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Abstract

Feature selection targets for selecting relevant and useful features, and is a vital challenge in
turbulence modeling by machine learning methods. In this paper, a new posterior feature
selection method based on validation dataset is proposed, which is an efficient and
universal method for complex systems including turbulence. Different from the priori
feature importance ranking of the filter method and the exhaustive search for feature
subset of the wrapper method, the proposed method ranks the features according to the
model performance on the validation dataset, and generates the feature subsets in the
order of feature importance. Using the features from the proposed method, a black-box
model is built by artificial neural network (ANN) to reproduce the behavior of Spalart-
Allmaras (S-A) turbulence model for high Reynolds number (Re) airfoil flows in aeronautical
engineering. The results show that compared with the model without feature selection, the
generalization ability of the model after feature selection is significantly improved. To some
extent, it is also demonstrated that although the feature importance can be reflected by
the model parameters during the training process, artificial feature selection is still very
necessary.
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Notation

Angle of attack α Speed of sound a∞

Chord length of airfoil c Freestream speed u∞

Mach number Ma = u∞/a∞ Friction velocity uτ ¼
ffiffiffiffiffiffiffiffiffiffi
τw=ρ

p
Reynolds number Re = u∞c/υ Drag coefficient Cd

Distance to the wall d Vorticity w

Damping-length constant A+ Entropy (redefined) S ' = (p/ργ − 1), (γ = 1.4)

Shear stress at the wall τw Kinetic eddy viscosity υt

Wall friction length unit δυ = υ/uτ Kinetic viscosity υ

Boundary layer thickness δ Skin friction coefficient Cf = 2τw/ρ∞u∞
2

von Kármán constant κ Pressure coefficient Cp = 2(p − pw)/ρ∞u∞2
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1 Introduction
In recent years, there has been a surge in research on the combination of machine

learning and turbulence. These researches can be divided into two categories according

to the model form: classifiers for identifying uncertainty regions and regression models

for calculating turbulence-related variables. For the classifier, researchers can use ma-

chine learning to recognize the uncertain regions calculated by the Reynolds-Averaged

Navier-Stokes (RANS) turbulence model based on experimental or high-fidelity data [1,

2]. The uncertainty of turbulence calculation comes from the ensemble averaging oper-

ation of Navier-Stokes (N-S) equation, the functional form of a model, the representa-

tion of Reynolds stress and the empirical parameters of the model [3]. Then, a classifier

can be constructed to predict the uncertain regions in different flow cases and a better

method with higher accuracy can be used to improve the accuracy for these uncertain

regions. For the regression, machine learning is mainly used to improve or substitute

the conventional RANS model and the subgrid model in large eddy simulation (LES).

The linear eddy viscosity models are based on the Boussinesq assumption, which have

high efficiency and good robustness, but are eclipsed by anisotropic turbulence, such as

large separation and secondary flows. Thus, researchers used machine learning to de-

crease the discrepancies between RANS results and high-fidelity or experimental data.

There are mainly two corresponding solutions. One is to change the governing equa-

tion form of the RANS model, such as introducing the correction coefficient or adding

the source term to the transport equation [4–7]. The other is to construct the deviation

function by machine learning and then superimpose the results of RANS model and

the output of proposed model as the Reynolds stress [8, 9]. Different from the above

studies, some studies directly construct the surrogate models of some turbulence vari-

ables [10–12]. Overall, the achievement is encouraging. In the future, machine learning

may play a key role in turbulent modeling of complex flows [13]. With the research

deeper and deeper, there are still many problems to be solved, such as feature selection

(FS) and insufficient generalization ability, etc. [14, 15]

The feature means each component of the input vector and describes the sample

property, which is similar to the independent variable of the function. Thus, the feature

plays an important role in the model performance. It is difficult to characterize the data

space thoroughly and comprehensively by inadequate features, which leads to low

accuracy. On the contrary, redundant features may result in over-fitting of the model and

reduce its generalization ability. Generalization generally refers to the performance of a

model on unseen datasets. Feature selection is to select relevant and useful features to re-

duce the computation cost and improve the model performance [16]. For complex prob-

lems with unclear mechanism, it is challenging for researchers to extract features

straightforwardly. A common way is selecting some related features empirically according

to physical knowledge and the specific problem. The result of this way might be acciden-

tal. Therefore, an efficient and reliable feature selection algorithm is needed by

researchers.

In data-driven turbulence modeling, feature construction and selection are large ob-

stacles for researchers. Many researchers select features according to existing governing

equations and theorems or their own physical views. A common recommendation is

that the features should be invariant. Invariance property means that values do not
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change with the translation, reflection and rotation of the coordinate system. Ling et al.

[17] compared two methods of integrating invariant property into machine learning

models and found that embedding the invariance into the features is more efficient and

the corresponding model has better performance. Based on the conclusion, they took

five tensor invariants as features and constructed the tensor basis neural network for

scalar coefficients of the nonlinear eddy viscosity model. Besides the integrity basis de-

rived by Pope [18], Wu et al. [19] introduced the gradient of turbulent kinetic energy

and pressure to consider the effect of strong pressure changes and nonequilibrium. Yin

et al. [20] further summarized feature selection criteria based on tensor analysis and

flow structure identification. Although some researchers emphasize the invariance

property, it is not clear whether the features without this property will definitely reduce

the model performance. Wang et al. [21] studied the closure of the subgrid stress in

LES and the adopted features are the filtered velocity and first and second order deriva-

tives. Since the geometry and coordinate system of test cases are the same as those of

training cases, Cruz et al. [22] took each component of the tensors and vectors as the

input feature. Singh et al. [6] adopted the features mainly based on the governing equa-

tion of Spalart-Allmaras (S-A) model. The features used in most of the current work

are based on physics and belong to the result of feature construction rather than fea-

ture selection to a large extent.

There are some common feature selection methods, like filter method, wrapper

method and embedded method or some derivation methods based on these three

methods [16]. Filter methods rank the features according to the correlation

between features and output, which is efficient and priori. One of the common

ways to measure the correlation is the Pearson correlation coefficient. Other

correlation measurement can be found in the review of Saúl et al. [23] The

wrapper methods evaluate the feature subset according to the prediction

performance. The exhaustive search of this method becomes an NP-hard problem

since there are 2N feature subsets, where N is the candidate feature number. The

embedded methods insert the feature selection into the learning process. The dif-

ference of embedded method from the previous two methods is that the learning

process and the feature selection process cannot be separated, thus the feature sub-

set applicable to a specific model architecture might not be applicable to other

model architectures. In recent years, some hybrid methods of these three methods

have been proposed [24, 25]. More information about the feature selection method

can be found in many studies [26–29]. In data-driven turbulence modeling, feature

selection methods stated above are not widely used yet.

The principle target of this work is to enhance the model generalization ability

through the proposed feature selection algorithm. For high Reynolds number airfoil

flows in aerospace, the constructed model in this paper is essentially a black-box model

without solving the transport equation, aiming to reproduce the behavior of RANS

model. Driven by the data from only one flow case, the constructed model is expected

to be effective for various cases with different freestream conditions and airfoils. The

rest of this paper is summarized as follows. The second section introduces the methods

used in this work, including workflow, modeling strategy, artificial neural network and

the feature selection algorithm. The training process is illustrated in the third section,

including the datasets and the training method. The fourth section is the results and
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discussions, which are addressed from the aspects of accuracy and convergence. Con-

clusions and outlook lie in the fifth section.

2 Method
2.1 Workflow

The workflow includes two parts: neural network training and coupling of the N-S

equation solver with the constructed model. The first part aims to obtain a neural net-

work model, of which the performance should be satisfying and convergent. The word

“convergent” means that the loss function is hard to be lower. This part mainly consists

of three aspects: data acquisition, data preprocessing and model training. Model per-

formance is improved mainly by adjusting model parameters and hyperparameters dur-

ing the training process. If the performance is not adequate, the input features and

training samples can be further optimized in data preprocessing. The target of the sec-

ond part is to substitute the conventional RANS model with the constructed surrogate

model and obtain the results that agree well with those calculated by S-A model. The

surrogate model acts as a turbulence solver, as shown in the dot box below. The entire

process is shown in Fig. 1, and some details will be addressed later.

2.2 Modeling strategy

According to the dimensional analysis, the kinetic eddy viscosity can be expressed as

the product of mixing velocity umix and mixing length lmix.

υt ¼ umixlmix ð1Þ

The “mixing length” derives from the molecular mean free path in gas dynamics,

which was proposed by Prandtl [30]. The algebraic model with zero equation can

express turbulent eddy viscosity explicitly in the form of Eq. (1). Generally, two length

scales are used to characterize the turbulence from wall to the outer edge of the

boundary layer, namely the wall friction scale δυ and the boundary layer thickness δ.

The δυ and δ are corresponding to the inner and outer layers, respectively, where the

boundary is around the outer edge of the logarithmic layer. The mixing length of the

inner layer is related to the distance to the wall. There are many researches on the

scale analysis of the inner layer, and the universality is good in many cases. However,

the outer flow variables are only slightly influenced by the wall, and are more

disorderly and irregular [31]. Therefore, the scale analysis of the outer layer is more

Fig. 1 Flow chart for building the turbulence surrogate model
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challenging and of less universality. More information about the mixing length is

detailed in Granville’s work [32]. The mixing length adopted in this paper is based on

the Prandtl-van Driest formulation [33] and limited by the boundary layer thickness of

flat plane,

lmix ¼ min κd 1−e
− d
dyþ ≈ 1A

þ
� �

; 0:4δflat

� �
ð2Þ

where A+ = 26 and κ = 0.4 in this work, dyþ ≈ 1 denotes the estimated wall friction scale,

calculated by the function at the following address: https://www.cfd-online.com/Tools/

yplus.php. Because it is found that the real wall friction scale leads to worse convergence

during the iteration process. Referring to Clauser’s constant eddy viscosity hypothesis

[34], the mixing length of the outer layer is the same order with the boundary layer

thickness. For convenience, the boundary layer thickness here is approximate to that of

the flat plane, since the curvature of the airfoil is small. It should be noted that Eq. (2) is

effective qualitatively rather than quantitatively, which is a compromise to the lack of

robustness of the constructed neural network model. Once the mixing length is

determined, the mixing velocity can be deduced according to Eq. (1). The constructed

model in this paper is a nonlinear mapping between mean flow variables and the mixing

velocity. Since the modeling strategy includes the distance to the wall, which can be less

effective in separated flows, the flow cases in this work are all attached flows.

2.3 Artificial neural network

The term “neural network” comes from neurology and is often referred to as “artificial

neural network” in machine learning. Neuron is the basic unit of a neural network. The

number of neurons in each layer is called width and the number of layers is called

depth, which are two hyperparameters of a neural network. For a fully-connected

neural network, only the neurons in adjacent layers are connected to each other, and

the output of the neurons in the previous layer is the input of the neurons in the

current layer. The neural network used in this work is shown in Fig. 2.

The first layer is the input layer while the last layer is the output layer, and the rest is

the hidden layers. The parameters of the neuron are called weight and bias. Each

neuron contains two operations. The first one is the linear addition between the

product of input vector X and weight vector W and bias b,

Fig. 2 Schematic of the fully-connected neural network
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z ¼ WXþ b ð3Þ

and the second one is the nonlinear activation operation.

y ¼ f zð Þ ð4Þ

The common activation functions f(·) are Tanh, Sigmoid, Relu, LeakRelu and so on.

In this work, Tanh is adopted, see Fig. 3. Since the grid search method is time-

consuming, the structure is determined by a trial-and-error approach. Firstly, we fixed

the width and tested the effect of depth on the model performance. Then, we fixed

the optimal depth and tested the effect of width on the model performance. It was

found that the structure (20, 20, 20, 20, 20, 1) is enough for reaching the optimal so-

lution. More neurons do not significantly improve model performances but increase

computation time.

The error back propagation (BP) algorithm based on gradient descent is used to train

the neural network. The gradient is calculated by the chain rule to update the

parameter values of the neurons. Because the gradient descent algorithm is prone to

stop at the local minimum, the global optimum is generally approximated by several

training with different initial values. More information about neural networks can be

found in many works [35–37].

According to the universal approximation theory, neural networks with enough

neurons can approximate any measurable functions [38]. The complexity of the neural

network can be adjusted by changing the depth and width. The strength of mapping

complex nonlinear functions makes neural networks popular with researchers. It has

already been used in turbulence computation [10, 39].

2.4 Feature selection

We do not intend to delve into feature construction that depends on specific problems

or researchers’ physical view, but rather try to select some features that are helpful to

model performance from existing candidate features. Although we assume that the

Fig. 3 The Tanh activation function
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neural network itself can play a role in feature selection more or less in the training

process, the important role played by artificial feature selection is irreplaceable

according to our own experience.

The proposed feature selection method includes two parts. The first one is measuring

the numerical space of the features and kicking off those with obvious extrapolation

according to the mean extrapolation distance (MED). The second one is ranking the

feature and determining the feature subset according to the model performance. The

whole process is shown in Fig. 4 and to be more specifically, it includes the following

steps.

Step 1: Get the dataset D ¼ fðQD; yDÞ;QD∈ℝ
lD�m; yD∈ℝ

lD�1g and T ¼ fðQT; yTÞ;
QT∈ℝ

lT�m; yT∈ℝ
lT�1g, where Q denotes the feature vectors, y the labels, m the

number of features, lD and lT the sample number of D and T, respectively. Normalize

each feature and the output of D to [−1, 1], and normalize the dataset T according to

the corresponding minimum and maximum values from D. Mark the space domain

and the domain boundary formed by each feature and the output of D as Ωi and ∂Ωi,

respectively, where i = 1, 2…, m. Put the sample of T in corresponding domain

according to the feature and regard those samples outside the domain boundary as

extrapolation samples. Calculate the MED of each feature by Eq. (5) and remove the

features with large MED values. Denote the number of the remaining features as n.

Extract the remaining features and the output from D and T, and reshape the datasets

as D ¼ fðQD; yDÞ;QD∈ℝlD�n; yD∈ℝ
lD�1g and T ¼ fðQT; yTÞ;QT∈ℝ

lT�n; yT∈ℝ
lT�1g,

respectively.

MED ¼

XNe

i¼1

di

Ne
ð5Þ

where Ne is the number of the extrapolation samples.

Fig. 4 The procedure of feature selection
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Step 2: Divide the dataset D into training set Dtrain and validation set Dvalid randomly,

where Dtrain ¼ fðq1; q2;…; qn; ytrainÞ; qi∈ℝltrain�1; ytrain∈ℝ
ltrain�1; i ¼ 1; 2;…; ng.

Construct a neural network M according to Dtrain and Dvalid. Create a new dataset ~T

¼ fð eq1; eq2;…;fqn; ytestÞ; eqi∈ℝ
ltrain�1; ytest∈ℝ

ltrain�1; i ¼ 1; 2;…; ng by selecting ltrain

samples from T. Replace the feature of Dtrain by the same feature of ~T one by one and

combine the output of ~T, thus, we can get n datasets Qi, where i = 1, 2…, n.

Qi ¼ f q1;q2;…;fqi;…; qn; ytestð Þ

Test the model by datasets Qi and get the test errors. Rank the features according to

the test errors. The smaller the error, the more important the feature and the higher

the rank.

Step 3: Adjust the features of Dtrain and ~T according to the feature importance and

shape them as the following form:

Feature Importance : 1; 2;…; n

Dtrain ¼ fq1; q2;…; qn; ytraing
~T ¼ f eq1; eq2;…;fqn; ytestg

Create the training set gDtrain and validation set gDvalid by selecting the first j features

from Dtrain and ~T , respectively. Then, construct a neural network according to gDtrain

and gDvalid , and record the validation error Errj on gDvalid . The feature number j

increases from min _ Feature _ NO set by the user to n one by one. Finally, select the

feature subset with the minimal validation error.

In this paper, datasets D and T are composed of 2525 and 5437 samples,

respectively. These samples are obtained from different flow cases (see Table 1) using

the sample selection algorithm described below. The flow cases are sampled through

the Latin hypercube sampling method (LHS), and the sampling space is Ma ∈ [0.1, 0.5],

Re ∈ [2 × 106, 8 × 106], α ∈ [0°, 5°]. The total candidate features before feature selection

are shown in Table 2, where p denotes the pressure, x and y denote the streamline and

normal direction of the freestream respectively and the subscripts denote the partial

derivative in the direction. The sign function sgn() is defined as follows.

Table 1 The flow cases of dataset D and T used for feature selection

Dataset Ma Re (×106) α (o)

D 0.27 3 2.45

T 0.17 7.24 1.72

0.25 5.45 4.29

0.28 3.31 2.63

0.41 5.70 0.95

0.47 2.22 3.65
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sgn xð Þ ¼
−1 x < 0
0 x ¼ 0
1 x > 0

8<
: ð6Þ

It can be found that the candidate features are not limited to those with invariant

property. Some features have invariant property, such as ui
∂p
∂xi

and S ' /Ma2, while others

don’t, such as velocity vector and its derivatives, which are invariant to translation but

not to rotation. According to step 1, the MED of each feature can be calculated (see

Fig. 5) and the space domain formed by each feature and the output of dataset D and

T can also be plotted. For example, the space domain of some features can be seen in

Fig. 6. After removing the features with large MED, the remaining features are (q5, q8,

q10, q11, q12, q13, q14). For step 2, the mean square error (MSE) of 7 datasets Q1−Q7 is

shown in Fig. 7. Thus, the feature importance is q8 > q13 > q5 > q12 > q14 > q10 > q11
according to the MSE. In step 3, the min _ Feature _ NO is set to be 3, which means

that the features q8, q13, q5 are necessary.

Starting from these three features, an individual feature subset can be generated as

the feature number increases by one in the order of the feature importance and a

corresponding neural network model can be constructed. The best feature subset can

be found by the model performance on validation set. In order to avoid the influence

of occasionality, the model is trained three times for each feature subset, and the model

performance is measured according to the mean value of the errors on validation set.

As is shown in Fig. 8 where the horizontal axis means the feature number of the

feature subset, the model performance is the best when the first four features are

adopted. Therefore, the features used to construct the model hereinafter are (q8, q13,

q5, q12).

3 Model training
3.1 Dataset

The source data used in this paper is computed by the CFD solver coupled with the

S-A model [40], where the transport equation of the S-A model is as follows.

μT ¼ ρυ̂ f v1 ð7Þ

Table 2 The total candidate features

Feature Description Denotation

q1-q4 Velocity gradient ux, uy, vx, vy

q5 Projection of free stream to normal direction of streamline sgn(y)[−v + u tan(α)]

q6-q7 Pressure gradient px, py

q8 Redefined entropy S ' /Ma2

q9 Pressure gradient along streamline ui
∂p
∂xi

q10 Eddy viscosity expression for the inner layer lmix
2w

q11 Velocity magnitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p

q12 Velocity direction arctan[sgn(y)v/u]

q13-q14 Velocity component u, v

q15 Density ρ
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Dυ̂
Dt

¼ Cb1 1− f t2ð ÞŜυ̂

þ 1
σ

∇ � υþ υ̂ð Þ∇υ̂½ � þ Cb2 ∇υ̂ð Þ2� �
− Cw1 f w−

Cb1

κ2
f t2

� �
υ̂
d

� �2

ð8Þ

The governing equations are solved by the pseudo-time-marching method. The cell-

centered finite volume method is used and the spatial discretization is the AUSM+UP

scheme with second-order accuracy. The governing equations are nondimensionalized

by the mean aerodynamic chord c, speed of sound a∞ and freestream density ρ∞. The

Fig. 5 The MED of each feature

Fig. 6 The numerical distribution of some features of dataset D and T
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airfoil surface is set to be wall with no-slip condition and the far field is pressure-

far-field without reflection. When the variation of drag coefficient between 1000 it-

erations is less than 1 × 10−5, the flow field is set to be converged. Hybrid meshes

are used. The grid near the wall is quadrilateral with a growth rate of 1.2 and the

outer grid is triangular. The height of the first layer at the wall satisfies y+ < 1. The

benchmarks of NACA0012 and RAE2822 airfoils are adopted to validate the code

and the corresponding freestream condition is shown in Table 3. The result of the

CFL3D and experiment can be referred to [41–43]. Both of the agreement of Cp

and Cf are good, see Figs. 9 and 10.

In this paper, there is only one training case, and its freestream condition is

Ma = 0.27, AOA = 2.45°, Re = 3 × 106. Two thousand five hundred and twenty-five

data pairs were generated by the sample selection algorithm, and 1/5 of them were

selected randomly as the validation dataset, while the rest were used as the

training dataset. A total of 68 flow cases were used as the test cases, 60 of which

are shown in Fig. 11 and the rest cases will be illustrated later. The reason for this

design of test cases is that we attempt to find whose change of the freestream

condition (Ma, Re, AOA) is more challenging for the model performance, which

might be helpful for future work.

Fig. 7 The model performance on dataset Q1−Q7

Fig. 8 The model performance based on different feature subsets

Zhu et al. Advances in Aerodynamics             (2022) 4:1 Page 11 of 24



3.2 Data process

3.2.1 Sample selection

The goal of sample selection, in our opinion, is to select as few samples as possible to

represent as much of the original sample space as possible. In other words, the

diversity of physical behaviors contained in the original sample space should be

retained as much as possible. The sample selection method used in this work is a

combination of the law of the wall and recursive algorithm. The whole process can be

achieved by two steps:

Step 1: Divide the flow field into several subzones according to lny+, and the size of

each subzone is a set value Δx.

Step 2: Set the standard correlation value cc _ std. Take the first data in the subzone as

the first sample. For each subzone, starting loop from the second data, calculate the

correlation coefficient cc between each data and all samples of the current subzone,

and denote the maximal cc as cc _maximum. If cc _maximum < cc _ std, then the

corresponding data is a new sample; otherwise, the data is redundant and should be

removed. Loop the current step for all subzones.

Table 3 The freestream condition of the benchmark cases

Airfoil Freestream condition

α (o) Re (×106) Ma

NACA0012 0 6 0.15

10 6 0.15

15 6 0.15

RAE2822 2.8 6.5 0.73

2.8 6.2 0.75

Fig. 9 The comparison of surface pressure Cp and skin friction coefficient Cf of NACA0012 airfoil
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The formula of correlation coefficient is,

cc ¼ g1 � g2
g1k k g2k k ð9Þ

where g denotes the vector composed by the input features and output. The specific

algorithm is shown in Table 4.

It should be noted that before the sample selection and during the coupling process

later, the data of cells whose Reynolds stress is near zero in the far field is eliminated

according to the redefined entropy S' < 2 × 10−5. In this work, we applied the sample

selection to the training case. And we set Δx = 0.2 and cc _ std = 0.999737. The number

of subzone is 59. The data number before and after sample selection is 8328 and 2525,

respectively. The comparison of data distribution before and after sample selection is

shown in Fig. 12 when this method is applied to the training case. It can be found from

the figure that, among the selected samples, many of them lie in the leading edge and

trailing edge where the flow field changes rapidly. And the data at middle airfoil is

obviously sparse, while there is only a few data in the far field and wake region.

Fig. 10 The comparison of surface pressure Cp and skin friction coefficient Cf of RAE2822 airfoil

Fig. 11 Training (blue square) and test (orange circle) cases. a Re = 3 × 106. b Ma = 0.27
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3.2.2 Postprocess

For the samples at the edge of model performance, the model outputs are probably outliers,

resulting in negative eddy viscosity. In this case, eddy viscosity is forced to be non-negative.

In addition, there may also be the phenomenon of “burr”, that is the small jump of the out-

puts among adjacent cells. In order to obtain a smooth flow field, spatial smoothing is intro-

duced to smooth the eddy viscosity field calculated by the model at each iteration.

μt ¼
μt þ β

XN
i

μt
i

1þ βN
ð10Þ

where i denotes the ith neighboring cell, N the total number of neighboring cells. β is

the weight of neighboring cells, thus, the larger the β, the better the smoothness. But the

eddy viscosity in the boundary layer changes sharply and non-linearly along the normal

direction of the wall. Since Eq. (10) is linear, the error can be evitable. And the larger the

β, the larger the error. It is a trade-off between smoothness and accuracy. We recom-

mend small values for test cases which are similar to the training case and large values

for test cases which deviate a lot from the training case. In this work, we set β ∈ [0.2, 1].

All the flow cases involved in this paper are steady. Therefore, the final turbulent field

should be convergent. During the iteration process, we found that the turbulence field

calculated by the model is convergent on the whole, but there are slight oscillations of

the eddy viscosity of some cells from time to time. The slight oscillation in turn causes

the residual oscillation of the N-S solver. In order to restrain such unreasonable oscilla-

tion, when the residual value of N-S solver is less than 1 × 10‐5, the mean variation of

eddy viscosity ∑Δμt/M between adjacent iteration steps is limited to be monotonically

non-increasing, where M is the number of the total cells. More specifically, denote the

Table 4 The sample selection algorithm
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value of ∑Δμt/M at current step k as ∑Δμt
k/M, where Δμt = |μt

k − μt
k − 1|. At each iteration

step, set ∑Δμt/M =min(∑Δμt/M, ∑Δμt
k/M) and cycle the whole grid cells. If the variation

of eddy viscosity between current and forward steps satisfies Δμt > ∑Δμt/M, then set

μt
k = μt

k − 1 + sgn(μt
k − μt

k − 1) × ∑Δμt/M. It is found that the influence of this limitation

on the final results can be ignored.

3.3 Training process

If the loss function is simply defined as mean square error, then the relative error of

the model will be large for samples with small output value. As far as this work is

concerned, the above trouble happens in the near wall region, and thus the model is

prone to perform poorly. Furthermore, the high shear strain rate here will lead to

unreasonable results of Reynolds stress and skin friction distribution. Therefore, in the

training process, the accuracy of Reynolds shear stress is considered as a constraint for

the region y+ < 30. In other words, the accuracy of the samples in near wall region is

improved through increasing the weight in the loss function by the constraint term.

The constructed model needs to be coupled with the N-S solver like conventional

turbulence models. Therefore, the robustness of the model should be enhanced during

the training process to avoid the high sensitivity of output to the slight change of input.

Fig. 12 Distribution of the total data and selected data for the training case Ma = 0.27, AOA = 2.45°, Re =
3 × 106. a Inner layer. b Outer layer
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Two tricks are used. One is that we included the L1-norm and L2-norm regulation in

the loss function. The other is that we introduced the stability training (ST) after the

normal training process. The principle of stability training is to enhance the model ro-

bustness through adding some random noise to the original samples. The random noise

used in this work is uniformly distributed with a magnitude less than ±5% of the ori-

ginal sample.

~X ¼ ð1� 5%ÞX ð11Þ

where ~X is called random perturbation copy. The model output of ~X is denoted as ~Y .

The stability loss term is defined as,

Lstability ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
i

ðY i−~Y iÞ2
vuut ð12Þ

The loss function of ST is:

Loss ¼ MSE þ λ1kwk1 þ λ2kwk2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Regulation loss

þ λ3ðkτSAuv−τML
uvk2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Constraint loss

þ λ4Lstability|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Stability loss

ð13Þ

where

MSE ¼

XN
i

yi− f ið Þ2

N
; yi : label; f i : model output ð14Þ

More details on stability training can be referred to the work of Zheng et al. [44] The

model training is implemented on PyTorch [45], and the related parameters are shown

in Table 5. There are five components in the loss function and the magnitude of each

one can be different during the training process. If the magnitude of one component is

much larger than that of the others, then the effect of the other components will be

suppressed. Thus, the multiplier λ1 − λ4 is introduced to make the magnitude of each

component on the same order. It should be noted that the error function of the

validation set does not include the stability loss term during normal training, which is

defined as:

Error ¼ MSE þ λ3 τSA−τMLk k2
� 	 ð15Þ

During the stability training, the error function is redefined as:

ErrorST ¼ MSE þ λ3 τSA−τMLk k2
� 	þ λ4Lstability ð16Þ

The training process is over when the error function no longer drops within 500

steps.

4. Results and discussions
Since Cd and Cf are sensitive to the eddy viscosity field, this section mainly assesses the

accuracy of the constructed model from these two aspects. The model performance is

expected to be good in the test space Ma ∈ [0.1, 0.5], Re ∈ [2 × 106, 10 × 106], α ∈ [0°, 5°].

First of all, we calculate the relative error of Cd for all the test cases in Fig. 11. The
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error contour of the test space can be obtained by interpolation of the scattered cases,

as shown in Fig. 13. It can be found that the relative error varies regularly with the

angle of attack and Ma number for cases with fixed Re number. The relative error is

smaller with the increase of angle of attack and larger with the increase of Ma number.

However, the variation of the relative error is ambiguous with angle of attack and Re

number for cases with fixed Ma number. On the whole, the relative error increases

with the increase of angle of attack and Re number. The above analysis is qualitative

and rough. More detailed and quantitative information is shown in Fig. 14. When α <

3°, the influence of angle of attack on model performance is not obvious. When α > 3°,

the Cd calculated by the constructed model tends to be small with the increase of angle

of attack. In addition, the Cd is smaller than that calculated by the S-A model as the Re

number increases.

It can be found from the above results that the model performance tends to be poor

at some boundaries of the test space, which is helpful to speculate the model

performance in the whole test space. The freestream conditions of the eight boundary

point cases and the corresponding relative errors of Cd are listed in Table 6. Only case

C6 slightly exceeds 5%, while the other cases are all lower than 4%. The corresponding

skin friction coefficient distribution is shown in Fig. 15. The cases C7 and C6

correspond to the best and worst model performance, respectively.

In order to validate the proposed sample selection and feature selection algorithms, two

models were constructed respectively under the same model architecture: one is without

sample selection and feature selection and the other is only without sample selection.

Take the two cases of NACA0012 airfoil as examples, and the comparison of Cf

calculated by the three models is shown in Fig. 16. The result is obviously wrong without

feature selection, although the accuracy of the lower surface at the leading edge is better

for case C6. This indicates that more features do not mean better model performance,

and the ability of neural network to select features automatically is limited. Elaborate

feature selection is necessary. Sample selection has negligible influence on the result,

except for slight deviation at the leading edge of the airfoil, which indicates that the

proposed sample selection algorithm is feasible and the selected samples preserve the data

space and diversity of the original dataset. Thus, what should be focused on is the

diversity rather than the number of samples. In terms of these two cases, the Cf

agreement is very good at the upper surface, which is obviously better than that of the

lower surface. The deficiency mainly manifests in two aspects. One is around the peak

value of Cf at the leading edge, where the flow variables change dramatically. The other

Table 5 The training parameters

Parameters Value

Batch Normalization [46] Adopted

Activation function Tanh

Optimizer Adamax

Learning rates ReduceLROnPlateau

λ1 2 × 10−5

λ2 1 × 10−4

λ3 1 × 10−6

λ4 1
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lies in the lower surface from the leading edge to the 0.4 times of chord length, where the

Cf calculated by the model is smaller. When generalized to the RAE2822 airfoil, the

model shows similar performance, as is shown in Fig. 17.

When the constructed models can be coupled with N-S solvers like conventional models,

the research is of more practical significance. However, the error propagation between the

Reynolds stress and the time-averaged flow field is a challenge for most of the research. Wu

et al. [47] explained the stability of different closure models according to the local condition

number. Cruz et al. [22] suggested using the Reynolds force vector instead of the Reynolds

stress tensor as the model output. For the steady cases in this work, we expect that the con-

vergent solution can be obtained when coupling the model with the N-S solver. Although

we enhance the model robustness and the smoothness of the eddy viscosity field by stability

training and space-time smoothing and the eddy viscosity model has its own stability advan-

tage, these are still not enough to counteract the high sensitivity of time-averaged field to

Reynolds stress, which causes the residual oscillation and the slower convergence.

Since the convergence process of all cases is similar, we take the case C6 of

NACA0012 airfoil as an example to make further analysis for the sake of convenience.

In each iteration step, we tracked the Reynolds shear stress variation between the

current step and the previous step of the cell with maximal residual value. In this

Fig. 13 The relative error contour of Cd of the test cases
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regard, the change of S-A model decays fast and smoothly, while that of the ML model

decays slower and has large oscillations frequently, as is shown in Fig. 18. The oscilla-

tions of Reynolds stress variation derive from those of the model output, which disturb

the convergence of the mean flow field and lead to the residual oscillations. The loca-

tion of the cells with maximum residual was documented after 6 × 104 pseudo steps,

see Fig. 19(a). Since many symbols overlap each other, we further count the percentage

of the symbols in the same location in all symbols, see Fig. 19(b). It can be found that

Fig. 14 The relative error of Cd of the test cases, where Rela Dis = (Cd, ML − Cd, SA)/Cd, SA

Table 6 The relative error of Cd of the eight boundary point cases in the test space

Case Re (×106) Ma α (o) Relative Error

C1 2 0.1 0 0.51%

C2 2 0.1 5 1.37%

C3 2 0.5 0 2.91%

C4 2 0.5 5 2.57%

C5 10 0.1 0 3.62%

C6 10 0.1 5 5.09%

C7 10 0.5 0 0.25%

C8 10 0.5 5 3.99%
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most of the cells with maximum residual are in the buffer layer and near the inner

edge of the log layer and the majority lie in the back part of the airfoil.

5. Conclusion and outlook
In this paper, a feature selection method is developed to improve the generalization

ability of machine learning models in turbulent flows. The method selects the features

by three steps: firstly, measure the numerical distribution characteristics of the training

and validation datasets according to the mean extrapolation distance and eliminate the

features with obvious numerical extrapolation; secondly, construct a model with all

× ×

× ×

× ×

× ×

Fig. 15 The Cf comparison of the eight boundary point cases of NACA0012 airfoil
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features, then test and rank the effect of each feature on the model performance;

finally, generate the feature subsets according to the feature importance and evaluate

the model performance that each feature subset can achieve, then select the feature

subset with optimal model performance. The proposed method avoids the shortcoming

of priori of feature importance ranking and low efficiency of exhaustive research.

Using the features from the proposed method, a turbulence surrogate model is

constructed with artificial neural networks driven by the flow field data calculated by

N-S solver coupled with S-A model. The training data is selected from only one flow

case, and 70 flow cases with different freestream conditions and airfoils are tested. The

results indicate that the generalization ability of the constructed model is amazing. The

×
×

Fig. 16 The Cf comparison of NACA0012 airfoil. a C7. b C6

Fig. 17 The Cf comparison of RAE2822 airfoil. a C7. b C6
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model driven by only one flow case performs well in the whole designed test space after

the feature selection. The relative error of the drag coefficient is within 5% for almost

all the test cases.

This work mainly validates the proposed feature selection method. In future work, it

can be compared with some existing feature selection methods for effect and efficiency.

×

Δτ

Δτ
Δτ

×

Δτ

Fig. 18 The residual evolution for case C6 of NACA0012 airfoil

Fig. 19 The location and percentage of the cells with maximum residual after 6 × 104 pseudo steps for
case C6 of NACA0012 airfoil

Zhu et al. Advances in Aerodynamics             (2022) 4:1 Page 22 of 24



Acknowledgements
The authors would like to thank PhD students Xuxiang Sun and Xianglin Shan for their discussions and checking to
this paper.

Authors’ contributions
All authors read and approved the final manuscript.

Funding
This work is supported by the National Numerical Wind tunnel Project (no. NNW2018-ZT1B01), and the National
Natural Science Foundation of China (no. 91852115, no. 92152301).

Availability of data and materials
All data generated or analyzed during this study are included in this published article.

Declaration

Competing interests
The authors declare that they have no competing interests.

Received: 2 July 2021 Accepted: 13 September 2021

References
1. Ling J, Templeton J (2015) Evaluation of machine learning algorithms for prediction of regions of high Reynolds

averaged Navier stokes uncertainty. Phys Fluids 27(8):042032–042094. https://doi.org/10.1063/1.4927765
2. Singh AP, Duraisamy K (2016) Using field inversion to quantify functional errors in turbulence closures. Phys Fluids 28(4):

045110. https://doi.org/10.1063/1.4947045
3. Duraisamy K, Iaccarino G, Xiao H (2019) Turbulence modeling in the age of data. Annu Rev Fluid Mech 51(1):357–377.

https://doi.org/10.1146/annurev-fluid-010518-040547
4. Matai R, Durbin PA (2019) Zonal eddy viscosity models based on machine learning. Flow Turbulence Combustion

103(1):93–109. https://doi.org/10.1007/s10494-019-00011-5
5. Parish EJ, Duraisamy K (2016) A paradigm for data-driven predictive modeling using field inversion and machine

learning. J Comput Phys 305:758–774. https://doi.org/10.1016/j.jcp.2015.11.012
6. Singh AP, Medida S, Duraisamy K (2017) Machine-learning-augmented predictive modeling of turbulent separated flows

over airfoils. AIAA J 55(7):2215–2227. https://doi.org/10.2514/1.J055595
7. Zhang ZJ, Duraisamy K (2015) Machine learning methods for data-driven turbulence modeling. AIAA 2015-2460. 22nd

AIAA Computational Fluid Dynamics Conference, Dallas, 22-26 June 2015
8. Wang JX, Wu JL, Xiao H (2017) A physics informed machine learning approach for reconstructing Reynolds stress

modeling discrepancies based on DNS data. Phys Rev Fluids 2(3):034603
9. Xiao H, Wu JL, Wang JX et al (2017) Physics-informed machine learning for predictive turbulence modeling: Progress

and perspectives. AIAA 2017–1712. 55th AIAA Aerospace Sciences Meeting, Grapevine, 9 - 13 January 2017
10. Ling J, Kurzawski A, Templeton J (2016) Reynolds averaged turbulence modelling using deep neural networks with

embedded invariance. J Fluid Mech 807:155–166. https://doi.org/10.1017/jfm.2016.615
11. Zhu L, Zhang W, Kou J, Liu Y (2019) Machine learning methods for turbulence modeling in subsonic flows around

airfoils. Phys Fluids 31(1):015105. https://doi.org/10.1063/1.5061693
12. Zhu L, Zhang W, Sun X, Liu Y, Yuan X (2021) Turbulence closure for high Reynolds number airfoil flows by deep neural

networks. Aerosp Sci Technol 110:106452. https://doi.org/10.1016/j.ast.2020.106452
13. Nathan KJ (2017) Deep learning in fluid dynamics. J Fluid Mech 814:1–4. https://doi.org/10.1017/jfm.2016.803
14. Brunton SL, Noack BR, Koumoutsakos P (2019) Machine learning for fluid mechanics. Annu Rev Fluid Mech 52(1):477–

508. https://doi.org/10.1146/annurev-fluid-010719-060214
15. Zhang W, Zhu L, Liu Y et al (2019) Progresses in the application of machine learning in turbulence modeling. Acta

Aerodynam Sin 37(3):444–454
16. Guyon I, Elisseeff A (2006) An introduction to feature extraction. In: Guyon I, Nikravesh M, Gunn S, Zadeh LA (eds)

Feature extraction: foundations and applications. Springer:Berlin Heidelberg, Berlin, Heidelberg, pp 1–25. https://doi.
org/10.1007/978-3-540-35488-8

17. Ling J, Jones R, Templeton J (2016) Machine learning strategies for systems with invariance properties. J Comput Phys
318:22–35. https://doi.org/10.1016/j.jcp.2016.05.003

18. Pope SB (2000) Turbulent flows. Turbulent Flows 12(11):806–2021. https://doi.org/10.1088/0957-0233/12/11/705
19. Wu JL, Xiao H, Paterson E (2018) Physics-informed machine learning approach for augmenting turbulence models: a

comprehensive framework. Phys Rev Fluids 3(7):074602. https://doi.org/10.1103/PhysRevFluids.3.074602
20. Yin Y, Yang P, Zhang Y et al (2020) Feature selection and processing of turbulence modeling based on an artificial

neural network. Phys Fluids 32(10):105117. https://doi.org/10.1063/5.0022561
21. Wang Z, Luo K, Li D, Tan J, Fan J (2018) Investigations of data-driven closure for subgrid-scale stress in large-eddy

simulation. Phys Fluids 30(12):125101. https://doi.org/10.1063/1.5054835
22. Cruz MA, Thompson RL, Sampaio LE et al (2019) The use of the Reynolds force vector in a physics informed machine

learning approach for predictive turbulence modeling. Comput Fluids 192:104258. https://doi.org/10.1016/j.compfluid.2
019.104258

23. Solorio-Fernández S, Carrasco-Ochoa JA, Martínez-Trinidad JF (2020) A review of unsupervised feature selection
methods. Artif Intell Rev 53(2):907–948. https://doi.org/10.1007/s10462-019-09682-y

24. Solorio-Fernández S, Carrasco-Ochoa JA, Martínez-Trinidad JF (2016) A new hybrid filter–wrapper feature selection
method for clustering based on ranking. Neurocomputing 214:866–880. https://doi.org/10.1016/j.neucom.2016.07.026

Zhu et al. Advances in Aerodynamics             (2022) 4:1 Page 23 of 24

https://doi.org/10.1063/1.4927765
https://doi.org/10.1063/1.4947045
https://doi.org/10.1146/annurev-fluid-010518-040547
https://doi.org/10.1007/s10494-019-00011-5
https://doi.org/10.1016/j.jcp.2015.11.012
https://doi.org/10.2514/1.J055595
https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1063/1.5061693
https://doi.org/10.1016/j.ast.2020.106452
https://doi.org/10.1017/jfm.2016.803
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1007/978-3-540-35488-8
https://doi.org/10.1007/978-3-540-35488-8
https://doi.org/10.1016/j.jcp.2016.05.003
https://doi.org/10.1088/0957-0233/12/11/705
https://doi.org/10.1103/PhysRevFluids.3.074602
https://doi.org/10.1063/5.0022561
https://doi.org/10.1063/1.5054835
https://doi.org/10.1016/j.compfluid.2019.104258
https://doi.org/10.1016/j.compfluid.2019.104258
https://doi.org/10.1007/s10462-019-09682-y
https://doi.org/10.1016/j.neucom.2016.07.026


25. Bermejo P, De La Ossa L, Gámez JA et al (2012) Fast wrapper feature subset selection in high-dimensional datasets by
means of filter re-ranking. Knowl-Based Syst 25(1):35–44. https://doi.org/10.1016/j.knosys.2011.01.015

26. Chandrashekar G, Sahin F (2014) A survey on feature selection methods. Comput Electr Eng 40(1):16–28. https://doi.
org/10.1016/j.compeleceng.2013.11.024

27. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3(Mar):1157–1182
28. Cai J, Luo J, Wang S, Yang S (2018) Feature selection in machine learning: a new perspective. Neurocomputing 300:70–

79. https://doi.org/10.1016/j.neucom.2017.11.077
29. Yu L, Liu H (2004) Efficient feature selection via analysis of relevance and redundancy. J Mach Learn Res 5(Oct):1205–1224
30. Erhard DP, Etling D, Muller U et al (2010) Prandtl-essentials of fluid mechanics. Springer-Verlag, New York, p 158
31. Pirozzoli S (2014) Revisiting the mixing-length hypothesis in the outer part of turbulent wall layers: mean flow and wall

friction. J Fluid Mech 745:378–397. https://doi.org/10.1017/jfm.2014.101
32. Granville P (1989) A modified van driest formula for the mixing length of turbulent boundary layers in pressure

gradients. ASME Transact J Fluids Eng 111(1):94–97. https://doi.org/10.1115/1.3243606
33. Driest EV (1956) On turbulent flow near a wall. J Aeronautic Sci 23(11):1007–1011. https://doi.org/10.2514/8.3713
34. Clauser FH (1956) The turbulent boundary layer. Adv Appl Mech 4:1–51. https://doi.org/10.1016/S0065-2156(08)70370-3
35. Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436
36. Bishop CM (2006) Pattern recognition and machine learning. Springer-Verlag, New York
37. Yu D, Deng L (2016) Automatic speech recognition. Springer-Verlag, London. https://doi.org/10.1007/978-1-4471-5779-3
38. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw

2(5):359–366. https://doi.org/10.1016/0893-6080(89)90020-8
39. Maulik R, San O (2017) A neural network approach for the blind deconvolution of turbulent flows. J Fluid Mech 831:

151–181. https://doi.org/10.1017/jfm.2017.637
40. Spalart P, Allmaras S (1992) A one-equation turbulence model for aerodynamic flows. AIAA 1992-439. 30th Aerospace

Sciences Meeting and Exhibit, Reno, 06 - 09 January 1992
41. Jespersen DC, Pulliam TH, Childs ML (2016) Overflow turbulence modeling resource validation results. NASA Technical

Report ARC-E-DAA-TN35216
42. Bardina JE, Huang PG, Coakley TJ (1997) Turbulence modeling validation, testing, and development. NASA Technical

Memorandum NASA-TM-110446
43. Cook PH, McDonald MA, Firmin MCP (1979) Aerofoil RAE 2822 - pressure distributions, and boundary layer and wake

measurements. Experimental Data Base for Computer Program Assessment, AGARD Report AR 138
44. Zheng S, Song Y, Leung T et al (2016) Improving the robustness of deep neural networks via stability training.

Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 4480-4488
45. Paszke A, Gross S, Chintala S et al (2017) Pytorch: tensors and dynamic neural networks in python with strong GPU

acceleration. https://github.com/pytorch/pytorch. Accessed 30 June 2021
46. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift.

Proceedings of the 32nd International Conference on International Conference on Machine Learning 37:448-456
47. Wu J, Xiao H, Sun R, Wang Q (2019) Reynolds-averaged Navier–Stokes equations with explicit data-driven Reynolds

stress closure can be ill-conditioned. J Fluid Mech 869:553–586. https://doi.org/10.1017/jfm.2019.205

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zhu et al. Advances in Aerodynamics             (2022) 4:1 Page 24 of 24

https://doi.org/10.1016/j.knosys.2011.01.015
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1016/j.neucom.2017.11.077
https://doi.org/10.1017/jfm.2014.101
https://doi.org/10.1115/1.3243606
https://doi.org/10.2514/8.3713
https://doi.org/10.1016/S0065-2156(08)70370-3
https://doi.org/10.1007/978-1-4471-5779-3
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1017/jfm.2017.637
https://github.com/pytorch/pytorch
https://doi.org/10.1017/jfm.2019.205

	Abstract
	Notation
	1 Introduction
	2 Method
	2.1 Workflow
	2.2 Modeling strategy
	2.3 Artificial neural network
	2.4 Feature selection

	3 Model training
	3.1 Dataset
	3.2 Data process
	3.2.1 Sample selection
	3.2.2 Postprocess

	3.3 Training process

	4. Results and discussions
	5. Conclusion and outlook
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Declaration
	Competing interests
	References
	Publisher’s Note

