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Abstract

To overcome the defects of traditional rarefied numerical methods such as the Direct
Simulation Monte Carlo (DSMC) method and unified Boltzmann equation schemes
and extend the covering range of macroscopic equations in high Knudsen number
flows, data-driven nonlinear constitutive relations (DNCR) are proposed first through
the machine learning method. Based on the training data from both Navier-Stokes
(NS) solver and unified gas kinetic scheme (UGKS) solver, the map between
responses of stress tensors and heat flux and feature vectors is established after the
training phase. Through the obtained off-line training model, new test cases
excluded from training data set could be predicated rapidly and accurately by
solving conventional equations with modified stress tensor and heat flux. Finally,
conventional one-dimensional shock wave cases and two-dimensional hypersonic
flows around a blunt circular cylinder are presented to assess the capability of the
developed method through various comparisons between DNCR, NS, UGKS, DSMC
and experimental results. The improvement of the predictive capability of the coarse-
graining model could make the DNCR method to be an effective tool in the rarefied
gas community, especially for hypersonic engineering applications.

Keywords: Data-driven method, Shock wave structure, Hypersonic flow, Rarefied gas
dynamics

1 Introduction
Due to non-equilibrium effects inside the shock wave with large macroscopic gradients

on a scale of several mean free paths, traditional hydrodynamic methods such as

Navier-Stokes equations are no longer valid. To resolve the steady shock wave struc-

ture of monatomic and diatomic gases physically, particle methods such as Direct

Simulation Monte Carlo (DSMC) [1] and numerical schemes for Boltzmann equations

have been extensively employed. However, the computational cost for both micro-

scopic method and mesoscopic method is large in comparison with hydrodynamic

methods, especially in the near-continuum flow regime with multiscale characteristics.

The same defects are also encountered in multi-dimensional rarefied flows, especially

hypersonic flows around a space vehicle. To overcome current defects, the most popu-

lar numerical methods which have been employed in shock wave structure or rarefied

hypersonic flow computations are reviewed subsequently.
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DSMC is a stochastic particle method to simulate rarefied non-equilibrium flows by

tracking and counting representative molecules per cell. Not only for one-dimensional

shock wave structure calculations, it has been widely applied in engineering applica-

tions after proposed because it could be easily implemented in the hypersonic reentry

flow with thermal and chemical non-equilibrium effects and yields accurate results

when the Knudsen number is large. However, the computational efficiency decays sig-

nificantly in near-continuum flow or high-density regions in a multiscale flow field due

to the surging number of particles per cell and limitations of time step and mesh size.

In the mesoscopic method, the Boltzmann equation describes the evolution of gas vel-

ocity distribution function in theory. However, the complex collisional term in the

right-hand side prevents the full Boltzmann equation from being solved widely. Linear-

ized or simplified Boltzmann model equations such as the Bhatnagar-Gross-Krook

(BGK) [2], Shakhov-BGK [3] and ellipsoidal statistical BGK (ES-BGK) [4] model equa-

tions were proposed to reduce the numerical complexity. In order to get the solutions

of these approximations, discrete velocity and ordinate methods (DVM) such as gas-

kinetic unified algorithms (GKUA) [5] are widely employed and a new framework

named unified gas kinetic scheme (UGKS) [6] proposed by Xu and collaborators a few

decades ago is regarded as a multiscale scheme for both hydrodynamic and rarefied re-

gimes. In comparison with other kinetic solvers, UGKS could reveal accurate solutions

in continuum flow regime with a large cell size and time step, which overcomes the cell

size barrier requiring a mesh size on the order of the mean free path for DSMC and

other kinetic schemes. However, to represent the velocity distribution function in vel-

ocity space, all these discrete velocity methods need huge memory consumption, which

is too expensive and sometimes inaccessible in hypersonic flows. On the other hand,

hydrodynamic methods also attract a lot of attention by extending its covering range in

various approaches. Burnett equations [7] derived from the second order Chapman-

Enskog expansion of VDF are classical high-order moment equations in literature. But

the original formulation was proved unstable due to violation of the second law of ther-

modynamics, although some remedies have been reported in recent years [8]. Besides

Burnett equations, Grad equations [9] and regularized moment equations, e.g. R-13

[10] and R-26 [11] equations, and other moment equations form the community of ex-

tended hydrodynamic equations (EHE). Eu [12] proposed generalized hydrodynamic

equations (GHE) from a different viewpoint in 1992 and developed nonlinear coupled

constitutive relations (NCCR) with Myong [13, 14] based on GHE subsequently. As a

simplified approximation of GHE, NCCR includes the evolution equations of conserva-

tive variables and nonlinear coupled closure of stress tensor and heat flux, which is

strictly consistent with the second law of thermodynamics [15]. Except DSMC, Boltz-

mann equation and moment equation solvers, many coupling models have also been

proposed recently such as traditional CFD-DSMC hybrid method [16], unified gas-

kinetic wave-particle method (UGKWP) [17], general synthetic iterative scheme (GSIS)

[18], unified stochastic particle method based on the BGK model (USP-BGK) [19] and

simplified unified wave-particle method (SUWP) [20]. These methods try to couple

hydrodynamic and microscopic descriptions of the rarefied flow to construct an effi-

cient and accurate hybrid scheme.

The study of shock waves by the above methods has been widely carried out to com-

pare with experimental results in recent decades. Both monatomic and diatomic gases
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are investigated in a wide range of upstream Mach numbers. Thermal non-equilibrium

in shock waves with both translational and rotational temperatures is also investigated.

In general, kinetic methods yield much more accurate macroscopic parameter profiles

than hydrodynamic solvers especially at high Mach numbers. However, the computa-

tional cost of solving various Boltzmann equations is much larger than extended hydro-

dynamic equations due to the discretization in velocity space separately. Unfortunately,

this deficiency will become unaffordable in three dimensional engineering applications

and that could be the main reason why mesoscopic methods are still not successfully

applied in predictions of aerodynamic and thermal loads on hypersonic vehicles.

While traditional fluid dynamics mainly focused on developing new physical models

to increase their accuracy, another effective way arising in recent years to improve the

predictive capability is data-driven modeling method. Especially in turbulence model-

ing, many research studies have been carried out by utilizing high-fidelity direct numer-

ical simulation (DNS) or experimental data to construct a predictive data-driven

Reynolds-averaged Navier-Stokes (RANS) model. Duraisamy et al. [21] summarized

and reviewed these methods in detail and Xiao [22, 23] proposed a physical-informed

machine learning approach (PIML) for reconstructing Reynolds stress modeling dis-

crepancies based on DNS data. Ling et al. [24] proposed a tensor basis neural network

(TBNN) by combining traditional neural network with Pope’s Reynolds averaged turbu-

lence model [25]. Using TBNN, they successfully predicted the separation phenomenon

of angular vortex and wavy wall flow in pipe flow. Not only in turbulence modelling,

Kutz [26] reviewed deep neural networks (DNNs) in fluid dynamics and predicted that

it was only a matter of time before deep learning made its mark in the general area of

high-dimensional, complex dynamical systems. In fact, data methods have been utilized

widely in computational fluid dynamics successfully such as proper orthogonal decom-

position (POD) or dynamic mode decomposition (DMD), which reduces computational

costs significantly. Sekar [27] proposed a fast prediction method for airfoil flow field

based on deep convolutional neural networks (CNN) and multi-layer perceptron

(MLP). Bar-Sinai [28] proposed an optimal approximation method of partial differential

equations based on the actual solutions of known flow governing equations, using

neural networks to estimate the spatial derivatives. Mao [29] successfully modeled the

high-speed air flow based on Euler equation by using the physical-informed neural net-

works (PINN) [30], and solved the one-dimensional Euler equation by using smooth so-

lution and two-dimensional oblique shock wave solution with contact discontinuity.

Raissi [31] tried to combine the PINN method with the convection diffusion equation

of particles to propose the HFM method, which describes the technical characteristics

and application prospects of the PINN method. All in all, using limited high-fidelity

data to capture features that dominate physics and then improve the predictive capabil-

ity of coarse-graining models will provide an effective tool in the fluid community. In

rarefied gas dynamics regime, Zhang [32] utilized machine learning methods to derive

various macroscopic governing equations for fluid dynamics and all training data comes

from DSMC simulations. It is proved that the data-driven method to discover govern-

ing equations for a non-equilibrium flow is promising.

In this paper, data-driven nonlinear constitutive relations (DNCR) will be developed

by machine learning method to provide a predictive approach for rarefied non-

equilibrium flows. Both NS equations solver and UGKS solver provide training data
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during training phase to map feature vectors and responses of stress tensor, heat flux

and flow parameter derivatives between NS and UGKS data. Based on this off-line

model, test cases excluded from training data set could be predicated rapidly and accur-

ately by solving conventional equations with modified stress tensor and heat flux. The

whole paper will be divided into four sections. “Data-driven nonlinear constitutive rela-

tions” will provide a detailed construction process of data-driven non-linear relations

and the solving methodology. Numerical cases of shock wave structure and hypersonic

flow passing through a blunt circle cylinder are presented in “Numerical simulations”

to validate and assess the capability of the current DNCR method. And finally, conclu-

sions and future work are summarized in the last section.

2 Data-driven nonlinear constitutive relations
2.1 Data-driven modeling approach

Data-driven approach is a suitable tool for building high-dimensional and complex re-

gression functions between input features and output responses. Constitutive relations

of macroscopic equations in rarefied regime are just impossible to specify analytically

in math despite the fact that traditional moment equations try to extend their covering

range by various expansion or simplification of velocity distribution function (VDF).

Therefore, the intention to obtain non-equilibrium constitutive relations through a

data-driven modeling approach is the main task for this paper.

In order to construct regression functions, we need to obtain training data first before

adopting a machine learning method. Two numerical methods including NS equations

solver and UGKS solver will be employed in current research to account for coarse-

graining model and high-fidelity model respectively. The covering range or size of

training cases is also important for the capability of the regression functions. Both local

continuum and rarefied regions should be included inside the training cases to make it

comprehensive. Another crucial issue is the choice of flow features as regression inputs.

Due to non-equilibrium characters of target flows, we will choose local Knudsen num-

ber KnGLL(ρ, T) and gradients of pressure ∇p, density ∇ρ and other favorable flow-field

variants. Following the basic principles of a data-driven method, the input parameters

should be obtained from the coarse-graining model directly, such as NS solver in

current framework, because the high-fidelity data from UGKS solver is unavailable in

the test cases. Secondly, the physical coordinates x should not be chosen as features in

the DNCR method to overcome limitation that the test case should have the same

geometry and grid as the training case. And only local flow quantities are considered as

well-chosen input parameters. All these adopted features in current research strictly

satisfy the above principles.

2.2 Evolution equations of DNCR method

The basic macroscopic conservation laws of generalized hydrodynamics can be summa-

rized as

ρ
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where Π, Q are stress tensor and heat flux, u are macroscopic velocity vectors. To close
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above conservation laws, constitutive relations that describe how the stress tensor, heat

flux and mass diffusion respond to the gradients of velocity, temperature and mass frac-

tion are needed. In the continuum region, the Navier-Stokes-Fourier constitutive rela-

tions provide a typical first order mathematical model, where the stress tensor and heat

flux are expressed in terms of the first-order macroscopic velocity and temperature.

However, NS equations are only valid in the continuum regime due to its intrinsic con-

tinuous hypothesis.

Beyond the constitutive relations, the conservation laws are regarded as a valid model

in all scales such as continuum, transitional and rarefied flows. If we could find a set of

proper constitutive relations in a desired flow, even discrete relations, the macroscopic

quantities could be predicted physically by solving the closed mathematical model.

However, the aim of finding analytical constitutive relations to describe the non-

equilibrium characteristic becomes quite complicated for a complex system, where too

many parameters need to be fitted, and the physical meaning of these terms becomes

obscure. That’s a key point for us to figure out how to obtain these exact constitutive

discrete relations as Eq. (2) through the machine learning method.

Πi; j ¼ f KnGLL;∇p;∇ρ; ρ;ui; p;Tð Þ
Qi ¼ g KnGLL;∇p;∇ρ; ρ; ui; p;Tð Þ ð2Þ

Once the discrete constitutive relations in every grid cell center are obtained, the

conservation equations could be solved to convergence by explicit or implicit time-

marching method. Take a two-dimensional flow as an example, the stress tensor and

heat flux substituted into the macroscopic conservation laws are obtained as Eq. (3),

where the local flow parameters with a superscript tip come from the trained off-line

model.
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Table 1 Flow features used as input in the regression for DNCR

Feature Description

KnGLL(ρ) Local Knudsen numbers of density

KnGLL(p) Local Knudsen numbers of pressure

KnGLL(T) Local Knudsen numbers of temperature

∇p Pressure gradient

∇ρ Density gradient

ρ, u, v, p, T Key flow parameters
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With the constraint of above Eq. (3), the stress tensor and heat flux will automatically

regress to the values of the off-line model as the gradients of flow parameters converge

to a steady state. It is worth noting that the output of the trained off-line model not

only includes stress tensor and heat flux, but also contains some gradients of key flow

parameters.

2.3 Solution methodology

2.3.1 Training phase

1) Pseudo and real transition flow fields are obtained through NS equation solver and

UGKS method respectively to establish the training data set which includes local con-

ventional flow variables ρ, u, v, w, p, T, Knudsen number based on the gradients of

density and temperature KnGLL(ρ, T), stress tensor τUGKSij ; τNSij , heat flux qUGKSi ; qNSi and

flow parameter gradients. During the numerical simulation process, an identical multi-

block structure grid is employed currently for both numerical solvers in finite volume

method to guarantee the data structure of the flow field consistent.

2) Establish the feature vector field q(x), e.g., local Knudsen numbers, pressure gradi-

ent, density gradient and flow parameters, based on the NS-predicted flow fields in Step

Table 2 Responses used as output in the regression for DNCR

Response Description

τij Stress tensor

qi Heat flux vector

∇T Temperature gradient

∇u X-velocity gradient

∇v Y-velocity gradient

Fig. 1 Flow diagram of DNCR method
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1. And compute the responses field Φ(x), where Φ represents stress tensor, heat flux,

temperature gradient and velocity gradients, for the training set.

3) Construct regression functions f : q↦ ΔΦ through a machine learning method

based on the training data. The extremely randomized trees model [33] is employed in

current research to train the regression relations.

The choice of the feature vectors is a key step for constructing regression functions

and will affect the final precision of prediction greatly. The input flow features and out-

put responses in the regression and descriptions are presented in Tables 1 and 2 as

below.

In the above training procedure, the training set has to include different

flow types to guarantee the applicable capability of the model. However, in the

current framework of DNCR, only a few different typical inflow conditions are

needed due to the multi-scale feature of transitional flow. Every grid cell will

provide a basic training set and the local non-equilibrium degree will be to-

tally different inside a multi-scale flow field. In other words, it is even possible

to predict a flow field utilizing the DNCR method based on a training set that

Table 3 Physical properties of Argon

γ Pr R(m2/(sec2 ⋅ K)) Tref(K) μref(kg/ sec ⋅m)

Ar 1.667 0.667 208.16 300 2.272 × 10−5

Fig. 2 Comparisons of flow variables in shock structure in a monatomic gas using the NS, UGKS and DNCR
at Mach 1.6
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only includes one different case, e.g., predict test flow around a cylinder at

Kn = 0.1 from the training set of flow field at Kn = 0.2. This feature makes the

DNCR method applicable in flows which have similar characteristics, such as

external rarefied flows around a spacecraft and so on.

Moreover, without any geometric parameters in the feature vectors, the DNCR

method could predict flow over different configurations from training set theoretically.

Fig. 3 Comparisons of stress τxx and heat flux qx in shock structure using the NS, UGKS and DNCR at
Mach 1.6

Fig. 4 Comparisons of flow variables in shock structure in a monatomic gas with experimental data using
the NS, UGKS and DNCR at Mach 8
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That means if the training flows consist of various elementary cases such as compres-

sion and expansion flows in transition regime, complex engineering flow which has a

subset or all of them could be predicted well ultimately. This challenging task is the

final goal of this method and is outside the scope of this study. We mainly focus on the

demonstration of feasibility first and will achieve that goal gradually.

Fig. 5 Comparisons of stress τxx and heat flux qx in shock structure using the NS, UGKS and DNCR at
Mach 8

Fig. 6 Comparison of inverse density thickness with experimental data using DNCR model
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2.3.2 Predicting phase

1) Perform NS simulations on the test flow and compute the feature vectors q(x) of the

flow field.

2) Compute the responses for the test flow by querying the regress functions f and

obtain the baseline stress tensor, heat flux and flow parameter gradients in each grid

cell subsequently, which are the terms with a superscript tip in Eq. (3).

3) Solve conservation equations with baseline stress tensor, heat flux and flow param-

eter gradients in Step 2 until converging to a steady state and finish the whole

procedure.

Finally, the test flow field with high-fidelity will be obtained without carrying

out complex and expensive simulations through UGKS or DSMC methods. The

whole flow diagram is shown in Fig. 1 with both training phase and predicting

phase.

The above predicting phase is separate from the training phase because the maps be-

tween input features and target responses have already been established before predic-

tion. Only NS feature vectors are needed in order to obtain the final discrete stress

tensor and heat flux for test flow. Unlike linear NSF relations or nonlinear Burnett con-

stitutive relations, there is no explicit formula in DNCR to close the conservation equa-

tions. And actually, the universality and simplicity of explicit constitutive relations to

describe non-equilibrium phenomenon is also questionable. However, the constitutive

Fig. 7 Meshes and configuration for computations
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relations always exist in each grid cell physically and the machine learning method is

suitable to train and predict it effectively and accurately.

Combined with the final baseline stress tensor, heat flux and flow parameter gradi-

ents, solving convention equations is much more efficient than UGKS or DSMC solvers

because the total computational time is on the same order of magnitude as NS equa-

tions solver. The goal of combining the accuracy of microscale description and the effi-

ciency of macroscale equations could be achieved, especially for hypersonic rarefied

engineering flows.

3 Numerical simulations
3.1 One-dimensional shock structure

In this section, the monatomic gas shock structure with non-equilibrium effects limited

to the translational energy mode is presented. Shock structure computation mainly fo-

cuses on the accuracy of the non-equilibrium model without considering complex wall

boundary conditions first. The viscosity of Argon is calculated by using the power law:

Fig. 8 Pressure contours of DNCR, UGKS and NS solutions

Fig. 9 X-velocity contours of DNCR and NS solutions
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η ¼ ηref
T
T ref

� �s

ð4Þ

where s = 0.72 and other physical properties are given in Table 3.

The training set in one-dimensional shock structure is constructed by different shock

wave cases with Mach numbers ranging from 1.2 to 10 which includes Ma = 1.2, Ma =

Fig. 10 Temperature contours of DNCR and NS solutions

Fig. 11 Pressure distribution along the stagnation line
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1.5, Ma = 3, Ma = 5 and Ma = 7. Two typical cases with Ma = 1.6 and Ma = 8 are pre-

dicted by DNCR with the trained model in this section.

To compare the discrepancy of NS, UGKS and DNCR results, the distributions of

temperature and density inside the shock wave are plotted for Mach 1.6 in Fig. 2, where

the x coordinates are nondimensionalized by the upstream molecular mean free path.

Due to the low Mach number condition, the gradient of flow parameter inside the shock

is not too steep, which results that the local distribution function is not far from equilib-

rium state. In spite of that, the DNCR results are still in good agreement with that of

UGKS, especially high-order moments such as stress tensor and heat flux as shown in

Fig. 3. It is also demonstrated that the local stress tensor and heat flux in DNCR solver

could converge to the values of UGKS as Eq. (3) when the steady state is reached.

When the Mach number grows to 8, the gap between NS and UGKS results be-

comes enormous as shown in Figs. 4 and 5. The non-equilibrium characteristic in-

side the strong shock wave makes Navier-Stokes-Fourier constitutive relations no

longer validate. To overcome this defect, various numerical algorithms from the

Boltzmann equation or statistical method were proposed in literature to describe

the flow structure inside the shock. UGKS is one of these successful implementa-

tions and its accuracy has been demonstrated in one-dimensional shock wave com-

putations. As shown in Figs. 4 and 5, the DNCR method yields comparable results

with that of UGKS. The temperature rising point predicted by DNCR and UGKS is

about 4 times earlier than that of NS, which indicates a thicker and weaker shock

compression process in reality.

Fig. 12 X-velocity distribution along the stagnation line
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To assess the applicability of DNCR for different Mach number conditions, Fig. 6

presents the comparison of inverse density thickness of shock wave with experimental

data using different numerical methods. Both UGKS and DNCR results are in good

agreement with most experimental data with Mach number ranging from 1.2 to 10.

3.2 Hypersonic flow around a blunt circular cylinder

The hypersonic flow of Argon passing through a blunt cylinder at Ma = 10 is consid-

ered in this section. In this case, the radius of the cylinder is 0.5 m and the computa-

tional domain is divided with 100 × 120 (normal direction × circular direction)

structured cells as Fig. 7. In UGKS computations, the velocity space is discretized with

rectangle cells of 200 × 200. The detailed inflow conditions to be predicted are listed

below.

T∞ ¼ 198:439K; p∞ ¼ 0:04655Pa; Ma∞ ¼ 10
γ ¼ 1:667; Pr ¼ 0:667; R ¼ 208:16J= kg � Kð Þ
Tw ¼ 500K; μ0 ¼ 5:0712� 10−5Pa � s; T 0 ¼ 1000K

ð5Þ

And the viscosity coefficient in all calculations is obtained through the inverse power

law with a coefficient of 0.734. The freestream Knudsen number of the testing case is

0.085 with a characteristic length of 1.0 m. The training data set includes two cases

with different inflow pressures but same configuration, where p∞ = 0.0582Pa, Kn∞ =

0.0678 and p∞ = 0.0388Pa, Kn∞ = 0.1016. Both NS and UGKS calculations are carried

Fig. 13 Temperature distribution along the stagnation line
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out to obtain all these features and output responses in order to train the nonlinear

constitutive relations model. Finally, the DNCR solver calculates the case with condi-

tions as Eq. (5) and the comparisons are presented here to assess the improvements of

the DNCR method.

Flow parameter contours such as pressure, temperature and velocity in x-direction

are presented in Figs. 8, 9 and 10. It is obvious that DNCR yields a very similar flow

field as UGKS does under these inflow conditions. All rarefied characteristics such as

the thicker shock wave and the weaker compression behind the bow shock are captured

accurately by the DNCR method. By checking the inflow Knudsen number with a char-

acteristic length of 1.0 m, which is the diameter of the circle, the NS solution will be no

longer validated in this case because Kn∞ = 0.085. This could also be observed clearly in

the figures below where the NS solutions are different from the other two approaches.

To investigate the flow field more carefully, the distribution lines of pressure,

temperature and x-velocity along the stagnation line are plotted in Figs. 11, 12 and 13.

These lines indicate that the results of DNCR are in good agreement with that of DSMC

and the discrepancies between NS and DNCR exist from the bow shock to the solid sur-

face. In order to quantify the improvement degree of the proposed DNCR method, a par-

ameter ξ would be introduced as Eq. (6).

Fig. 14 Heat flux distribution along the upper surface
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ξ ¼ 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

yiDNCR−y
i
UGKS

� �2s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

yiNS−y
i
UGKS

� �2s ð6Þ

where y denotes a flow parameter and the superscript i means the index of the grid cell.

As we can see from the definition, the formulation 1 ‐ ξ indicates the ratio of the dis-

crepancy between DNCR and UGKS to the discrepancy between NS and UGKS. There-

fore, the number of ξ ranges from 0 to 1 which indicates that the DNCR results

converge to NS or UGKS solutions respectively. In this case, the ξ of pressure,

temperature and x-velocity are 0.4908, 0.7680 and 0.6614 respectively and the improve-

ment of temperature is more profound than the other two parameters.

Besides physical parameters in the flow field, the heat flux and shear stress distribu-

tions on the wall are also investigated in the test case to validate our approach. Due to

the symmetry, only the shear stress coefficient and heat flux on the upper surface are

plotted in Figs. 14 and 15.

Fig. 15 Shear stress coefficient distribution along the upper surface

Table 4 CPU time and memory consumption

UGKS NS DNCR

Time 17 h 11min 13 min

Memory 54 GB 20 MB 20 MB
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The results of heat flux and shear stress on the wall yielded by the DNCR model are

still in good agreement with that of UGKS, which indicates that the DNCR method has

a promising capability in engineering application to predict aerodynamic heating and

drag for hypersonic vehicles.

To check the computational efficiency of different numerical methods, the time and

memory consumption is listed in Table 4 as below.

The computational time in Table 2 denotes the time to get the converged steady state

solution. It is worth noting that the training time of DNCR is not included in the above

computational time because the final aim of any machine learning algorithm is to es-

tablish an off-line trained model which could be utilized in different configurations or

inflow conditions. Therefore, it is not convenient or necessary to account for the whole

training time in a single computational case to be predicted. For the implicit UGKS

computation, the computational time is about 17 h and for DNCR is around 13min.

The memory cost of UGKS is around 54 GB and for DNCR it is about 20MB. Both

simulation time and memory consumption of the DNCR solver are comparable to NS

because the framework of both methods is very similar. To compare the computational

efficiency of DNCR and UGKS, the time consumption of DNCR is about 78 times fas-

ter than the implicit UGKS method, and memory cost is 2760 times less than UGKS.

4 Conclusions
This paper describes the development of a data-driven non-linear constitutive relation

model for multiscale flow simulation based on the extremely randomized trees model.

Based on the training set constructed by the NS and UGKS data, an off-line regression

model between input features and output responses is established first. In the predic-

tion phase, NS simulation is carried out to compute the feature vectors, which could be

utilized to yield baseline stress tensor, heat flux and flow parameter gradients by query-

ing the trained regress functions. With this baseline flow field parameters, the macro-

scopic conservation laws are solved implicitly to obtain the final results of the test flow.

1-D shock wave structure and 2-D hypersonic flow around a blunt circle cylinder are

investigated by the DNCR method to assess the capability, accuracy and efficiency. The

simulation results of DNCR are in good agreement with that of UGKS in all test cases

when the distribution of flow parameters and high-order moments are compared. And

the computational efficiency of DNCR is much higher than UGKS but with less mem-

ory consumption. As a result, the developed DNCR method is proved to be a promising

method and expected to pave a new way to predict complex three dimensional hyper-

sonic rarefied gas flows in future.
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