
An ultralight geometry processing library
for parallel mesh refinement
Bohan Wang1,2, Bo Chen3*, Kaixin Yu1,2, Lijun Xie1,2*  and Jianjun Chen1,2,4 

1  Introduction
Mesh generation has attracted much attention since it is the major performance bot-
tleneck of applying numerical methods to solve partial differential equations (PDEs). In
fields such as computational fluid dynamics (CFD) and computational electro magnetics
(CEM), large-scale meshes containing hundreds of millions of elements or more are now
required to simulate some challenging problems [1–3]. Sequential approaches are usu-
ally inefficient, if not incompetent, to generate so big a mesh due to the bottlenecks in
terms of memory usage and computing time. Parallel approaches have thus been devel-
oped to overcome these obstacles [1, 4–8].

Presently, the prevailing parallel approaches of mesh generation are based on domain
decomposition [5, 9] or by exploiting fine-grained concurrencies within sequential
mesh generation algorithms [10]. The former approaches are usually implemented in a
distributed-parallel style and thus capable of avoiding memory bottlenecks in case of

Abstract 

In applications such as parallel mesh refinement, it remains a challenging issue to
ensure the refined surface respects the original Computer-Aided Design (CAD) model
accurately. In this paper, an ultralight geometry processing library is developed to
resolve this issue effectively and efficiently. Here, we say the kernel is ultralight because
it has a very small set of data-structures and algorithms by comparison with industrial-
level geometry kernels. Within the library, a simplified surface boundary representation
(B-rep) and a radial edge structure are developed respectively to depict the geometry
model and the surface mesh, plus hash tables that record the connections between
the geometry model and the surface mesh. Based on these data structures, a set of effi-
cient algorithms are developed, which initializes the connection tables, projects a point
back to the original geometry, etc. With these data-structure and algorithmic infrastruc-
tures set up, the callings of eight well-designed Application Programming Interfaces
(APIs) are powerful enough to enable the parallel mesh refinement algorithm outputs
a mesh respecting the input CAD model accurately. Numerical experiments will be
finally presented to evaluate the performance of the overall parallel mesh refinement
algorithm and the algorithms in relation with the developed library.

Keywords:  Mesh generation, Mesh refinement, Boundary representation (B-rep),
Mesh deformation, Computer-aided design (CAD)

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Wang et al. Advances in Aerodynamics (2022) 4:13
https://doi.org/10.1186/s42774-021-00093-8 Advances in Aerodynamics

*Correspondence:
chenbo01010401@163.com;
LijunXie@zju.edu.cn

2 School of Aeronautics
and Astronautics, Zhejiang
University, Hangzhou 310027,
China3 China Aerodynamics
Research and Development
Center, Mianyang 621000,
China
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-3732-2287
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42774-021-00093-8&domain=pdf

Page 2 of 22Wang et al. Advances in Aerodynamics (2022) 4:13

large-scale mesh generation. By comparison, the later approaches are suitable for shared
memory architecture and its capability is limited by the size of available memories.

Parallel refinement is another simple but powerful approach to create large-scale
meshes. With a coarse mesh as input, parallel refinement subdivides each element
according to templates in parallel. Commonly, large-scale meshes contain different types
of elements, for instance, the hybrid prism-tetrahedra mesh for viscous simulations, in
which layered prismatic elements are aligned with domain boundaries, tetrahedral ele-
ments are filled in far fields, and a few pyramids are used in the transition region. It
is challenging to create a hybrid prism-tetrahedra mesh having billions of elements by
domain decomposition approaches. However, much larger meshes have been demon-
strated by using parallel refinement techniques [11].

One drawback of refinement-based approaches is that the new generated surface
meshes will deviate from the original geometry. Reconstructing a high-order representa-
tion locally is a solution [12]; however, its accuracy depends on how accurately the initial
surface mesh approximates the original geometry. Another choice is to respect the origi-
nal geometry. The core issue here is how to represent the geometry and implement com-
putations such as mapping and projection efficiently on that geometry. Zhao et al. [13]
employ OpenCascade (OCC) [14], an open-source computer-aided design (CAD) kernel
to represent the original geometry and reuse the algorithms provided by the kernel to
accomplish the projection procedure. However, using industrial-level CAD kernels like
OCC in this context is too heavy, not only because their library size is too big and their
functions are too redundancy, but also because their learning curve is very high. Mean-
while, these CAD kernels are designed for general applications and its efficiency is not
acceptable in critical parallel applications [13, 15].

In this study, we suggest the development of an ultralight geometry processing library
(also called ultralight geometry kernel) for parallel mesh refinement. Here, we say the
geometry library is ultralight because it has a very small set of data-structures and algo-
rithms by comparison with industrial-level geometry kernels:

1.	 Data structures. A simplified surface boundary representation (B-rep) is used to
record the topology objects. Ferguson curves and Coons surfaces, for their simplic-
ity, are presently employed to define the curve and surface geometry [16–20]. The
connections between B-rep objects (points/curves/faces) and surface mesh objects
(vertices/edges/facets) are maintained to support the implementation of accurate
and efficient projection algorithms [21].

2.	 Algorithms. Two key algorithms are developed: one algorithm initializes the connec-
tion between surface B-rep objects and surface mesh objects, the other one projects
a point back to the original geometry. Techniques to improve the robustness and effi-
ciency of both algorithms will be depicted.

An essential set of programming interfaces (APIs) is provided to perform the data
query and key geometry algorithms. Examples show that a few callings of these APIs
are powerful enough to enable the refined mesh to respect the original geometry. We
will demonstrate this desirable feature by applying the kernel in a refinement-based
parallel mesh generator. It is worth noting that the similar approach can be naturally

Page 3 of 22Wang et al. Advances in Aerodynamics (2022) 4:13 	

extended for applications such as high-order mesh generation [22, 23] and surface
mesh adaptation [24].

The following discussion is organized as below. In Section 2, the layered structure of
the developed geometry kernel is introduced. In Sections 3 and 4, the focuses are on the
implementation of data structures and key algorithms, respectively. In Section 5, the set
of APIs for external callings is listed and how they are used in parallel mesh refinement
is demonstrated. Section 6 presents numerical studies on the proposed approach. Sec-
tion 7 summarizes the article and presents a few suggestions on future work.

2 � Layered structure of the kernel
As seen in Fig. 1, the ultralight kernel is organized into three layers:

1.	 The data structures layer, in which the geometry model, the surface mesh and their connections
are represented by a simplified surface B-rep, a radial-edge structure and some hash tables.

2.	 The algorithms layer, which consists of the algorithms projecting a point to a curve
and a surface, the algorithm setting up the connections between the geometry model
and the surface mesh, the input/out algorithms and the basic query algorithms of the
fundamental data structures.

3.	 The APIs layer, which, for the users’ convenience, consists of a set of user functions that are
implemented by warping or combining the algorithms implemented in the algorithms layer.

3 � Implementations of the data structures layer
3.1 � The surface B‑rep

The surface B-rep is introduced in [21], which refers to a subset of the solid B-rep and
it includes three basic topology entities: face, curve and point, as illustrated in Fig. 2.

Fig. 1  Layered structure of the kernel

Page 4 of 22Wang et al. Advances in Aerodynamics (2022) 4:13

Meanwhile, a specific topology entity named loop is used to limit the valid region of
a face. Internally, a loop refers to a set of boundary curves and is a group entity that
distinguishes from other topology entities.

With respect to the geometric description of curves and surfaces, Ferguson curves
and Coons surfaces [25, 26] are selected for their simplicity and powerful capabil-
ity for geometry representation. For completeness, their analytic definitions are pre-
sented as below.

A Ferguson curve is composed of many end-to-end connected curve segments.
Each segment is analytically defined as below (see Fig. 3).

where P(0) and P(1) refer to starting and ending points of the segment, respectively, and
P ’ (0) and P ’ (1) refer to tangent vectors at respective points. Given a set of interpolation
points, the tangent vectors at these points could be computed by introducing two-order
continuous conditions and two boundary conditions at the starting and ending points of
the entire curve.

A Coons surface is composed of a matrix of surface patches, and each patch is ana-
lytically defined as below (see Fig. 4).

�(t) = �3t
3 + �2t

2 + �1t + �0

= (2(�(0) − �(1)) + �’(0) + �’(1))t3

+(3(�(1) − �(0)) − 2�’(0) − �’(1))t2

+�’(0)t + �(0)

=
�

t3 t2 t 1
�

⎡

⎢

⎢

⎢

⎣

2 −2 1 1

− 3 3 −2 −1

0 0 1 0

1 0 0 0

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

�(0)

�(1)

�’(0)

�’(1)

⎤

⎥

⎥

⎥

⎦

,

�(u, v) = �(u)��(v)

=
[

u3 u2 u 1
]

���
T
[

v3 v2 v 1
]T

(0 ≤ u ≤ 1, 0 ≤ v ≤ 1)

Fig. 2  Illustration for the surface B-rep [21]

Page 5 of 22Wang et al. Advances in Aerodynamics (2022) 4:13 	

where

M =







2 −2 1 1

− 3 3 −2 1

0 0 1 0

1 0 0 0






,A =







r(0, 0) r(0, 1) rη(0, 0) rη(0, 1)

r(1, 0) r(1, 1) rη(1, 0) rη(1, 1)

rξ (0, 0) rξ (0, 1) rξη(0, 0) rξη(0, 1)

rξ (1, 0) rξ (1, 1) rξη(1, 0) rξη(1, 1)






,

and F(u) = (F1(u), F2(u), F3(u), F4(u)) is a vector of values computed by four Hermite
interpolation functions as below,















F1(u) = (1+ 2u)(u− 1)2

F2(u) = u2(3− 2u)

F3(u) = u(1− u)2

F4(u) = u2(u− 1)

.

Fig. 3  A Ferguson curve segment

Fig. 4  A Coons surface

Page 6 of 22Wang et al. Advances in Aerodynamics (2022) 4:13

Given a matrix of interpolation points, the partial differentials defined in the matrix
A could be computed by introducing two-order continuous conditions and four
boundary conditions at the corner points of the entire surface. Interested readers are
referred to [25, 26] for more details.

For simplicity, only one type of curve and one type of surface are supported in our
geometry kernel, far fewer than that number supported in industry geometry kernels.
For instance, in OpenCascade 9 types of curves and 11 types of surfaces are respectively
supported. To use this library, it is necessary to convert other types of curves and sur-
faces to their Ferguson counterparts at first. The deviation error between the Coons rep-
resentation and the original one can be controlled by the resolutions of sample points.
Table 1 shows the deviation error between the Coons representation of a sphere with
radius 50 and the analytic representation of the sphere. The error is evaluated by the
distance between the sample points on Coons surface and the analytic surface. About
2 million points are uniformly sampled on the surface. Given the fact that the error is
usually smaller by a few factors than the resolution of the required mesh, we say it is a
reasonable compromise to use Coons surface instead of the more general but complex
NURBS representation.

3.2 � The data structure for surface mesh

Here, the data structure introduced in [27] is reused, in which the surface mesh is
represented by a list of edges and a list of facets. The following codes present the data
structures used to define surface edges and facets:

To consider non-manifold cases, the number of facets adjacent to one edge is not
fixed. Figure 5 explains how to link the adjacent faces of an edge cyclically, where
e.faceH is the head of the link. For the case shown in Fig. 5, e is supposed to be the
first edge of its adjacent faces; therefore, the first neighboring index of each face is
used to point to the next face.

A frequently employed routine is the search of a facet with its three corner nodes
as inputs. Its brute-force implementations need to traverse the facet list. Therefore, a
hash table is created to improve the performance of this routine, where the smallest
index of the corner nodes is the key value of a facet, and the facets having an identi-
cal key value form a backup list. Likely, this technique is used to speed up the routine
that searches a surface edge by its corner nodes.

Page 7 of 22Wang et al. Advances in Aerodynamics (2022) 4:13 	

3.3 � Classifications and reverse classifications

Three basic mappings between their topology entities are defined as follows to connect
the B-rep and the surface mesh in [21]:

1.	 The face-facet mapping. A face corresponds to a set of facets.
2.	 The curve-edge mapping. A curve corresponds to a set of edges.
3.	 The point-vertex mapping. A point corresponds to a vertex.

Other mappings can be defined as well, e.g., between a curve and all vertices that lie on
the curve, or between a face and all edges that bound the face. As these additional map-
pings can be derived from the basic mappings, they are not explicitly represented.

Two definitions are introduced below to describe the above mappings [21, 28]:
Definition 3.1 (Classification). Given a di-dimensional topology entity (di = 0 ~ 2) Mdi

of the discrete model, Mdi is classified on a dj-dimensional topology entity (di ≤ dj ≤ 2)
Gdj of the B-rep if Mdi lies on Gdj , denoted as Mdi ⊑ Gdj.

Definition 3.2 (Reverse Classification Set, RCS). Given a d-dimensional topology
entity (d = 0 ~ 2) Gd of the B-rep, the d-dimensional topology entities of the discrete model
classified on Gd form a reverse classification set, denoted as RCS(Gd) = {Md| Md ⊑ Gd}.

Table 1  Statistics of interpolation errors

Model #u knot #v knot Max sample error Relative error

Sphere radius = 50 16 24 [− 0.0747, 0.0177] 0.001494

32 48 [−0.0188, 0.0048] 0.000376

64 96 [−0.0047, 0.0012] 0.000094

128 192 [−0.0011, 0.0003] 0.000022

Fig. 5  Illustration for the link of faces adjacent to an edge

Page 8 of 22Wang et al. Advances in Aerodynamics (2022) 4:13

4 � Key algorithms
4.1 � Setting up connections between CAD model and surface mesh

This algorithm is employed to set up three basic mappings between a CAD model and a
surface mesh. A bottom-up workflow is thus developed, which sets up the point-vertex
mapping first, then the curve-edge mapping, and finally the face-facet mapping (see Fig. 6).
Here we depict the respective procedures setting up these three mappings in details as
below.

4.1.1 � Setting up point‑vertex mapping

This procedure traverses all the CAD points and attempts to classify a surface mesh
vertex on each point. Here, we say a vertex is classified on a point when their distance
is smaller than a user-specified tolerance. The timing performance of a brute-force
implementation is evidently unacceptable. An octree is used to speed up the computa-
tion presently.

4.1.2 � Setting up curve‑edge mapping

This procedure traverses all the CAD curves and attempts to classify a set of surface edges
on each curve. Here, we say an edge is classified on a curve when the distances between the
ending points of the edge and the curve are all smaller than a user-specified tolerance. The
timing performance of a brute-force implementation by computing the distances of each
pair of a curve and a mesh vertex is unacceptable. Algorithm 1 presents the improved ver-
sion of this procedure.

4.1.3 � Setting up face‑facet mapping

This procedure traverses all the CAD faces and attempts to classify a set of surface facets
on each face. Here, we say a facet is classified on a face when all the corner vertices of the

Page 9 of 22Wang et al. Advances in Aerodynamics (2022) 4:13 	

facet are classified on the face. Since the surface is trimmed by its boundary loop (see
Fig. 2), we say a point is classified on a face if and only if:

1.	 The distance between the vertex and the supporting surface of the face is smaller
than a user-specified tolerance; and

2.	 The vertex is located within the valid trimmed region of the face.

To investigate whether the second condition is met, a winding number algorithm is
presently implemented in the parametric space of the face [29].

The timing performance of a brute-force implementation by computing the dis-
tances of each pair of a face and a mesh vertex is unacceptable. We implemented
an improved version, which identifies one facet classified on the face first and then
employs the coloring algorithm to search all the other facets classified on the face.
Algorithms 2 and 3 present the procedure identifying the first facet and the coloring
procedure, respectively.

Fig. 6  An example illustrating the process of setting up three basic mappings between a CAD model and a
surface mesh created on the model. a is the example sphere model composed of 4 surface patches. In (b),
a surface mesh vertex at the center of four colored edges is highlighted, which is searched and classified on
the corresponding model point. In (c), all the edges classified on the model curves are colored. In (d), the
surface facets are colored differently, illustrating that they are classified on different surface patches

Page 10 of 22Wang et al. Advances in Aerodynamics (2022) 4:13

4.2 � Projecting point to curve

Given a parametric curve r = r(u), the expression of the problem becomes:

subjecting to

 Here, r∗ is the physical coordinates of the point, u is the parametric coordinate of r∗,
and ε is a distance tolerance for duplicate points. Presently, the Brent’s algorithm [30] is
employed to solve the above nonlinear programming (NLP) problem.

4.3 � Projecting point to surface

Given a parametric surface r = r(u, v), the expression of the problem becomes:

(1)min | r∗ − r(u) |,

(2)| r∗ − r(u) |< ε.

(3)min | r∗ − r(u, v) |,

Page 11 of 22Wang et al. Advances in Aerodynamics (2022) 4:13 	

subjecting to

 Here, r∗ is the physical coordinates of the point, (u, v) are the parametric coordinates of
r∗, and ε is a distance tolerance for duplicate points.

Solving the above NLP problem takes the following steps [31]:

1.	 Check if any singular point of the surface meets Inequality (4). If no singular point
meets Inequality (4), seek the solution of NLP (1) and (2) in the parametric spaces of
the boundary curves as mentioned in Section 4.2.

2.	 If no solution is targeted in Step 1, seek the solution in the interior of the parametric
space of the surface by using the GSA (Geometric Strategy Algorithm) for orthogo-
nal projection [32].

3.	 If Step 2 still fails to present a solution, a direct searching procedure is executed,
which is more robust but less efficient. This procedure creates a quadtree to cover
the parametric space by recursive refinement: amongst existing quadrants, the one
that is the closest to r∗ (e.g., evaluated by the distance of the centroid of the quad-
rant and r∗) is subdivided into four child quadrants. This refinement procedure is
repeated until the centroid of a quadrant meets Inequality (4) or the size of the quad-
rant is smaller than the floating-point precision.

5 � APIs and parallel mesh refinement
5.1 � List of APIs for parallel mesh refinement

For the convenience of external callings, a few APIs are implemented in the kernel to
wrap the query of data structures and the key algorithms presented in Section 4. Listed
as below are 8 APIs that will be called by the parallel mesh refinement algorithm. As
discussed in Section 5.2, a few callings of these APIs are powerful enough to enable the
refined mesh to respect the original geometry.

1.	 Build_Map(…), which sets up the connections between a CAD model and a surface
mesh by employing the algorithm introduced in Section 4.1.

2.	 Project_Curve(…), which computes the projection of a point at a curve by employ-
ing the algorithm introduced in Section 4.2.

3.	 Project_Surface(…), which computes the projection of a point on a surface by
employing the algorithm introduced in Section 4.3.

4.	 Get_PatchID(…), which returns the face that a facet is classified on.
5.	 Get_PatchCurves(…), which returns the curves that bound a face.
6.	 Get_FacetIDs(…), which returns a set of facets meeting at an edge.
7.	 Attach_Face(…), which classifies a facet onto a face.
8.	 Detach_Face(…), which removes a facet-on-face classification.

(4)| r∗ − r(u, v) |< ε.

Page 12 of 22Wang et al. Advances in Aerodynamics (2022) 4:13

5.2 � Parallel mesh refinement

Figure 7 presents the overall workflow of the parallel mesh refinement algorithm,
which adopts a manager/worker structure. The manager inputs a CAD model and a
coarse hybrid prism-tetrahedra mesh, then extracts the surface of the volume mesh
and sets up the connections between the CAD model and the surface mesh. After
that, the manager employs a graph partition tool named Metis [33, 34] to subdivide
the volume mesh into sub-meshes and distribute each sub-mesh onto the workers.
Note that the manager will get one sub-mesh for itself such that it can do the same
work as the workers. As will be demonstrated in Section 6, the memory consump-
tion of lightweight kernel is neglected in real applications. Therefore, each worker
also gets all the data stored in the ultralight geometry kernel such that the subsequent
projection procedure could be executed in parallel. See Fig. 8 for an example illustrat-
ing the above workflow.

After the sequential mesh partitioning, all the following steps are conducted in paral-
lel. Each worker refines its sub-mesh by using the subdivision templates shown in Fig. 9,

Fig. 7  Overall workflow of the parallel mesh refinement algorithm

Page 13 of 22Wang et al. Advances in Aerodynamics (2022) 4:13 	

and then projects newly inserted surface points onto the input CAD model. To improve
the mesh quality after projection, a moving mesh technique by using radial basis func-
tions (RBF) is employed [35–38]. If the available memory on the manager process is
large enough, the distributed refined mesh could be sent back to the manager for com-
bination. However, since the algorithm is developed to deal with large-scale meshes, the
output is a distributed mesh in default, which is produced by repartitioning the refined
mesh to achieve a better tradeoff between loading balance and communications. The
parallel version of Metis, namely ParMetis, is presently employed to achieve this goal.

Three procedures of the parallel mesh refinement algorithm require the callings of
APIs listed in Section 5.1.

1.	 In the initialization procedure, the manager calls Initialize_map(…) to set up the
connections between the CAD model.

2.	 In the refinement procedure, the workers call Attach_face(…) to classify newly
formed surface facets onto CAD faces and Detach_face(…) to remove the connec-
tions between split facets and CAD faces.

Fig. 8  An example illustrating the parallel mesh refinement workflow. a is the input coarse mesh. b is the
partitioned result of the input mesh. c is the refinement result of (b). d is the final mesh after projecting new
surface points onto the original CAD model. Note that a mesh deformation is carried on after projection to
improve shape quality of volume elements

Page 14 of 22Wang et al. Advances in Aerodynamics (2022) 4:13

3.	 In the project procedure, the workers project newly inserted points back onto the
original CAD model. Points are dealt with individually. Algorithm 4 presents how to
deal with one point by classifying different cases.

Fig. 9  Refinement templates of 3D elements

Page 15 of 22Wang et al. Advances in Aerodynamics (2022) 4:13 	

Fig. 10  Three groups of inputs selected for numerical tests. Left is the CAD model, and right is the coarse
volume mesh filling in the exterior flow domain. a The DLR F6 aircraft model, b The missile model, c The
rocket model

Table 2  Statistics of the selected inputs

Model #Curves #Surfs. #Total
elems

#Tetra.
elems

#Pyramid
elems

#Prism
elems

#Vol.
nodes

#Surf. elems

F6 238 98 5.13 M 1.57 M 0.04 M 3.52 M 2.057 M 0.174 M

Missile 343 127 2.30 M 0.54 M 0.03 M 1.73 M 0.977 M 0.072 M

Rocket 1098 439 5.73 M 0.52 M 0.04 M 5.17 M 2.712 M 0.147 M

Page 16 of 22Wang et al. Advances in Aerodynamics (2022) 4:13

Fig. 11  Comparison of the refinement results with and without the projection step enabled. a is the mesh
with this step disabled, b is with this step enabled, and c presents a color map describing how far the mesh
(a) deviates from the original CAD model

Page 17 of 22Wang et al. Advances in Aerodynamics (2022) 4:13 	

Table 3  Total timing data and breakdown of the overall refinement algorithm

Model #Output elems. #Cores Time consumed by individual steps (s) Total Time (s)

Map Partition Refine Project Deform

F6 0.33B 256 2.7 164.5 2.3 25.3 1901.8 2108.6

512 2.7 164.0 1.2 13.8 489.5 687.1

1024 2.8 193.4 0.7 8.7 225.4 451.4

Missile 0.15B 256 1.2 68.4 1.1 16.9 146.1 228.2

512 1.1 59.6 0.6 9.0 82.5 154.3

1024 1.1 69.3 0.3 5.1 38.8 121.1

Rocket 0.37B 256 3.3 155.7 5.0 13.5 1450.1 1644.4

512 3.2 185.6 2.4 7.9 746.2 969.8

1024 3.1 179.5 0.9 5.3 469.8 679.8

Table 4  Comparing of projection time

Model EGADSlite Our method

sphere_example #Surf. elems 265,216 269,690

#Surf. nodes 132,610 134,847

Time of projection / s 11.1 5.8

Nozzle_example #Surf. elems 228,040 231,278

#Surf. nodes 114,022 115,641

Time of projection / s 9.1 6.3

Complex (medium size) #Surf. elems 68,156 69,844

#Surf. nodes 34,038 34,882

Time of projection / s 13.2 8.6

Complex (finer size) #Surf. elems 279,068 281,040

#Surf. nodes 139,494 140,480

Time of projection / s 31.6 18.6

Page 18 of 22Wang et al. Advances in Aerodynamics (2022) 4:13

Fig. 12  Comparison of elements before and after mesh deformation. a The prism elements near the surface.
b inverted elements. c corrected elements after RBF deformation

Fig. 13  Mesh quality comparison

Page 19 of 22Wang et al. Advances in Aerodynamics (2022) 4:13 	

6 � Numerical experiments
To prove the effectiveness and efficiency of the proposed method and library, numeri-
cal tests were carried out on TianHe Exascale Prototype System, in which each com-
puter node contains a Matrix-2000+ CPU configured with 32 computer cores and
16 GB memory. Three typical aerodynamics inputs (see Fig. 10) are selected and their
info is listed in Table 2.

The mapping and projection are accomplished by the ultralight geometry kernel.
The mapping step is a serial process and only depends on the complexity of the input
geometry and the size of initial surface mesh and it is not a compute-intensive task.

The projection process is a critical step in mesh refinement. Figure 11 shows how the
projection process improves the quality of a mesh on the missile model. Figure 11a is
the one-level refinement result before projection and 11b is its counterpart after pro-
jection. The mesh in Fig. 11b is visually smoother than the mesh in Fig. 11a because
the mesh after projection respects the original geometry more accurately. To quantify
the movement distance resulted by the projection, Fig. 11c presents a color map of that
distance, in which each node is assigned a value representing the distance between the
origin position of a mesh point and the original geometry.

Table 3 lists the timing data of the overall refinement algorithm. The timing cost of the
projection step is relatively small in all tests. By comparison, if a general-purpose CAD
kernel such as OpenCascade is employed, this cost can be much larger, as reported in
[13]. To evaluate the efficiency of our projection algorithm, we compared our method
with another open-source lightweight geometry kernel named EGADSlite, which is
reported much faster than OpenCascade in such a kind of computation [15].

Page 20 of 22Wang et al. Advances in Aerodynamics (2022) 4:13

The geometry models provided in the EGADSlite project are used as inputs. Test-
ing meshes are generated separately by the two libraries with similar element number
and the projection of EGADSlite is accomplished by the EGlite_invEvaluate() function.
Table 4 shows the time cost of the two projection algorithms on a personal computer
with an Intel I5-6500 CPU and 16 GB memory.

Table 4 shows that our projection algorithm is faster than EGADSlite in all cases.
The last step in the parallel refinement is mesh deformation, which takes the largest

portion of the total time in all the tests listed in Table 3. The primary reason is that we
presently employ an RBF algorithm without incorporating any data reduction tech-
niques [38], which ensures a better mesh deformation effect at a rather huge cost of
computing time. Nevertheless, the percentage of this portion deceases evidently when
more computer cores are invested owing to the efficient parallelization of this step.

The projection step directly replaces newly inserted surface mesh nodes with their pro-
jections on the original CAD model. This process may degrade or even invert the elements
connected to these nodes, in particular when the elements are stretched prisms with very
small lateral edges. Figure 12b presents a case in which some prisms near the wall of the
missile model are inverted due to the projection. After performing the RBF-based mesh
deformation, the quality of these elements is remarkably improved, as seen in Fig. 12c.

Finally, we analyze the mesh quality statistics with the metric Equiangular skewness [39]
which is used to evaluate the shape quality of elements. This value varies between 0 and 1:
0 stands for an element with the best quality and 1 for a degenerate element. In real simu-
lations, it is required that the skewness values of the majority of elements are below 0.8 and
the elements with their skewness values above 0.9 should be removed as many as possible.
For the F6 case, Fig. 13 presents the prism element quality of the initial mesh, the projected
mesh and the final mesh (after deformation). In general, the quality of the refined elements
highly depends on the input ones. However, projection and deformation can make cer-
tain improvement of mesh quality. In this case, the projection and deformation procedure
increases the percentage of elements with satisfactory skewness values (i.e., below 0.2) and
decreases unsatisfactory skewness values (i.e., above 0.8) remarkably.

7 � Conclusions
In this study, it is shown that an ultralight geometry processing library is powerful
enough to ensure the refined surface respects the original CAD model accurately. A very
small set of data-structures and algorithms is included in the kernel. Techniques are
developed to improve the robustness and efficiency of these data-structures and algo-
rithms. Meanwhile, with the aid of this kernel, a parallel mesh refinement algorithm is
enhanced with the ability to respect the original CAD model at a small computing cost.
Numerical experiments configured with geometry with industry-level complexity are
presented to certify the performance of the developed algorithms.
Acknowledgements
N/A

Authors’ contributions
The research output comes from a joint effort. All authors read and approved the final manuscript.

Funding
This research is funded by the National Numerical Wind Tunnel Project of China.

Page 21 of 22Wang et al. Advances in Aerodynamics (2022) 4:13 	

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author upon reason-
able requests.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Center for Engineering and Scientific Computation, Zhejiang University, Hangzhou 310027, China. 2 School of Aeronaut-
ics and Astronautics, Zhejiang University, Hangzhou 310027, China. 3 China Aerodynamics Research and Development
Center, Mianyang 621000, China. 4 State Key Lab of CAD&CG, Zhejiang University, Hangzhou 310027, China.

Received: 16 September 2021 Accepted: 23 September 2021

References
	1.	 Weatherill NP, Hassan O, Morgan K, Jones JW, Larwood BG, Sorenson K (2002) Aerospace simulations on parallel

computers using unstructured grids. 40(1–2):171–187
	2.	 De Cougny HL, Shephard MS (1999) Parallel unstructured grid generation. In: Thompson JF, Soni BK, Weatherill NP

(eds) CRC Handbook of Grid Generation. CRC Press, Boca Raton, pp. 24.1–24.18
	3.	 Chrisochoides N (2006) Parallel mesh generation. In: Bruaset AM, Tveito A (eds) Numerical solution of partial dif-

ferential equations on parallel computers. Springer, Heidelberg, pp 237–264
	4.	 Löhner R (2014) Recent advances in parallel advancing front grid generation. Arch Comput Meth Eng 21(2):127–140
	5.	 Chen J, Zhao D, Zheng Y, Xu Y, Li C, Zheng J (2017) Domain decomposition approach for parallel improvement of

tetrahedral meshes. J Parallel Distribut Comput 107:101–113
	6.	 Laug P, Guibault F, Borouchaki H (2017) Parallel meshing of surfaces represented by collections of connected

regions. Adv Eng Softw 103:13–20
	7.	 Yilmaz Y, Ozturan C (2015) Using sequential NETGEN as a component for a parallel mesh generator. Adv Eng Softw

84:3–12
	8.	 Freitas MO, Wawrzynek PA, Cavalcante-Neto JB, Vidal CA, Martha LF, Ingraffea AR (2013) A distributed-memory paral-

lel technique for two-dimensional mesh generation for arbitrary domains. Adv Eng Softw 59:38–52
	9.	 Chen J, Zhao D, Huang Z, Zheng Y, Wang D (2012) Improvements in the reliability and element quality of parallel

tetrahedral mesh generation. Int J Numer Methods Eng 92(8):671–693
	10.	 Zhao D, Chen J, Zheng Y, Huang Z, Zheng J (2015) Fine-grained parallel algorithm for unstructured surface mesh

generation. Comput Struct 154:177–191
	11.	 Lintermann A, Schlimpert S, Grimmen JH, Günther C, Meinke M, Schröder W (2014) Massively parallel grid genera-

tion on HPC systems. Comput Methods Appl Mech Eng 277:131–153
	12.	 Jiao X, Wang D (2012) Reconstructing high-order surfaces for meshing. Eng Comput 28(4):361–373
	13.	 Zhao Z, Zhang Y, He L, Chang X, Zhang L (2020) A large-scale parallel hybrid grid generation technique for realistic

complex geometry. Int J Numer Methods Fluids 92(10):1235–1255
	14.	 Open Cascade (2016) Open Cascade Technology 7.2.0. http://​www.​openc​ascade.​com/
	15.	 Haimes R, Dannenhoffer J (2018) EGADSlite: a lightweight geometry kernel for HPC. Paper presented at the 2018

AIAA aerospace sciences meeting, AIAA 2018-1401. Kissimmee, Florida, 8–12 January 2018
	16.	 Sheffer A, Bercovier M, Blacker TED, Clements JAN (2000) Virtual topology operators for meshing. Int J Comput

Geom Appl 10(03):309–331
	17.	 Inoue K, Itoh T, Yamada A, Furuhata T, Shimada K (2001) Face clustering of a large-scale CAD model for surface mesh

generation. Comput Aided Des 33(3):251–261
	18.	 Sheffer A (2001) Model simplification for meshing using face clustering. Comput Aided Des 33(13):925–934
	19.	 Dannenhoffer J, Haimes R (2003) Quilts: a technique for improving boundary representations for CFD. Paper

presented at the 16th AIAA computational fluid dynamics conference, AIAA 2003-4131. Orlando, Florida, 23-26 June
2003

	20.	 Foucault G, Cuillière J-C, François V, Léon J-C, Maranzana R (2008) Adaptation of CAD model topology for finite ele-
ment analysis. Comput Aided Des 40(2):176–196

	21.	 Chen J, Cao B, Zheng Y, Xie L, Li C, Xiao Z (2015) Automatic surface repairing, defeaturing and meshing algorithms
based on an extended B-rep. Adv Eng Softw 86:55–69

	22.	 Turner M, Peiró J, Moxey D (2016) A variational framework for high-order mesh generation. Proc Eng 163:340–352
	23.	 Zhao Z, Li M, He L, Shao S, Zhang L (2019) High-order curvilinear mesh generation technique based on an improved

radius basic function approach. Int J Numer Methods Fluids 91(3):97–111
	24.	 Tang J, Cui P, Li B, Zhang Y, Si H (2020) Parallel hybrid mesh adaptation by refinement and coarsening. Graph Model

111:101084
	25.	 Zhu X (2000) Free-form curve and surface modeling technology. Science Press, Beijing. (in Chinese)
	26.	 Ferguson J (1964) Multivariable curve interpolation. J ACM 11(2):221–228
	27.	 Xiao Z, Chen J, Zheng Y, Zheng Z, Wang D (2016) Booleans of triangulated solids by a boundary conforming tetrahe-

dral mesh generation approach. Comput Graph 59:13–27
	28.	 Dey S, Shephard MS, Flaherty JE (1997) Geometry representation issues associated with p-version finite element

computations. Comput Methods Appl Mech Eng 150(1-4):39–55

http://www.opencascade.com/

Page 22 of 22Wang et al. Advances in Aerodynamics (2022) 4:13

	29.	 Hormann K, Agathos A (2001) The point in polygon problem for arbitrary polygons. Comput Geom 20(3):131–144
	30.	 Brent RP (2013) Algorithms for minimization without derivatives. Courier Corporation, North Chelmsford
	31.	 Peirò J (1999) Surface grid generation. CRC Press, New York
	32.	 Li X, Wu Z, Pan F, Liang J, Zhang J, Hou L (2019) A geometric strategy algorithm for orthogonal projection onto a

parametric surface. J Comput Sci Technol 34(6):1279–1293
	33.	 George Karypis (2013) METIS - Serial graph partitioning and fill-reducing matrix ordering. http://​www.​glaros.​dtc.​

umn.​edu/​gkhome/​metis/​metis/​overv​iew.
	34.	 Karypis G, Kumar V, Comput S (1998) A fast and high quality multilevel scheme for partitioning irregular graphs.

SIAM J Sci Comput 20(1):359–392
	35.	 de Boer A, van der Schoot MS, Bijl H (2007) Mesh deformation based on radial basis function interpolation. Comput

Struct 85(11-14):784–795
	36.	 Rendall T, Allen C (2008) Fluid-structure interpolation and mesh motion using radial basis functions. Int J Numer

Methods Eng 74:1519–1559
	37.	 Rendall TCS, Allen CB (2009) Efficient mesh motion using radial basis functions with data reduction algorithms. J

Comput Phys 228(17):6231–6249
	38.	 Rendall TCS, Allen CB (2010) Reduced surface point selection options for efficient mesh deformation using radial

basis functions. J Comput Phys 229(8):2810–2820
	39.	 Cadence Design Systems (2021) POINTWISE user manual. http://​www.​point​wise.​com/​doc/​user-​manual/​exami​ne/​

funct​ions/​equia​ngle-​skewn​ess.​html. Accessed 09 Jan 2021

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://www.glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://www.glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://www.pointwise.com/doc/user-manual/examine/functions/equiangle-skewness.html
http://www.pointwise.com/doc/user-manual/examine/functions/equiangle-skewness.html

	An ultralight geometry processing library for parallel mesh refinement
	Abstract
	1 Introduction
	2 Layered structure of the kernel
	3 Implementations of the data structures layer
	3.1 The surface B-rep
	3.2 The data structure for surface mesh
	3.3 Classifications and reverse classifications

	4 Key algorithms
	4.1 Setting up connections between CAD model and surface mesh
	4.1.1 Setting up point-vertex mapping
	4.1.2 Setting up curve-edge mapping
	4.1.3 Setting up face-facet mapping

	4.2 Projecting point to curve
	4.3 Projecting point to surface

	5 APIs and parallel mesh refinement
	5.1 List of APIs for parallel mesh refinement
	5.2 Parallel mesh refinement

	6 Numerical experiments
	7 Conclusions
	Acknowledgements
	References

