addition, the effects of the molecular

Table 2 Setup of the reference simulations

Ma (Lx, Ly, Lz) (Nx, Ny, Nz) (Δx+, Δy+, Δz+)

Priebe (2011) 7.2 (27.0δref, 14.2δref, 10.0δref) (840, 150, 768) (7.5, 0.3, 3.0)

Pirozzoli (2008) 2.0 (25.0δref, 3δref, 3.7δref) (1809, 180, 225) (4.5, 0.95, 4.5)

Duan (2010) 5.0 (7.5δref, 16.7δref, 1.9δref) (384, 110, 256) (7.7, 0.33, 2.9)

Subbareddy (2011) 6.0 NA (5400, 175, 175) (30.0, 0.5, 25.0)

Present DNS 6.0 (64.0δref, 5.4δref, 2.2δref) (1151, 320, 149) (7.9, 0.36, 3.4)

Table 3 Contributions of the terms in Eq. (10)
Ch,1/Ch,decom Ch,2/Ch,decom Ch,3/Ch,decom Ch,4/Ch,decom Ch,5/Ch,decom Ch,6/Ch,decom Ch,7/Ch,decom Ch,0 Ch,decom Err

P1 −0.111 −1.379 0.018 −0.084 0.478 2.437 −0.359 1.195E-4 1.183E-4 1.00%

P2 −0.213 −0.785 0.012 −0.072 0.673 1.299 0.086 1.825E-4 1.819E-4 0.33%

P3 −0.208 − 0.713 0.015 − 0.054 0.662 1.200 0.098 1.616E-4 1.620E-4 0.25%
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diffusion (Ch,3), the turbulent transport of TKE (Ch,4) and the streamwise heterogeneity

(Ch,7) are very small during the whole transition.

4.3 Key normal locations affecting the wall heat

The key normal locations where the structures affect the wall heat can be attained by

analyzing the integrand functions of the terms in Eq. (10). Two main transporters, i.e.,

the heat conduction (Ch,2) and the turbulent transport (Ch,3) and two main contribu-

tors, i.e., the work by molecular stresses (Ch,5) and Reynolds stresses (Ch,6) are analyzed

in this section.

The integrand functions of the heat conduction (Ch,2) and the turbulent transport

(Ch,3) are presented in Fig. 6. The lines in the figure denote the locations in the transi-

tional region and the symbols are the locations in the turbulent region. The contribu-

tion of Ch,2 is positive when the normal locations are near the wall due to the positive

temperature gradient. When y+ reaches 10, a valley is observed, which is formed by the

decrease of the temperature after the peak of the mean temperature. Compared with

the integrand function of Ch,2, two valleys are observed in the integrand functions of

Ch,3. The first valley is located at y+ ≈ 65, the magnitude of the valley reduces and fi-

nally disappears as the locations move downstream. The second valley is located at

around y+ = 10, which corresponds to the buffer layer of the turbulent boundary layer.

The valley will get larger as the locations move downstream.

Fig. 5 The streamwise trends of the contributions of the terms of heat flux decomposition
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The key normal locations of the work by molecular stresses (Ch,5) and Reynolds

stresses (Ch,6) are analyzed in Fig. 7. The positive contribution of Ch,5 is mainly located

in the regions near the wall. As the normal location increases, the integrand function

will decrease and a valley is formed around y+ = 10. Meanwhile, a peak is observed

around y+ = 10 in the integrand function of contribution of Ch,6. The peak is located in

the buffer layer of the boundary layer. In addition, in the transition process, the magni-

tude of the peak will get larger as the streamwise distance increases.

5 Conclusions
In this paper, we proposed a new decomposition formula for the wall heat flux. And

the performance of the formula has been well demonstrated by DNS results of a hyper-

sonic transitional boundary layer.

Fig. 6 The distribution of the integrand functions of the contributions of (a) the heat conduction Ch,2 and
(b) the turbulent transport Ch,3
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(1) Through this formula, the wall heat flux can be decomposed into contributions of

seven terms, i.e., the heat conduction, turbulent transport of heat, molecular

diffusion, turbulent transport of TKE, molecular stresses, the Reynolds stresses and

the streamwise heterogeneity.

(2) The contributions of each term can be calculated quantitatively. For the present

case, it is found that the heat flux produced by the work done by Reynolds stresses

and molecular stresses is much higher than the time-averaged heat flux on the

wall. The heat conduction and turbulent convection will carry the extra heat into

the outer part of the boundary layer.

(3) The structures in the buffer layer (y+ = 10) play a dominant role in the production

and transfer of the heat flux for the present simulation. Moreover, the

contributions of the heat conduction and the molecular stresses are mainly affected

by the gradient of the temperature.

Fig. 7 The distribution of the integrand of the contribution of work done by (a) molecular stresses Ch,5 and
(b) Reynolds stresses Ch,6
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(4) As the assumption used in the derivation is only the spanwise homogeneity and

nonslip wall, this formula can be applied in the analysis of the heat transfer of a

hypersonic transitional/turbulent boundary layer at high Mach numbers, which

can be employed to identify the main factors affecting the wall heating and provide

good guidance for the design of the thermal protection system.
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