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1  Introduction
Mesh generation has attracted much attention since it is the major performance bot-
tleneck of applying numerical methods to solve partial differential equations (PDEs). In 
fields such as computational fluid dynamics (CFD) and computational electro magnetics 
(CEM), large-scale meshes containing hundreds of millions of elements or more are now 
required to simulate some challenging problems [1–3]. Sequential approaches are usu-
ally inefficient, if not incompetent, to generate so big a mesh due to the bottlenecks in 
terms of memory usage and computing time. Parallel approaches have thus been devel-
oped to overcome these obstacles [1, 4–8].

Presently, the prevailing parallel approaches of mesh generation are based on domain 
decomposition [5, 9] or by exploiting fine-grained concurrencies within sequential 
mesh generation algorithms [10]. The former approaches are usually implemented in a 
distributed-parallel style and thus capable of avoiding memory bottlenecks in case of 
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large-scale mesh generation. By comparison, the later approaches are suitable for shared 
memory architecture and its capability is limited by the size of available memories.

Parallel refinement is another simple but powerful approach to create large-scale 
meshes. With a coarse mesh as input, parallel refinement subdivides each element 
according to templates in parallel. Commonly, large-scale meshes contain different types 
of elements, for instance, the hybrid prism-tetrahedra mesh for viscous simulations, in 
which layered prismatic elements are aligned with domain boundaries, tetrahedral ele-
ments are filled in far fields, and a few pyramids are used in the transition region. It 
is challenging to create a hybrid prism-tetrahedra mesh having billions of elements by 
domain decomposition approaches. However, much larger meshes have been demon-
strated by using parallel refinement techniques [11].

One drawback of refinement-based approaches is that  the new generated surface 
meshes will deviate from the original geometry. Reconstructing a high-order representa-
tion locally is a solution [12]; however, its accuracy depends on how accurately the initial 
surface mesh approximates the original geometry. Another choice is to respect the origi-
nal geometry. The core issue here is how to represent the geometry and implement com-
putations such as mapping and projection efficiently on that geometry. Zhao et al. [13] 
employ OpenCascade (OCC) [14], an open-source computer-aided design (CAD) kernel 
to represent the original geometry and reuse the algorithms provided by the kernel to 
accomplish the projection procedure. However, using industrial-level CAD kernels like 
OCC in this context is too heavy, not only because their library size is too big and their 
functions are too redundancy, but also because their learning curve is very high. Mean-
while, these CAD kernels are designed for general applications and its efficiency is not 
acceptable in critical parallel applications [13, 15].

In this study, we suggest the development of an ultralight geometry processing library 
(also called ultralight geometry kernel) for parallel mesh refinement. Here, we say the 
geometry library is ultralight because it has a very small set of data-structures and algo-
rithms by comparison with industrial-level geometry kernels:

1.	 Data structures. A simplified surface boundary representation (B-rep) is used to 
record the topology objects. Ferguson curves and Coons surfaces, for their simplic-
ity, are presently employed to define the curve and surface geometry [16–20]. The 
connections between B-rep objects (points/curves/faces) and surface mesh objects 
(vertices/edges/facets) are maintained to support the implementation of accurate 
and efficient projection algorithms [21].

2.	 Algorithms. Two key algorithms are developed: one algorithm initializes the connec-
tion between surface B-rep objects and surface mesh objects, the other one projects 
a point back to the original geometry. Techniques to improve the robustness and effi-
ciency of both algorithms will be depicted.

An essential set of programming interfaces (APIs) is provided to perform the data 
query and key geometry algorithms. Examples show that a few callings of these APIs 
are powerful enough to enable the refined mesh to respect the original geometry. We 
will demonstrate this desirable feature by applying the kernel in a refinement-based 
parallel mesh generator. It is worth noting that the similar approach can be naturally 
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extended for applications such as high-order mesh generation [22, 23] and surface 
mesh adaptation [24].

The following discussion is organized as below. In Section 2, the layered structure of 
the developed geometry kernel is introduced. In Sections 3 and 4, the focuses are on the 
implementation of data structures and key algorithms, respectively. In Section 5, the set 
of APIs for external callings is listed and how they are used in parallel mesh refinement 
is demonstrated. Section 6 presents numerical studies on the proposed approach. Sec-
tion 7 summarizes the article and presents a few suggestions on future work.

2 � Layered structure of the kernel
As seen in Fig. 1, the ultralight kernel is organized into three layers:

1.	 The data structures layer, in which the geometry model, the surface mesh and their connections 
are represented by a simplified surface B-rep, a radial-edge structure and some hash tables.

2.	 The algorithms layer, which consists of the algorithms projecting a point to a curve 
and a surface, the algorithm setting up the connections between the geometry model 
and the surface mesh, the input/out algorithms and the basic query algorithms of the 
fundamental data structures.

3.	 The APIs layer, which, for the users’ convenience, consists of a set of user functions that are 
implemented by warping or combining the algorithms implemented in the algorithms layer.

3 � Implementations of the data structures layer
3.1 � The surface B‑rep

The surface B-rep is introduced in [21], which refers to a subset of the solid B-rep and 
it includes three basic topology entities: face, curve and point, as illustrated in Fig. 2. 

Fig. 1  Layered structure of the kernel
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Meanwhile, a specific topology entity named loop is used to limit the valid region of 
a face. Internally, a loop refers to a set of boundary curves and is a group entity that 
distinguishes from other topology entities.

With respect to the geometric description of curves and surfaces, Ferguson curves 
and Coons surfaces [25, 26] are selected for their simplicity and powerful capabil-
ity for geometry representation. For completeness, their analytic definitions are pre-
sented as below.

A Ferguson curve is composed of many end-to-end connected curve segments. 
Each segment is analytically defined as below (see Fig. 3).

where P(0) and P(1) refer to starting and ending points of the segment, respectively, and 
P ’ (0) and P ’ (1) refer to tangent vectors at respective points. Given a set of interpolation 
points, the tangent vectors at these points could be computed by introducing two-order 
continuous conditions and two boundary conditions at the starting and ending points of 
the entire curve.

A Coons surface is composed of a matrix of surface patches, and each patch is ana-
lytically defined as below (see Fig. 4).
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Fig. 2  Illustration for the surface B-rep [21]
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Fig. 3  A Ferguson curve segment

Fig. 4  A Coons surface
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Given a matrix of interpolation points, the partial differentials defined in the matrix 
A could be computed by introducing two-order continuous conditions and four 
boundary conditions at the corner points of the entire surface. Interested readers are 
referred to [25, 26] for more details.

For simplicity, only one type of curve and one type of surface are supported in our 
geometry kernel, far fewer than that number supported in industry geometry kernels. 
For instance, in OpenCascade 9 types of curves and 11 types of surfaces are respectively 
supported. To use this library, it is necessary to convert other types of curves and sur-
faces to their Ferguson counterparts at first. The deviation error between the Coons rep-
resentation and the original one can be controlled by the resolutions of sample points. 
Table  1 shows the deviation error between the Coons representation of a sphere with 
radius 50 and the analytic representation of the sphere. The error is evaluated by the 
distance between the sample points on Coons surface and the analytic surface. About 
2 million points are uniformly sampled on the surface. Given the fact that the error is 
usually smaller by a few factors than the resolution of the required mesh, we say it is a 
reasonable compromise to use Coons surface instead of the more general but complex 
NURBS representation.

3.2 � The data structure for surface mesh

Here, the data structure introduced in [27] is reused, in which the surface mesh is 
represented by a list of edges and a list of facets. The following codes present the data 
structures used to define surface edges and facets:

To consider non-manifold cases, the number of facets adjacent to one edge is not 
fixed. Figure  5 explains how to link the adjacent faces of an edge cyclically, where 
e.faceH is the head of the link. For the case shown in Fig. 5, e is supposed to be the 
first edge of its adjacent faces; therefore, the first neighboring index of each face is 
used to point to the next face.

A frequently employed routine is the search of a facet with its three corner nodes 
as inputs. Its brute-force implementations need to traverse the facet list. Therefore, a 
hash table is created to improve the performance of this routine, where the smallest 
index of the corner nodes is the key value of a facet, and the facets having an identi-
cal key value form a backup list. Likely, this technique is used to speed up the routine 
that searches a surface edge by its corner nodes.
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3.3 � Classifications and reverse classifications

Three basic mappings between their topology entities are defined as follows to connect 
the B-rep and the surface mesh in [21]:

1.	 The face-facet mapping. A face corresponds to a set of facets.
2.	 The curve-edge mapping. A curve corresponds to a set of edges.
3.	 The point-vertex mapping. A point corresponds to a vertex.

Other mappings can be defined as well, e.g., between a curve and all vertices that lie on 
the curve, or between a face and all edges that bound the face. As these additional map-
pings can be derived from the basic mappings, they are not explicitly represented.

Two definitions are introduced below to describe the above mappings [21, 28]:
Definition 3.1 (Classification). Given a di-dimensional topology entity (di = 0 ~ 2) Mdi 

of the discrete model, Mdi is classified on a dj-dimensional topology entity (di ≤ dj ≤ 2) 
Gdj of the B-rep if Mdi lies on Gdj , denoted as Mdi ⊑ Gdj.

Definition 3.2 (Reverse Classification Set, RCS). Given a d-dimensional topology 
entity (d = 0 ~ 2) Gd of the B-rep, the d-dimensional topology entities of the discrete model 
classified on Gd form a reverse classification set, denoted as RCS(Gd) = {Md| Md ⊑ Gd}.

Table 1  Statistics of interpolation errors

Model #u knot #v knot Max sample error Relative error

Sphere radius = 50 16 24 [− 0.0747, 0.0177] 0.001494

32 48 [−0.0188, 0.0048] 0.000376

64 96 [−0.0047, 0.0012] 0.000094

128 192 [−0.0011, 0.0003] 0.000022

Fig. 5  Illustration for the link of faces adjacent to an edge
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4 � Key algorithms
4.1 � Setting up connections between CAD model and surface mesh

This algorithm is employed to set up three basic mappings between a CAD model and a 
surface mesh. A bottom-up workflow is thus developed, which sets up the point-vertex 
mapping first, then the curve-edge mapping, and finally the face-facet mapping (see Fig. 6). 
Here we depict the respective procedures setting up these three mappings in details as 
below.

4.1.1 � Setting up point‑vertex mapping

This procedure traverses all the CAD points and attempts to classify a surface mesh 
vertex on each point. Here, we say a vertex is classified on a point when their distance 
is smaller than a user-specified tolerance. The timing performance of a brute-force 
implementation is evidently unacceptable. An octree is used to speed up the computa-
tion presently.

4.1.2 � Setting up curve‑edge mapping

This procedure traverses all the CAD curves and attempts to classify a set of surface edges 
on each curve. Here, we say an edge is classified on a curve when the distances between the 
ending points of the edge and the curve are all smaller than a user-specified tolerance. The 
timing performance of a brute-force implementation by computing the distances of each 
pair of a curve and a mesh vertex is unacceptable. Algorithm 1 presents the improved ver-
sion of this procedure.

4.1.3 � Setting up face‑facet mapping

This procedure traverses all the CAD faces and attempts to classify a set of surface facets 
on each face. Here, we say a facet is classified on a face when all the corner vertices of the 
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facet are classified on the face. Since the surface is trimmed by its boundary loop (see 
Fig. 2), we say a point is classified on a face if and only if:

1.	 The distance between the vertex and the supporting surface of the face is smaller 
than a user-specified tolerance; and

2.	 The vertex is located within the valid trimmed region of the face.

To investigate whether the second condition is met, a winding number algorithm is 
presently implemented in the parametric space of the face [29].

The timing performance of a brute-force implementation by computing the dis-
tances of each pair of a face and a mesh vertex is unacceptable. We implemented 
an improved version, which identifies one facet classified on the face first and then 
employs the coloring algorithm to search all the other facets classified on the face. 
Algorithms 2 and 3 present the procedure identifying the first facet and the coloring 
procedure, respectively.

Fig. 6  An example illustrating the process of setting up three basic mappings between a CAD model and a 
surface mesh created on the model. a is the example sphere model composed of 4 surface patches. In (b), 
a surface mesh vertex at the center of four colored edges is highlighted, which is searched and classified on 
the corresponding model point. In (c), all the edges classified on the model curves are colored. In (d), the 
surface facets are colored differently, illustrating that they are classified on different surface patches
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4.2 � Projecting point to curve

Given a parametric curve r = r(u), the expression of the problem becomes:

subjecting to

 Here, r∗ is the physical coordinates of the point, u is the parametric coordinate of r∗, 
and ε is a distance tolerance for duplicate points. Presently, the Brent’s algorithm [30] is 
employed to solve the above nonlinear programming (NLP) problem.

4.3 � Projecting point to surface

Given a parametric surface r = r(u, v), the expression of the problem becomes:

(1)min | r∗ − r(u) |,

(2)| r∗ − r(u) |< ε.

(3)min | r∗ − r(u, v) |,
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subjecting to

 Here, r∗ is the physical coordinates of the point, (u, v) are the parametric coordinates of 
r∗, and ε is a distance tolerance for duplicate points.

Solving the above NLP problem takes the following steps [31]:

1.	 Check if any singular point of the surface meets Inequality (4). If no singular point 
meets Inequality (4), seek the solution of NLP (1) and (2) in the parametric spaces of 
the boundary curves as mentioned in Section 4.2.

2.	 If no solution is targeted in Step 1, seek the solution in the interior of the parametric 
space of the surface by using the GSA (Geometric Strategy Algorithm) for orthogo-
nal projection [32].

3.	 If Step 2 still fails to present a solution, a direct searching procedure is executed, 
which is more robust but less efficient. This procedure creates a quadtree to cover 
the parametric space by recursive refinement: amongst existing quadrants, the one 
that is the closest to r∗ (e.g., evaluated by the distance of the centroid of the quad-
rant and r∗) is subdivided into four child quadrants. This refinement procedure is 
repeated until the centroid of a quadrant meets Inequality (4) or the size of the quad-
rant is smaller than the floating-point precision.

5 � APIs and parallel mesh refinement
5.1 � List of APIs for parallel mesh refinement

For the convenience of external callings, a few APIs are implemented in the kernel to 
wrap the query of data structures and the key algorithms presented in Section 4. Listed 
as below are 8 APIs that will be called by the parallel mesh refinement algorithm. As 
discussed in Section 5.2, a few callings of these APIs are powerful enough to enable the 
refined mesh to respect the original geometry.

1.	 Build_Map(…), which sets up the connections between a CAD model and a surface 
mesh by employing the algorithm introduced in Section 4.1.

2.	 Project_Curve(…), which computes the projection of a point at a curve by employ-
ing the algorithm introduced in Section 4.2.

3.	 Project_Surface(…), which computes the projection of a point on a surface by 
employing the algorithm introduced in Section 4.3.

4.	 Get_PatchID(…), which returns the face that a facet is classified on.
5.	 Get_PatchCurves(…), which returns the curves that bound a face.
6.	 Get_FacetIDs(…), which returns a set of facets meeting at an edge.
7.	 Attach_Face(…), which classifies a facet onto a face.
8.	 Detach_Face(…), which removes a facet-on-face classification.

(4)| r∗ − r(u, v) |< ε.
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5.2 � Parallel mesh refinement

Figure  7 presents the overall workflow of the parallel mesh refinement algorithm, 
which adopts a manager/worker structure. The manager inputs a CAD model and a 
coarse hybrid prism-tetrahedra mesh, then extracts the surface of the volume mesh 
and sets up the connections between the CAD model and the surface mesh. After 
that, the manager employs a graph partition tool named Metis [33, 34] to subdivide 
the volume mesh into sub-meshes and distribute each sub-mesh onto the workers. 
Note that the manager will get one sub-mesh for itself such that it can do the same 
work as the workers. As will be demonstrated in Section  6, the memory consump-
tion of lightweight kernel is neglected in real applications. Therefore, each worker 
also gets all the data stored in the ultralight geometry kernel such that the subsequent 
projection procedure could be executed in parallel. See Fig. 8 for an example illustrat-
ing the above workflow.

After the sequential mesh partitioning, all the following steps are conducted in paral-
lel. Each worker refines its sub-mesh by using the subdivision templates shown in Fig. 9, 

Fig. 7  Overall workflow of the parallel mesh refinement algorithm
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and then projects newly inserted surface points onto the input CAD model. To improve 
the mesh quality after projection, a moving mesh technique by using radial basis func-
tions (RBF) is employed [35–38]. If the available memory on the manager process is 
large enough, the distributed refined mesh could be sent back to the manager for com-
bination. However, since the algorithm is developed to deal with large-scale meshes, the 
output is a distributed mesh in default, which is produced by repartitioning the refined 
mesh to achieve a better tradeoff between loading balance and communications. The 
parallel version of Metis, namely ParMetis, is presently employed to achieve this goal.

Three procedures of the parallel mesh refinement algorithm require the callings of 
APIs listed in Section 5.1.

1.	 In the initialization procedure, the manager calls Initialize_map(…) to set up the 
connections between the CAD model.

2.	 In the refinement procedure, the workers call Attach_face(…) to classify newly 
formed surface facets onto CAD faces and Detach_face(…) to remove the connec-
tions between split facets and CAD faces.

Fig. 8  An example illustrating the parallel mesh refinement workflow. a is the input coarse mesh. b is the 
partitioned result of the input mesh. c is the refinement result of (b). d is the final mesh after projecting new 
surface points onto the original CAD model. Note that a mesh deformation is carried on after projection to 
improve shape quality of volume elements
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3.	 In the project procedure, the workers project newly inserted points back onto the 
original CAD model. Points are dealt with individually. Algorithm 4 presents how to 
deal with one point by classifying different cases.

Fig. 9  Refinement templates of 3D elements
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Fig. 10  Three groups of inputs selected for numerical tests. Left is the CAD model, and right is the coarse 
volume mesh filling in the exterior flow domain. a The DLR F6 aircraft model, b The missile model, c The 
rocket model

Table 2  Statistics of the selected inputs

Model #Curves #Surfs. #Total 
elems

#Tetra. 
elems

#Pyramid 
elems

#Prism 
elems

#Vol. 
nodes

#Surf. elems

F6 238 98 5.13 M 1.57 M 0.04 M 3.52 M 2.057 M 0.174 M

Missile 343 127 2.30 M 0.54 M 0.03 M 1.73 M 0.977 M 0.072 M

Rocket 1098 439 5.73 M 0.52 M 0.04 M 5.17 M 2.712 M 0.147 M
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Fig. 11  Comparison of the refinement results with and without the projection step enabled. a is the mesh 
with this step disabled, b is with this step enabled, and c presents a color map describing how far the mesh 
(a) deviates from the original CAD model
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Table 3  Total timing data and breakdown of the overall refinement algorithm

Model #Output elems. #Cores Time consumed by individual steps (s) Total Time (s)

Map Partition Refine Project Deform

F6 0.33B 256 2.7 164.5 2.3 25.3 1901.8 2108.6

512 2.7 164.0 1.2 13.8 489.5 687.1

1024 2.8 193.4 0.7 8.7 225.4 451.4

Missile 0.15B 256 1.2 68.4 1.1 16.9 146.1 228.2

512 1.1 59.6 0.6 9.0 82.5 154.3

1024 1.1 69.3 0.3 5.1 38.8 121.1

Rocket 0.37B 256 3.3 155.7 5.0 13.5 1450.1 1644.4

512 3.2 185.6 2.4 7.9 746.2 969.8

1024 3.1 179.5 0.9 5.3 469.8 679.8

Table 4  Comparing of projection time

Model EGADSlite Our method

sphere_example #Surf. elems 265,216 269,690

#Surf. nodes 132,610 134,847

Time of projection / s 11.1 5.8

Nozzle_example #Surf. elems 228,040 231,278

#Surf. nodes 114,022 115,641

Time of projection / s 9.1 6.3

Complex (medium size) #Surf. elems 68,156 69,844

#Surf. nodes 34,038 34,882

Time of projection / s 13.2 8.6

Complex (finer size) #Surf. elems 279,068 281,040

#Surf. nodes 139,494 140,480

Time of projection / s 31.6 18.6
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Fig. 12  Comparison of elements before and after mesh deformation. a The prism elements near the surface. 
b inverted elements. c corrected elements after RBF deformation

Fig. 13  Mesh quality comparison
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6 � Numerical experiments
To prove the effectiveness and efficiency of the proposed method and library, numeri-
cal tests were carried out on TianHe Exascale Prototype System, in which each com-
puter node contains a Matrix-2000+ CPU configured with 32 computer cores and 
16 GB memory. Three typical aerodynamics inputs (see Fig. 10) are selected and their 
info is listed in Table 2.

The mapping and projection are accomplished by the ultralight geometry kernel. 
The mapping step is a serial process and only depends on the complexity of the input 
geometry and the size of initial surface mesh and it is not a compute-intensive task.

The projection process is a critical step in mesh refinement. Figure 11 shows how the 
projection process improves the quality of a mesh on the missile model. Figure 11a is 
the one-level refinement result before projection and 11b is its counterpart after pro-
jection. The mesh in Fig. 11b is visually smoother than the mesh in Fig. 11a because 
the mesh after projection respects the original geometry more accurately. To quantify 
the movement distance resulted by the projection, Fig. 11c presents a color map of that 
distance, in which each node is assigned a value representing the distance between the 
origin position of a mesh point and the original geometry.

Table 3 lists the timing data of the overall refinement algorithm. The timing cost of the 
projection step is relatively small in all tests. By comparison, if a general-purpose CAD 
kernel such as OpenCascade is employed, this cost can be much larger, as reported in 
[13]. To evaluate the efficiency of our projection algorithm, we compared our method 
with another open-source lightweight geometry kernel named EGADSlite, which is 
reported much faster than OpenCascade in such a kind of computation [15].
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The geometry models provided in the EGADSlite project are used as inputs. Test-
ing meshes are generated separately by the two libraries with similar element number 
and the projection of EGADSlite is accomplished by the EGlite_invEvaluate() function. 
Table 4 shows the time cost of the two projection algorithms on a personal computer 
with an Intel I5-6500 CPU and 16 GB memory.

Table 4 shows that our projection algorithm is faster than EGADSlite in all cases.
The last step in the parallel refinement is mesh deformation, which takes the largest 

portion of the total time in all the tests listed in Table 3. The primary reason is that we 
presently employ an RBF algorithm without incorporating any data reduction tech-
niques [38], which ensures a better mesh deformation effect at a  rather huge cost of 
computing time. Nevertheless, the percentage of this portion deceases evidently when 
more computer cores are invested owing to the efficient parallelization of this step.

The projection step directly replaces newly inserted surface mesh nodes with their pro-
jections on the original CAD model. This process may degrade or even invert the elements 
connected to these nodes, in particular when the elements are stretched prisms with very 
small lateral edges. Figure 12b presents a case in which some prisms near the wall of the 
missile model are inverted due to the projection. After performing the RBF-based mesh 
deformation, the quality of these elements is remarkably improved, as seen in Fig. 12c.

Finally, we analyze the mesh quality statistics with the metric Equiangular skewness [39] 
which is used to evaluate the shape quality of elements. This value varies between 0 and 1: 
0 stands for an element with the best quality and 1 for a degenerate element. In real simu-
lations, it is required that the skewness values of the majority of elements are below 0.8 and 
the elements with their skewness values above 0.9 should be removed as many as possible. 
For the F6 case, Fig. 13 presents the prism element quality of the initial mesh, the projected 
mesh and the final mesh (after deformation). In general, the quality of the refined elements 
highly depends on the input ones. However, projection and deformation can make cer-
tain improvement of mesh quality. In this case, the projection and deformation procedure 
increases the percentage of elements with satisfactory skewness values (i.e., below 0.2) and 
decreases unsatisfactory skewness values (i.e., above 0.8) remarkably.

7 � Conclusions
In this study, it is shown that an ultralight geometry processing library is powerful 
enough to ensure the refined surface respects the original CAD model accurately. A very 
small set of data-structures and algorithms is included in the kernel. Techniques are 
developed to improve the robustness and efficiency of these data-structures and algo-
rithms. Meanwhile, with the aid of this kernel, a parallel mesh refinement algorithm is 
enhanced with the ability to respect the original CAD model at a small computing cost. 
Numerical experiments configured with geometry with industry-level complexity are 
presented to certify the performance of the developed algorithms.
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